
RECURRENCE RELATIONS FOR POWERS' OF 
RECURSION SEQUENCES 
Adam Michael Stinchcombe 

Adirondack Community College, 640 Bay Road, Queensbury, NY 12804 
(Submitted February 1997) 

1. INTRODUCTION 

In this article I present some partial answers to the open questions raised by Cooper and 
Kennedy in [1]. In that article the authors asked whether there exists a recurrence relation among 
powers xl

n, where xn represents the solution to a given recurrence relation. I answer this in the 
affirmative below, include a few details about the corresponding order, then indicate a way to 
calculate any such relation the reader might seek, and, finally, state.a few results from such 
calculations. 

An informal sketch of the proof and procedure runs as follows. Every solution to a recur-
rence relation can be expressed as a linear combination of powers of roots to the characteristic 
polynomial. The coefficients of the original recurrence relation are the elementary symmetric 
polynomials in these roots. Every power of a solution can be expressed as a linear combination of 
products of powers of these roots by using the general multinomial theorem. These products can 
be used as roots to form a new characteristic polynomial. On inspection, the coefficients of this 
new characteristic polynomial are symmetric in the roots of the old characteristic polynomial, and, 
therefore, can be expressed as polynomials in the elementary symmetric polynomials of the roots; 
that is, the coefficients of the new recurrence relation can be expressed in terms of the coeffi-
cients of the original characteristic polynomial There is a method for obtaining the expression, 
amounting to a multivariate version of the Euclidean algorithm. 

2. EXISTENCE 

Let xn = axxn_x + «2x»-2 + 9" + akxn-k ^e a liflear homogeneous recurrence relation with con-
stant coefficients {at \ i = 1,..., k) and of order k Let p(x) = xk - axxk~l - • • • - ak be the charac-
teristic polynomial for this relation. Let p(x) factor as p(x) = (x-rl)(x-r2)'"(x-rk) over the 
field of complex numbers and suppose that the roots are distinct. We can write the Binet closed 
form for xn as xn = Ap" + A^ + • • • + 4rf• The constants {Ai\i = l9...9k} are determined by the 
initial conditions specified in a particular solution to the recurrence relation. 

Let a = (ah al9 ...,#*) and fi = (J3l9 fi2>~;Pk) ^e t w o tuples . Define the symbol afi to 
be the product of all terms at raised to the pt power: 

Writing Xn = (A/C, Arf,..., Af£), A = (Ah 4 , . . . , Ak), and R = (r1? r2?..., rk), we see that Xa = 
Aa(Raf for each fc-tuple a. 

Recall the definition of the multinomial coefficient c(a) = (ax + ••• + ak)\/(al\... ak!). 
Introduce the indexing set Bt = {(*i,...,/*)! each ij is a nonnegative integer and ix +-> + ik = I}. 
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Theorem 1: If x„ = £ Arf, then xl
n = £ c(aMa(i?T . 

J = 1 aeZ?/ 

Proof: 
( k 

X1 = 
k v 

/=1 / aeB/ arei?/ V/=l 

by the general multinomial Theorem (see Hungerford [3, Th. 1.6, p. 118]). • 

Therefore, yn = xl
n is a linear combination of terms that are products of roots from the origi-

nal characteristic polynomial of total degree /, raised to the rfi1 power. Thus, yn is a solution to a 
recurrence relation. The next theorem tells us more. 

Theorem 2: The characteristic polynomial for the sequence yn can be written in terms of the 
coefficients of the characteristic polynomial p(x) for xn. 

Proof: The characteristic polynomial for yn is 

q(x) = ]J(x-Ra) GC[X] by Theorem 1. 
aeBi 

Consider some permutation cr:{rh ...,rk} -+ {rh ...,rk} ofthe roots of p(x). a can be decom-
posed into a product of transpositions [3, p. 48]. Each transposition interchanges two roots, say 
rm and rn. The effect of this transposition is to interchange the exponents from a = (iu...Jm>..., 
in,...,4) to a' - (ii,...,in9...,im,...,ijc) w^hin the indexing set Bt. Thus, each transposition repre-
sents a transposition of the elements of Bt because the conditions defining ^-tuples in Bt are 
unchanged by switching values positionally. The composition of transpositions that give a also 
describe a composition of transpositions in Bx. Thus, a gives rise to a permutation of Bx. Since 
the product for q(x) is formed over the entire set Bh this permutation leaves q(x) fixed. 

