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1. INTRODUCTION

In this note we shall study two classes of polynomials, {P(’) (x)} and {Qﬁ’fn (x)}, where r is
integer. For m=1, these polynomials are the known polynomials P(’)(x) (see [1]) and Q(’)(x)
(see [4]). Particularly, Pn(’)(x) and Q,(,’)(x) are the well-known classical Morgan-Voyce polyno-
mials b,(x) and B, (x) (see [1] [2]1, [3], [4]). In Section 2 we shall study the class of polynomials
P") ~(x). The polynormals Q ,,(x) are given in Section 3. The main results in this paper relate to
the determination of coefficients of the polynomials P(’) n(x) and Q(’) (x). Also, we give some
interesting relations between the polynomials P(’) (%) and Q(') (x).

2. POLYNOMIALS P_) (x)

We shall introduce the polynomials Pn(’,z, (x) by

B(x) = 2P0 (%) = BY} (%) + XBY), ,(x), n>m @1
with
PO (x)=1+nrforn=0,1,...,m—-1, B (x)=1+mr+x. (2.2)

'So, by (2.1) and (2.2), we find the first (#+2)-members of the sequence {Pn(,’,zl (x)}:

(’)(x)—l (’)(x)—1+r Y ,,(,’zn(x)-1+mr+x 23)
PO () =1+ (m+Dr+ G +r)x. '

From (2.3), by induction on 7, we see that there exists a sequence {6} (n>0 and k >0) of

numbers such that

[n/m]
PO (x) = me k. ~ (2.4)
with 8{"), = 0 for k >[n/m].
By (2.4), we get
b = B (0). (2.5)

Let us take x =0 in (2.1). Now, using (2.5), we obtain the following difference equation:
by =200 o =b 4, m22,m>1, (2.6)

with initial values 5§ =1 and b} = 1+r.
Solving (2.6), we get

by =1+nr, n20. (X))
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From (2.1), we obtain the following recurrence relation:

b =260 = b + B0 nzmkz=1 (2.3)

n—m, k—1>

Next, we can write the sequence {bf,f ).} into the form of the general triangle:

TABLE 1
nlk 0 1 2 3
1 1
2 1+r

m—1|1+(m-Dr

m 1+mr 1
m+l | 1+(m+)r 3+r
m+2 | 1+(m+2)r 6+4r

Remark 1: For m=1, r =0and r =1, Table 1 is exactly the DFF and the DFF, triangle, respec-
tively (see [2], [3]).

Theorem 2.1: The coefficients 57), satisfy the relation

h—m
B =Bt LBy nzm k21, 2.9)
§=|

Proof: We shall use induction on n. By direct computation, we see that (2.9) holds for
every n=0,1,...,m—1. If we suppose that (2.9) is true for n (n>m), then, from (2.8) for n+1,
we have

b k= 2b£,r3c —b{D + br(1:-)l—m, k-1
n—-m
=B +b0  + Zobs‘,’ e DS 1~ b
=
n+l-m
~50+"3 8
=

Thus, statement (2.9) follows from the last equalities. O

One of the main results is given by the following theorem.

Theorem 2.2: For any n>0 and any k >0 such that 0 <k < [n/m], we get

bO), = (”‘(’;k‘ 2)k)+r(” “2(2”;12)"), (2.10)

where (?) =0 for s> p.
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Proof: We use induction on n. First, from (2.7), we see that (2.10) is true for £ =0. Also,
if n=0,1,...,m~1, then k=0, so (2.10) is true. Assume that (2.10) holds for n—1 (n>m).

Then, by (2.8) for n, we get
b(’) =260, , =B B = X Y s

where

xn,

. :z(n—1—2(]7:1—2)k)_(n—2—2(Z~2)k)+(n—m~§il:l:§)(k—l))

and

yn’kzz(n—lgk(TI—Z)k) (n 2216(211 2)k) (n—m—g]rcz—Z)(k_l))

Next, from the well-known relation
(p) B (p— 1)+(p_ 1)
s s s—1)

—(m-Dk Dk
xn’kz(n (Zlk )) and y,,k~(n Z(ZHI) ) O

Particular Cases

we find that

Form=1and r =0, and for m=1and r =1, by (2.10), we get
© _(n+k a _(n+k n+k) _(n+l+k
bn, k‘( 2k ) and bn,k‘( 2k )+(2k+1 =\ 2k+1 )
These are the coefficients of the classical Morgan-Voyce polynomials b,(x) and B,(x), respec-
tively (see [3], [4]). Namely, we have

=S5 s - S

We shall now prove the following lemma.

