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1. INTRODUCTION

The Zeckendorf decomposition of a natural number # is the unique expression of » as a sum
of Fibonacci numbers with nonconsecutive indices and with each index greater than 1, where
Fy=0, F, =1, and F, = F, + F_, form the Fibonacci numbers for i >0 (see [6] and [8], or see
pages 108-09 in [7]). The Zeckendorf decomposition of products of the form kF,, for k,m eN is
studied in [2] and [5]. For each positive integer n, let Ratio(n) be the ratio of the number of
k N with k <n that do have F, in the Zeckendorf decomposition of kF} to those that do not.
In this paper we prove Conjecture 1 from [2], which essentially states that as » — o we have
Ratio(n)— 2, where = (1++/5)/2. This result, Theorem 4.9, is proved using methods intro-
duced in [5] by Hart.

The S-expansion of a natural number n, first introduced in [1], is the unique finite sum of
integral, nonconsecutive powers of f that equals 7. Grabner et al., in [3] and [4], prove that for
m=log s k the Zeckendorf decomposition of kF,, can be produced by replacing each [ in the -
expansion of £ with F .. Thus, our result also answers a question posed by Bergman in [1] that
asks for the frequency of the occurrence of B° in the S-expansions of the natural numbers. For
simplicity, all results and proofs in the rest of the paper will be stated in terms of S-expansions.

Our proof entails first finding formulas for Ratio(L,,) and Ratio(L,,,,), where L,=2,
L =1,and L, =L +L,_, form the Lucas sequence for i >0. We prove that as k — o the two
sequences of ratios for odd- and even-indexed Lucas numbers both decrease to . We then
prove that for values of n between two Lucas numbers we have Ratio(n) trapped between the
two sequences.

The recursive pattern we have discovered in the f-expansions, and upon which our proof is
based, can be used to find the frequency of the occurrence of other powers of £ as well. This

extension of the current problem will be addressed in a future paper.

2. DEFINITIONS AND PRELIMINARIES

We use definitions and notation similar to those in [5]. In particular, £(n) denotes the abso-
lute value of the smallest power of # in the f-expansion of n, and u(n) denotes the largest such
power.

The following is a restatement of Theorem 1 from [4] in terms of the f-expansion.

Theorem 2.1 (Grabner et al.): For k >1, we have £(n) = u(n) =2k whenever L,, <n<1L,
and we have £(n) = 2k +2 and u(n) =2k +1 whenever L,, , <n<L,, .

k+1>
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ON THE OCCURRENCE OF F, IN THE ZECKENDORF DECOMPOSITION OF nE,

Definition 2.2: We define V to be the infinite dimensional vector space over Z given by V :=
{(..., V_1, Vp» V15 Vg, -..) 1 V; €ZYi, with at most finitely many v, nonzero}. For convenience, we

underline the zeroth coordinate.

Definition 2.3: Define V to be the subset of V' consisting of all vectors whose entries are in the
set {0,1} and which have no two consecutive ones. We will call the elements of Y totally
reduced vectors.

As in [5], we represent B-expansions by vectors of ones and zeros, where a one in the j®
coordinate represents 7. The powers of f increase from left to right in the vector.

Definition 2.4: We define the function B:N—>7V so that, when the B-expansion of 7 is
Y2 _efy, B(n) is the vectorin ¥V with v, =e,.

j=—c0 ei
Definition 2.5: The function o:V — N is defined as follows: o((...,v_;,V;, V},-..)) = Zre_, V..

Thus, o(B(n)) = n for all natural numbers n. (Note that the definition of o in [5] is in terms
of Fibonacci numbers and is not equivalent to the one given here. Specifically, the two functions

are only guaranteed to be equal when applied to S(n) where n eN.)
Figure 1 shows the vector representations of the S-expansion of the first 30 natural numbers.

Note that the coefficient of 8° is underlined.
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FIGURE 1. f-Expansions
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ON THE OCCURRENCE OF F, IN THE ZECKENDORF DECOMPOSITION OF nk,

Following [2], we say that n has property % if ° appears in the B-expansion of n.
Definition 2.6: For natural numbers n, m, we let
Ones(n,m)=|{k eN:n <k <m, k has property P}|,
Zeros(n,m) = |{k eN:n<k <m, k does not have property P}|.
We also define, for n> 1, Ratio(n) to be Ones(0, n)/Zeros(0, n).