If we were to expand q(x) into its standard form, the coefficients would be polynomial 
expressions in the roots {r1? ...,rk). These coefficients are invariant under permutation ofthe 
roots and so are symmetric polynomials in the roots. Any such symmetric polynomial can be 
expressed as a polynomial in the elementary symmetric functions [2, p. 307]. 

Since these elementary symmetric polynomials are exactly the coefficients ofthe characteris-
tic polynomial p(x), the coefficients of q(x) can be written as expressions in the coefficients of 
p(x). • 

3. ORDER 

What is the order ofthe recurrence relation yn = xl
nl 

It should be the degree ofthe characteristic polynomial q(x). This degree is counted by the 
number of elements in Bx. Given a value of k, define S(k, 1) =\BX\ where, recall, Bt = {(/,...,ik)\ 
each ij is a nonnegative integer and ix + • • • +ik -1}. 

Theorem 3: S(k, I) obeys the relations: S(k, l) = k for all k, $(l, 1) = I for all /, and S(k91) = 
S(k -1,1) + S(k, I -1) for every k and /. 

Proof: Proceed inductively. 
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S(k91) represents the number of ways to define a ft-tuple of nonnegative integers that add to 
1. There are k ways to do this, corresponding to placing a 1 in any one of the k places in the k-
tuple and 0 everywhere else. 

S(t, I) represents the number of ways to have a 1-tuple of nonnegative integers that add to /. 
There is only one such way. 

Let a - (il9 ...,ik) be a generic element ofBt. Either ix = 0 or ix > 0. If ix = 0, then i2 + ••• + 
ik = /, and the number of possible ways to select such ij's is S(k -1, /) ; in other words, a sum of 
/ obtained with k-\ variables. If ix > 0, then we can subtract one from it to get (ix-1,...,ik) as 
an element of Bt_x that has S(k,l-l) elements. Therefore, the total number of possibilities is 
S(k-\I) + S(kJ-l). D 

Theorem 4: S(k, I) = i+k^Ck_l9 where tCj stands for the binomial coefficient i!/ [j\(i - j)!]. 

Proof: Substituting / = 1 gives /+fc_1Q_1 = kCk_x= k while substituting k = l gives /+it_1Q_1 = 
ICQ - 1. To check that the given binomial coefficient satisfies the recurrence relation, simplify 

i+{k-i)-\C{k-\)-\+ (/-i)+£-iQ-i - W - 2 Q - 2 + i+k-iCjt-i - i+k-i^k-i-

The binomial coefficient /+A:_1Q_1 satisfies the recurrence relation and the initial conditions. 
Therefore, it is the solution to this recurrence relation and, by Theorem 3, S(k, f) = i+k_xCk_v D 

This answer, an order of /+jt-iQ-i for yn9 represents the largest order sufficient to express yn 
as a recurrence relation. It is not the least order necessary. The reason for the discrepancy is that 
the various values for the products of powers of roots might not be distinguishable arithmetically, 
while in the above proof the various terms were distinguished symbolically. As an example, sup-
pose xn = ln + 2n + 3n + 6n with characteristic equation 

p(x) - (x - l)(x - 2)(x - 3)(x - 6). 

The process above indicates that a characteristic polynomial for yn - x\ would be 
q(x) = (x- l)(x - 2)(x - 3)(x - 6)(x - 4)(x - 6)(x - 12)(x - 9)(x - 18)(x - 36); 

However, we do not require a double root of 6, obtained on the one hand by r/4 - 1 * 6 = 6 and 
on the other hand by r2r3 = 2 * 3 = 6. 

We can obtain a sharp result if we assume that all the elements of a e Bx gives rise to a 
unique value for Ra. We would wish for some general criteria for determining whether all such 
values are distinct, without arithmetically checking all the possibilities. One such criterion would 
be the assumption that each root is an integer and each root is divisible by a different prime. 
Then, given an arithmetic value for a product of roots, we could identify the factors by determin-
ing the power of the corresponding prime unique to each root. This would determine the power 
of the root that comprises the overall product. 