Lemma 2.1:
B =5 =B+ B 4 m2 2, (2.11)

Proof: From (2.10), for r =1, we get
5O _pd = n—(m-2)k + n-(m-2)k\ (n-2-(m-2)k\_(n-2-(m-2)k
nk = Un-2.k 2k 2k +1 2k 2k +1
(MO PR (R 2,

From the last equalities, we get (2.11). O
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Remark 2: For m=1, from (2.11), we obtain (see [5])
B,(x) = B,5(x) = b,(x) +b,,(x),

where B, (x) and b,(x) are the classical Morgan-Voyce polynomials.

3. POLYNOMIALS 0, (x)

First, we are going to define the polynomials 0),(x), which are the generalization of the
polynomials O¢(x) (see [4]). The polynomials O),(x) are given by

00(0) = 207, (¥) = Oy, 1 (¥) + %00, (%), n2m, G.1)
with the initial values
Q,(,,’zn(x) =2+nrforn=0,1,...,m-1, Q,(n”)m(x) =2+mr+x. (3.2)

From (3.2) and (3.1), by induction on n, we see that there exists a sequence {d\'}} (>0 and
k > 0) of integers such that

00 = e, 63
k=0
where
do = {1’ nzl (3.4)
’ 2, n=0.
From (3.3), we get
O =47,
Thus, by (3.1) and (3.2), we have
Ay =2d0 o —dD o, (n22), (3.5)
with
di}=2 and di}=2+r. (3.6)
Solving (3.5), by (3.6), we obtain
dl)=2+nr, n>0. (3.7
Furthermore, from (3.1), we get
d?) =2d7, , -dD,  +dD, . (nzmm>1k>1). (3.8)

In Table 2, we write the coefficients d},. Thus, from Tables 1 and 2, we see that

d<), =bf,f}c+bf,‘i)l,k, n=0,1..,m-1

64 [FEB.



POLYNOMIALS RELATED TO MORGAN-VOYCE POLYNOMIALS

TABLE 2

nlk 0 1 2

0 2 e e
2+r

2 2+r

m—1 2+(m_l)r e e e
m 2+mr 1
m+1|{2+(m+Dr 4d+r - .-

Now we shall prove the following theorem.
Theorem 3.1: For n > 1, the following equalities hold:
dy) = b+ b0

_ (n—(rgk— 2)k) +(n—1— 2(21_ 2)k)+r(n - 2(2”; lz)k). (3.9)

Proof: 1In the proof, we use induction on n. For n=1, by direct computation, we conclude
that (3.9) is true. We assume that (3.9) is true for n (n > 1). Then, for n+1, we get

b(+1 k +b((,)3c = 2b$rr) b(r)l k +b(r)l—m k-1t 2b(—1 e~ 5% Tk +b$1(1)m w1 by (2.8)]
=200, +52 )~ (B, +B% 1) + 8L k1 + B 1t
=2d0, —dD) p+ A=A [by 3.8)].

Now, from (2.10), we obtain (3.9). This completes the proof. O
Corollary 1:
a0 = n—(m-Dk (n-1-(m-2)k 4 n—(m-2)k
mk = k 2k -1 2k+1 )

Hence, for m=1and k > 0, we get (see [4])

ry _B(n-1+k n+k
dnk—k( 2k -1 )*"(2k+1)

O = Ly, +1F,,  (see [4]).

Corollary 2:

Corollary 3:
OH (M) =2B (see [4]).
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Theorem 3.2: The polynomials P{)(x) and 0%, (x) satisfy the relation

OD(x) = BO(x) + BA (x), n21 (3.10)
Proof: Multiply both sides of (3.9) by x* and sum. Immediately, from (2.4) and (3.3), we

obtain (3.10). O

Remark 3: For m=1, (3.10) becomes (see [4])

0P () = PO(x)+B9(x), n>1,

Theorem 3.3:

Ou(x) = BR,(9) = BY, ().
Proof:
O(x) = Zd(") ¢ [by 3.3)]

[n/m]

= Z(b“” +b0, )x* by (3.9)]

[n/m]

= Z(b“) +5%, )xF by (2.11)]

=BH()-BY ()  [by(24). O

Corollary 4: For m=1, we get (see [4])

O (x) = BO(x) = B(x) = B,y (%) = B, 1(%).

Thus, we obtain

o3 251 2
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