We will be using the following known facts about Fibonacci and Lucas numbers:

lim(F,/F, )= p; 1)
X=>00
lim(F,/F,_,)=1+p= ®)
X—>00
Fn+hF n+k F, nFn+h+k = (_l)nF hF;c' (3)

Formula (3) is from [7], page 177, (20a).

Note that in [3] and [4] the indices for Fibonacci and Lucas numbers are different from the
indices used here. Weuse Fy=0,F,=1,L,=2,and L, =1.

3. THE RATIO FOR LUCAS NUMBERS
Our first goal is to prove the following proposition.

Proposition 3.1: For k >1,
F,
Ratio(L,,)=—2-1 and Ratio(L,,,,)= f ¥l
2k+1 2ks2 ~ 1

Thus, both ratios decrease to £ as k increases.

We shall devote this section to developing the facts needed for the proof of Proposition 3.1.
Recall that we express f-expansions of integers with powers of £ increasing from left to right.

Lemma 3.2:

1) BL,,)=@00*"00%"1) fork>1.

(2) BQL,,_,)=(1000(10)*"21(01)*?0001) for k >2.

(3) B(L, +L,,_,)=(1010"*700"*7101) for k > 2.

@ B(L,.,)=(10)F10)*) fork>1.

(5) BQL,,)=(10010*7200"71001) for k >2.

(6) B(Ly.,+L,,_,)=(100100(10)**1(01)*'001) for k >2.

Proof: Parts (1), (2), and (4) follow from results in [2] and from the relationship between the
Zeckendorf expansion of nF, and the f-expansion of n as developed in [3] and [4] (see the Intro-

duction to this paper). Part (3) follows from part (1) when we apply Proposition 4.4 from [5].
Parts (5) and (6) are proved in [5]. O
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Lemma 3.3:
1) B, —-1)=(10"*"0010)*"1) for k 1.
(2 B(Ly,, +1)=(10001)*00%*1) for k >1.
(3) B2L,, —1)=(10010*"20(10)*"001) for k > 2.
4 B, +L,_,+1)=(100001)*"'00%*2101) for k > 2.

Proof: We make repeated applications of Theorem 5.8 from [5]. If veV, w=s(v) is the
vector in ¥ obtained by applying the algorithm in [5]; by the properties of this algorithm, o(v) =
o(w).

Part (1): Define v(k) = (10*7'0(10)*"'1) and w(k) = (0(10)"'1). We show that s(w(k)+
(1) = (00*7") by induction on k. For k =1, A(w(1)+ (1)) = A((11)) = (001). Assume that k >2
and that the formula is correct for smaller £. Then

A (k) + (D) = A 0wk~ 1)+ Q01 + (1) = st (h(w(k — 1) + (D) +(00*7*D)
= ((00%*7°1) +(00%*71)) = ((00***11)) = (00**~1).
Since v(k) = w(k) +(10%*7'0), we have
A@(k) + (D) = d(Aw(k) + (D) + (107 0)
= s4((00* ') +(10%*70)) = (10*7'00%*7'1) = B(L,,).
By uniqueness of the f-representation, this implies that S(L,, —1) = v(k).
Part (2): This is proved by induction on k. For k£ =1, we have
B(L, +1) = A((10101) + (1)) = #4((10201)) = s4((2001 1)) = (10010001).
For the inductive step, we assume that £ >2. We have
BLyjsy +D = B(Lojy + Loy +1) = A(B(Ly_ + D + B(Ly,)
= A ((10(01)¥100%*21) + (10%*7'00%*11)) = 4 ((20(01)* ' 00***11))
= 4((1001(01)*00%*72001)) = (10(01)* 00*1).
Part (3): Using part (1), we have
BQ2Ly, —1) = B(Ly, =1+ Ly) = A(B(Ly, — D) + (L))
= A((10%*0(10)* 1) + (10%*7700%*71)) = A (20%* ' 0(10)*'11))
=(10010**720(10)*'001).
Part (4): We use induction on k. For k£ =2, we have
B(Lg + Ly +1) = A(B(Lg + 1) + B(L;)) = $4((100101000001) + (10101))
= ((100111101001)) = s4((100110011001)) = (100001000101).