4. GENERATING A RELATIONSHIP 

One starts with the order k of the recurrence relation for xn and one decides upon the power 
/ in yn - xl

n. Next, construct q(x) symbolically, and expand the expression algebraically to obtain 
the coefficients for q(x) as explicit symmetric polynomials. Finally, write these coefficients in 
terms of the elementary symmetric polynomials (see Cox [2, pp. 307-09] for more details). The 
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algorithm amounts to successively subtracting appropriate powers of the elementary symmetric 
polynomials. The powers are obtained by identifying the leading term of the symmetric expres-
sion, and using the powers of this monomial to determine powers for products of the elementary 
symmetric polynomials. 

Example: Let xn = Alx„_l + A2xn_2, which gives rise to the characteristic polynomial 

p(x)=(x-r1)(x-r2). 

Notice that Ax = rx+r2 and A2 - -rxr2. Let yn - x2, which has derived characteristic polynomial 

q(x) = (x - r2)(x - rf2)(x - r2). 

This expands to 
q(x) = x3 - (r2 + rxr2 + r2)x2 + (r3r2 + r2r2 + rxr2)x - r3r2, 

which leads to the recurrence relation 

yn = (n2 + Wi+^2)JVI - (^2 +riri+rfi)yn-2+rMyn-y 

Performing the algorithm indicated in Cox, Little, and O'Shea [2] gives 
(r2 +7ir2 + r2) = (rx +r2)2-rlr2 = A\ +A2, 

(r3r2 +r2r2 + r/3) = fa +r2f{rlr2)-r2r2 = -A^A2 - A2, 

rM = (m? = -A-
Consequently, 

yn = (A2 + 4 ) ^ + (A2A2 + A2)yn_2 - (A3)yn_3. • 

5. RESULTS 

Using the computer algebra system Maple® and the easier algorithm indicated in [2, pp. 309-
10] yielded the following results: If xn - axn_l +bxn_2 + cxn_3 and yn = x3

n, then 
10 

yn=Haiyn-i 

with 

ax = a3 + 2ba + c, 
a2 = H)3+ha4+3h2a2 + ca3 + 2cba, 
a3 = 3c3 + ca6 - 2b4a ~ b3a3 +1 lc2ba + leba4 + 5c2a3 +10cb2a2, 
a4 = -3cb3a3 + 4cb4a + 2c3a3 + 2c2b3 - cb2a5 + c2a6 - I3c3ba + c2ba4 - I3c2b2a2 - 3c4 - b\ 
a5 = cW - 4c4ba - lc3ba4 - 5c4a3 + 5c3b3 - c3a6 - cb6 + lc2b4a - cb5a2 + 8c W , 
a6 = -2c5a3 - c4a6 + c2b6 - 2c4b3 - 4c4ba4 - \3c4b2a2 - c3b4a + c2b5a2 - 3c3b3a3 - 3c6 - 13c V 
a7 = -c W + 2c5ba4 + c3b*> - lc4b4a + l O c W - 5c5b3 +1 lc6ba + 3c7, 
aB = -2cW + 2c7ba - b3c6 - c5b4a + 3a 2c6b2, 
a9 = 2csba + c9 -h3c7, and 
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If x„ = axn_x + hxn_2 + cxn_3 + dxn_4 and yn = x2, then 
10 

with 
ax = a2 + b, 
a2 =h2 + ba2 + ca+d, 
a3 = -b3 + ca3 + 2c2 + Acba, 
a4 - db2 + Adba2 + Sdca + 2d2 + da4 - c2b - cb2a + c2a2, 
a5 = dca3 - db2a2 - 2d2b + d2a2 - dc2 - 2db3 - c3a + c2b2, 
a6 = -c4 +dcb2Q-2d3-5d2ca-d2ha2 +4dc2b-dc2a2 ~d2b2, 
a7 = 4d2cba-dac3-2a2d3-d2b3, 
ag = ~d3b2 - cd3a -d4+ c2d\ 
a9=hd4-d3c2, and 

al0 = d\ 

6, FURTHER RESEARCH 

One of the assumptions throughout this article is that the roots {#j \i = 1,..., k} are all distinct. 
The next step in investigating this problem would be to allow for several repeated roots. Each of 
the roots rt could have a multiplicity kiy which would lead to a polynomial of degree (kf -1) in n 
as the coefficient of r" in the Binet form. These different polynomials would then combine in the 
multinomial theorem to form repeated roots of high degree. Tracing this argument through care-
fully might yield precise estimates for the order of the recurrence relation yn = xl

n. 
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