POLYNOMIALS RELATED TO MORGAN-VOYCE POLYNOMIALS

Gospava B. Đorđević

University of Niš, Faculty of Technology, 16000 Leskovac, Yugoslavia (Submitted April 1997-Final Revision March 1998)

1. INTRODUCTION

In this note we shall study two classes of polynomials, $\{P_{n,m}^{(r)}(x)\}$ and $\{Q_{n,m}^{(r)}(x)\}$, where r is integer. For m=1, these polynomials are the known polynomials $P_n^{(r)}(x)$ (see [1]) and $Q_n^{(r)}(x)$ (see [4]). Particularly, $P_n^{(r)}(x)$ and $Q_n^{(r)}(x)$ are the well-known classical Morgan-Voyce polynomials $P_n^{(r)}(x)$ and $P_n^{(r)}(x)$ (see [1], [2], [3], [4]). In Section 2 we shall study the class of polynomials $P_{n,m}^{(r)}(x)$. The polynomials $P_{n,m}^{(r)}(x)$ are given in Section 3. The main results in this paper relate to the determination of coefficients of the polynomials $P_{n,m}^{(r)}(x)$ and $P_{n,m}^{(r)}(x)$. Also, we give some interesting relations between the polynomials $P_{n,m}^{(r)}(x)$ and $P_{n,m}^{(r)}(x)$.

2. POLYNOMIALS $P_{n,m}^{(r)}(x)$

We shall introduce the polynomials $P_{n,m}^{(r)}(x)$ by

$$P_{n,m}^{(r)}(x) = 2P_{n-1,m}^{(r)}(x) - P_{n-2,m}^{(r)}(x) + xP_{n-m,m}^{(r)}(x), \quad n > m$$
(2.1)

with

$$P_{n,m}^{(r)}(x) = 1 + nr \text{ for } n = 0, 1, ..., m-1, \quad P_{m,m}^{(r)}(x) = 1 + mr + x.$$
 (2.2)

So, by (2.1) and (2.2), we find the first (m+2)-members of the sequence $\{P_{n,m}^{(r)}(x)\}$:

$$P_{0,m}^{(r)}(x) = 1, \quad P_{1,m}^{(r)}(x) = 1+r, \dots, P_{m,m}^{(r)}(x) = 1+mr+x,$$

$$P_{m+1,m}^{(r)}(x) = 1+(m+1)r+(3+r)x.$$
(2.3)

From (2.3), by induction on n, we see that there exists a sequence $\{b_{n,k}^{(r)}\}\ (n \ge 0 \text{ and } k \ge 0)$ of numbers such that

$$P_{n,m}^{(r)}(x) = \sum_{k=0}^{[n/m]} b_{n,k}^{(r)} x^k, \qquad (2.4)$$

with $b_{n, k}^{(r)} = 0$ for k > [n/m].

By (2.4), we get

$$b_{n,0}^{(r)} = P_{n,m}^{(r)}(0). (2.5)$$

Let us take x = 0 in (2.1). Now, using (2.5), we obtain the following difference equation:

$$b_{n,0}^{(r)} = 2b_{n-1,0}^{(r)} - b_{n-2,0}^{(r)}, \quad n \ge 2, m \ge 1,$$
(2.6)

with initial values $b_{0,0}^{(r)} = 1$ and $b_{1,0}^{(r)} = 1 + r$.

Solving (2.6), we get

$$b_{n,0}^{(r)} = 1 + nr, \ n \ge 0. \tag{2.7}$$

From (2.1), we obtain the following recurrence relation:

$$b_{n,k}^{(r)} = 2b_{n-1,k}^{(r)} - b_{n-2,k}^{(r)} + b_{n-m,k-1}^{(r)}, \ n \ge m, k \ge 1.$$
 (2.8)

Next, we can write the sequence $\{b_{n,k}^{(r)}\}$ into the form of the general triangle:

TABLE 1

n/k	0	1	2	3	•••
1	1	•••	•••		•••
2	1+r	•••	•••	•••	•••
•••	•••		•••	•••	•••
•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••
m-1	1+(m-1)r	•••	•••	•••	•••
m	1+mr	1	•••	•••	•••
m+1	1+(m+1)r	3+r	•••	•••	•••
m+2	1+(m+2)r	6+4r	•••	•••	• • •
•••		•••	•••	•••	•••

Remark 1: For m = 1, r = 0 and r = 1, Table 1 is exactly the DFF and the DFF_x triangle, respectively (see [2], [3]).