For the inductive step, we assume that £ >3. We have
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BLypirt Loy # D) = B(Lyyy + Ly + Ly 3+ Ly 5 +1)
=AB(Lyy + Ly + D)+ B(Lyy, + Ly )
= 4((1000(01)*"200%**101) + (1010%200%*3101))
= A((2010(01)¥-200%*~*1111)).

We apply the algorithm and have
B(Lyy i + Ly +1) = 4((100110(01)¥-200%*~400101)) = (1000(01)¥100%*-2101). O

Note that in Figure 1, for L, <n< L, f(n) and f(L;+n) are identical in the coordinate
positions within 3 positions of the center. The same relationship can be observed for L, <n< L,
between f(n) and (L, +n). These types of relationships are described in Lemma 3.8. We now
define a transformation that will allow us to discuss these relationships in a precise way.

We define ¥(v, T) to be the vector obtained by switching (from O to 1 or vice versa) the
values of all entries of v whose coordinates are in a finite set 7 Z. This is equivalent to adding
and subtracting powers of §. [In our applications, when applying the transformation to f(n) we
will switch only those entries with coordinate positions close to u(n) or —£(n), and will leave the
central entries unchanged. ]

Definition 3.4: Let v eV . Let Tbe a finite set of coordinates. Define w = $(v, T) €V to be the
vector with w, €{0,1} foralli €Z and with w, #v,ifieT and w, =v,ifi ¢T.

Definition 3.5: Tf v,w €V and T'is a finite set of coordinates, then we say v =, w (v is congru-
enttowmod I)if v, =w,VieT.

Lemma 3.6: Let n,m, x €N and let T be a finite set of coordinates. Suppose that F(B(n), T) =
B(m), B(n) =, f(n+x) and P(B(n+x), T) €V . Then $(B(n+x), T) = f(m+x).

Proof: We are given -expansions for n and x as follows: n=%"__ ¢4 and x=X° 5,8
Let T(0)=Tn{i:¢; =0} and let T() =T {i: ¢, =1}.

Let d=2, 4 Vg =2 B'. The fact that P(B(n), T) = B(m) means that n+d =m. Be-
cause n,m €N, we have d €Z.

We know that P(B(n+x), T) €V, which means that $(B(n+x), T) is the B-expansion of
some real number. Since B(n) =, f(n+x), we have o(F(B(n+x),T))=n+x+d=m+xeN.
The f-expansion of a natural number is unique, so $(B(n+x), T) = f(m+x). O

Corollary 3.7: Let nj,n,, m, m, be natural numbers where n, <n,,m, <m,. Let T be a finite set
of coordinates such that 07 and, for 0<x<mn,—n, f(n +x)=, f(n), (B +x),T) ev,
P(Bn), T)=p(m), and F(B(n,),T)=p(m,). Then F(B(n +x), T)=B(m +x)and, thus,
Ones(ny, n, + x) =Ones(my, m, + x) and Zeros(n,, n, + x) =Zeros(m,, m, +x).

Figure 1 above and Figure 2 below illustrate the relationships in parts (6) and (10) of Lemma
3.8. The formulas from Lemmas 3.2 and 3.3 are used in the proof.
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FIGURE 2. More f-Expansions

For k > 2 with Digits = Ones throughout or Digits = Zeros throughout:

() If0<x<L,, ,, then

.
.

Lemma 3.8

Digits(Ly, , L, +x)

Digits(Lyy 3, Ly, +X)

Digits(Ly, + Ly 3, Ly + Loy 5 +X)

Digits(2L,, ,2L,, +x).

[FEB.
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(2) If0<x<L, ,,then
Digits(Ly;,_,, L, _, +x) = Digits(2L,,,,,2L,, ., +X)
= Digits(Lyp 1, Lyjyy +%)
= Digits(Lyy oy + Lygg> Lyjsy + Lyjpy +%)-
(3) Digits(L,,_,, L,, ,) = Digits(L,,,2L,, ).
(4) Digits(Ly, 3, Ly,_,) = Digits(2Ly;, _y, Ly, + L, ,).
(5) Digits(L,,_,, Ly, ) = Digits(L,, + L,, ,, L,,.,,).
(6) Digits(L,,, Ly, ,,) = 2Digits(L,,_,, L,, )+ Digits(L,, 5, L,, ,).
(7) Digits(L,,_,, L,;) = Digits(L,,.,,2L,,).
(8) Digits(L,, ,, L,, ;)= Digits(2L,,, Ly, .. +L,, ).
(9) Digits(Lyy_y, Lyy) = Digits(Lyy g + Lyy_ys Lygs)
(10) Digits(L,,.,, Lyt.,) = 2Digits(L,,_,, 1, )+ Digits(L,, 5, L,, ).
(11) For L, <n<L, ,, P(n) starts with 100 [i.e, the values at coordinate positions
—{(n), —£(n)+1, and —4(n) +2 of B(n) are 1, 0, and O, respectively].