Theorem 2.1: The coefficients $b_{n,k}^{(r)}$ satisfy the relation

$$b_{n,k}^{(r)} = b_{n-1,k}^{(r)} + \sum_{s=0}^{n-m} b_{s,k-1}^{(r)}, \quad n \ge m, k \ge 1.$$
 (2.9)

Proof: We shall use induction on n. By direct computation, we see that (2.9) holds for every n = 0, 1, ..., m-1. If we suppose that (2.9) is true for $n \ (n \ge m)$, then, from (2.8) for n+1, we have

$$\begin{aligned} b_{n+1, k}^{(r)} &= 2b_{n, k}^{(r)} - b_{n-1, k}^{(r)} + b_{n+1-m, k-1}^{(r)} \\ &= b_{n, k}^{(r)} + b_{n-1, k}^{(r)} + \sum_{s=0}^{n-m} b_{s, k-1}^{(r)} + b_{n+1-m, k-1}^{(r)} - b_{n-1, k}^{(r)} \\ &= b_{n, k}^{(r)} + \sum_{s=0}^{n+1-m} b_{s, k-1}^{(r)}. \end{aligned}$$

Thus, statement (2.9) follows from the last equalities. \Box

One of the main results is given by the following theorem.

Theorem 2.2: For any $n \ge 0$ and any $k \ge 0$ such that $0 \le k \le \lfloor n/m \rfloor$, we get

$$b_{n,k}^{(r)} = {n - (m-2)k \choose 2k} + r {n - (m-2)k \choose 2k+1},$$
(2.10)

where $\binom{p}{s} = 0$ for s > p.

Proof: We use induction on n. First, from (2.7), we see that (2.10) is true for k = 0. Also, if n = 0, 1, ..., m-1, then k = 0, so (2.10) is true. Assume that (2.10) holds for n-1 (n > m). Then, by (2.8) for n, we get

$$b_{n,k}^{(r)} = 2b_{n-1,k}^{(r)} - b_{n-2,k}^{(r)} + b_{n-m,k-1}^{(r)} = x_{n,k} + ry_{n,k}$$

where

$$x_{n,k} = 2\binom{n-1-(m-2)k}{2k} - \binom{n-2-(m-2)k}{2k} + \binom{n-m-(m-2)(k-1)}{2k-2}$$

and

$$y_{n,k} = 2 \binom{n-1-(m-2)k}{2k+1} - \binom{n-2-(m-2)k}{2k+1} + \binom{n-m-(m-2)(k-1)}{2k-1}.$$

Next, from the well-known relation

$$\binom{p}{s} = \binom{p-1}{s} + \binom{p-1}{s-1},$$

we find that

$$x_{n,k} = {n - (m-2)k \choose 2k}$$
 and $y_{n,k} = {n - (m-2)k \choose 2k+1}$.

Particular Cases

For m = 1 and r = 0, and for m = 1 and r = 1, by (2.10), we get

$$b_{n,k}^{(0)} = {n+k \choose 2k}$$
 and $b_{n,k}^{(1)} = {n+k \choose 2k} + {n+k \choose 2k+1} = {n+1+k \choose 2k+1}$.

These are the coefficients of the classical Morgan-Voyce polynomials $b_n(x)$ and $B_n(x)$, respectively (see [3], [4]). Namely, we have

$$b_{n+1}(x) = \sum_{k=0}^{n} {n+k \choose 2k} x^k$$
 and $B_{n+1}(x) = \sum_{k=0}^{n} {n+1+k \choose 2k+1} x^k$.

We shall now prove the following lemma.

Lemma 2.1:

1999]

$$b_{n,k}^{(1)} - b_{n-2,k}^{(1)} = b_{n,k}^{(0)} + b_{n-1,k}^{(0)}, \quad n \ge 2.$$
 (2.11)

Proof: From (2.10), for r = 1, we get

$$b_{n,k}^{(1)} - b_{n-2,k}^{(1)} = {n - (m-2)k \choose 2k} + {n - (m-2)k \choose 2k+1} - {n - 2 - (m-2)k \choose 2k} - {n - 2 - (m-2)k \choose 2k+1}$$
$$= {n - (m-2)k \choose 2k} + {n - 1 - (m-2)k \choose 2k} = b_{n,k}^{(0)} + b_{n-1,k}^{(0)}.$$

From the last equalities, we get (2.11). \square

Remark 2: For m = 1, from (2.11), we obtain (see [5])

$$B_n(x) - B_{n-2}(x) = b_n(x) + b_{n-1}(x),$$

where $B_n(x)$ and $b_n(x)$ are the classical Morgan-Voyce polynomials.

3. POLYNOMIALS $Q_{n,m}^{(r)}(x)$

First, we are going to define the polynomials $Q_{n,m}^{(r)}(x)$, which are the generalization of the polynomials $Q_{n,m}^{(r)}(x)$ (see [4]). The polynomials $Q_{n,m}^{(r)}(x)$ are given by

$$Q_{n,m}^{(r)}(x) = 2Q_{n-1,m}^{(r)}(x) - Q_{n-2,m}^{(r)}(x) + xQ_{n-m,m}^{(r)}(x), \quad n \ge m,$$
(3.1)

with the initial values

$$Q_{n,m}^{(r)}(x) = 2 + nr \text{ for } n = 0, 1, ..., m-1, \quad Q_{m,m}^{(r)}(x) = 2 + mr + x.$$
 (3.2)

From (3.2) and (3.1), by induction on n, we see that there exists a sequence $\{d_{n,k}^{(r)}\}$ $(n \ge 0)$ and $k \ge 0$ of integers such that

$$Q_{n,m}^{(r)}(x) = \sum_{k=0}^{[n/m]} d_{n,k}^{(r)} x^k, \qquad (3.3)$$

where

$$d_{n,n}^{(r)} = \begin{cases} 1, & n \ge 1, \\ 2, & n = 0. \end{cases}$$
 (3.4)

From (3.3), we get

$$Q_{n, m}^{(r)}(0) = d_{n, 0}^{(r)}.$$

Thus, by (3.1) and (3.2), we have

$$d_{n,0}^{(r)} = 2d_{n-1,0}^{(r)} - d_{n-2,0}^{(r)} \quad (n \ge 2), \tag{3.5}$$

with

$$d_{0,0}^{(r)} = 2$$
 and $d_{1,0}^{(r)} = 2 + r$. (3.6)

Solving (3.5), by (3.6), we obtain

$$d_{n,0}^{(r)} = 2 + nr, \ n \ge 0. \tag{3.7}$$

Furthermore, from (3.1), we get

$$d_{n,k}^{(r)} = 2d_{n-1,k}^{(r)} - d_{n-2,k}^{(r)} + d_{n-m,k-1}^{(r)} \quad (n \ge m, m \ge 1, k \ge 1).$$
(3.8)

In Table 2, we write the coefficients $d_{n,k}^{(r)}$. Thus, from Tables 1 and 2, we see that

$$d_{n,k}^{(r)} = b_{n,k}^{(r)} + b_{n-1,k}^{(0)}, \quad n = 0, 1, ..., m-1.$$

TABLE 2

n/k	0	1	2	
0	2	•••	•••	•••
1	2+r	•••	•••	•••
2	2+r	•••	•••	•••
•••	•••	• • •	• • •	• • •
•••	•••	•••	• • •	• • •
•••	•••	•••	•••	•••
m-1	2+(m-1)r	•••	•••	
m	2 + mr	1	• • •	• • •
m+1	l	4+r	•••	•••
		• • •	•••	•••

Now we shall prove the following theorem.

Theorem 3.1: For $n \ge 1$, the following equalities hold:

$$d_{n,k}^{(r)} = b_{n,k}^{(r)} + b_{n-1,k}^{(0)}$$

$$= {n - (m-2)k \choose 2k} + {n - 1 - (m-2)k \choose 2k} + r{n - (m-2)k \choose 2k+1}.$$
(3.9)

Proof: In the proof, we use induction on n. For n = 1, by direct computation, we conclude that (3.9) is true. We assume that (3.9) is true for $n (n \ge 1)$. Then, for n+1, we get

$$b_{n+1,k}^{(r)} + b_{n,k}^{(0)} = 2b_{n,k}^{(r)} - b_{n-1,k}^{(r)} + b_{n+1-m,k-1}^{(r)} + 2b_{n-1,k}^{(0)} - b_{n-2,k}^{(0)} + b_{n-m,k-1}^{(0)}$$
 [by (2.8)]

$$= 2(b_{n,k}^{(r)} + b_{n-1,k}^{(0)}) - (b_{n-1,k}^{(r)} + b_{n-2,k}^{(0)}) + b_{n+1-m,k-1}^{(r)} + b_{n-m,k-1}^{(0)}$$

$$= 2d_{n,k}^{(r)} - d_{n-1,k}^{(r)} + d_{n+1-m,k-1}^{(r)} = d_{n+1,k}^{(r)}$$
 [by (3.8)].

Now, from (2.10), we obtain (3.9). This completes the proof. \Box

Corollary 1:

$$d_{n,k}^{(r)} = \frac{n - (m-1)k}{k} \binom{n-1-(m-2)k}{2k-1} + r \binom{n-(m-2)k}{2k+1}.$$

Hence, for m = 1 and k > 0, we get (see [4])

$$d_{n,k}^{(r)} = \frac{n}{k} \binom{n-1+k}{2k-1} + r \binom{n+k}{2k+1}.$$

Corollary 2:

$$Q_{n,1}^{(r)}(1) = L_{2n} + rF_{2n}$$
 (see [4]).

Corollary 3:

$$Q_{n,1}^{(2u+1)}(1) = 2P_{n,1}^{(u)}$$
 (see [4]).

1999]

Theorem 3.2: The polynomials $P_{n,m}^{(r)}(x)$ and $Q_{n,m}^{(r)}(x)$ satisfy the relation

$$Q_{n,m}^{(r)}(x) = P_{n,m}^{(r)}(x) + P_{n-1,m}^{(0)}(x), \quad n \ge 1.$$
(3.10)

Proof: Multiply both sides of (3.9) by x^k and sum. Immediately, from (2.4) and (3.3), we obtain (3.10). \Box

Remark 3: For m = 1, (3.10) becomes (see [4])

$$Q_n^{(r)}(x) = P_n^{(r)}(x) + P_{n-1}^{(0)}(x), \quad n \ge 1.$$

Theorem 3.3:

$$Q_{n,m}^{(0)}(x) = P_{n,m}^{(1)}(x) - P_{n-2,m}^{(1)}(x).$$

Proof:

$$Q_{n,m}^{(0)}(x) = \sum_{k=0}^{[n/m]} d_{n,k}^{(0)} x^{k}$$
 [by (3.3)]

$$= \sum_{k=0}^{[n/m]} (b_{n,k}^{(0)} + b_{n-1,k}^{(0)}) x^{k}$$
 [by (3.9)]

$$= \sum_{k=0}^{[n/m]} (b_{n,k}^{(1)} + b_{n-2,k}^{(1)}) x^{k}$$
 [by (2.11)]

$$= P_{n,m}^{(1)}(x) - P_{n-2,m}^{(1)}(x)$$
 [by (2.4)]. \square

Corollary 4: For m = 1, we get (see [4])

$$Q_n^{(0)}(x) = P_n^{(1)}(x) - P_{n-2}^{(1)}(x) = B_{n+1}(x) - B_{n-1}(x).$$

Thus, we obtain

$$Q_n^{(0)}(x) = \sum_{k=1}^n \frac{n}{k} \binom{n-1+k}{2k-1} x^k + 2.$$

REFERENCES

- 1. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." *The Fibonacci Quarterly* **32.3** (1994):228-31.
- 2. R. André-Jeannin. "A Note on a General Class of Polynomials, Part II." *The Fibonacci Quarterly* 33.4 (1995):341-51.
- 3. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In *Fibonacci Numbers and Their Applications* 1:141-146. Ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam. Dordrecht: Kluwer, 1986.
- 4. A. F. Horadam. "Polynomials Associated with Generalized Morgan-Voyce Polynomials." *The Fibonacci Quarterly* **34.4** (1996):342-49.
- 5. M. N. S. Swamy. "Properties of the Polynomials Defined by Morgan-Voyce." *The Fibonacci Quarterly* **4.1** (1996):73-81.

AMS Classification Numbers: 11B39, 26A24, 11B83