Proof: Let T, = {~2k,—2k +2,2k —2,2k}. Tt can be checked that F(B(L,,_,), T) = f(L,;)
and that $(B(L,,_,), I) = BRL,;_y). Tt follows from 2.1 that, for all » with L,, , <n<L,, ,,
Py =, B(L,,_,) and F(B(n), 1)) € V. Let x=n- L,, , sothat 0<x <L, 5 and note that, by
3.7, Digits(L,,_,, L,,_, +x) = Digits(L,,, L,, +x).

Let 7, ={-2k-2,2k+2}. It can be checked that F(B(Ly,_,), T,) = B(2L,;,,) and that
F(BL,), T,) = ,BA(LZ,C+2 +Ly,). By 2.1, for all n satisfying L,,_, <n<L,, ) =g, B(L,_,)
and ¥(B(n), ) eV. Let x=n—L,, , so that 0<x <L, , and note that, by 3.7, Digits(L,,_,,
Ly +x) = Digits(2Lyy, 2Ly, +%).

Let T, = {-2k, 2k}. Then S(B(Ly,_,), T) = B(Ly, + Ly ), SI’(,B(sz_Q, L) =p(L,,,,) and,
for all n satisfying L,, , <n<L,_,, f(m)=r, B(L,;_,), and F(B(n), ,) V. Let x=n-1L,, ,
so that 0<x <L,  , and note that, by 3.7, Digits(L,,_,, L,;_, +x) = Digits(Ly, + Ly, _,, Ly, +
Ly ,+x).

Using the largest values of x possible in the above arguments, we have formulas (3) and (5)

of the lemma proven as well as formula (4) for £ >3. To complete the proof of formula (4), we
check by hand that it holds for £ =2 as well. Thus,

Digits(Lyy., Lyy41)
= Digits(L,, , 2L,, )+ Digits(2L,, ,, L,, +L,, ,)+Digits(Ly, + L, _,, Ly, 1)
= Digits(Ly,_,, Ly, )+ Digits(L,, 5, L,,_,)+ Digits(L,,_,, Ly;,_,),
which proves (6).
Formulas (7)-(11) remain to be proven as well as the third equality from (1) and the second
and third equalities from (2). The proof for these remaining formulas is by induction on k. For

k =2, the formulas can be checked directly. Assume &k >3 and all the remaining formulas hold
for smaller £.
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Let T, = {~2k-2,-2k,~2k+1,2k—1,2k +1}. Note that F(B(L,,_, +1), T,) = B(L,,,; +1)
and (B(L,, -1), T,)= B(2L,, —1). By 2.1 and part (11) of the induction hypothesis, we see that
for all n where Ly, ; <n<Ly,, f(n) =g, f(L,,_,+1) and F(B(n), T,) eV. Let x=n- L,,_, so
that 0<x<ZL,, ,—1. We have Digits(L,,_, +1, L,,_, +x) = Digits(L,,,, +1, L, ., +x). Since
(B(Lypy +1)g = (B(Lyyyy +1))g, we have Digits(Ly, ;, Ly, +x) = Digits(Ly, ,,, Ly, +x) for
0<x<L,_,—1. When x=0 the equality is trivially true. We note that (8(L,,)), = (8(2L,,)),
so, for x=L,, ,, we have Digits(Ly, ,, L,,) = Digits(L,,,,,2L,,). Note also that the above
shows that, for L,, , <n<L,,, $(B(n), T,) starts with 100 and, hence, SB(¢) starts with 100 for
L,,., <£<2L,,. Wehave proven (7), some of (11), and the second equality of (2).

Let 7, ={-2k-2,-2k+1,-2k+2,2k +1}. We can check that $(B(L,,_,), I;) = f(2L,,),
S(B(Ly_), T5) = P(Lyyyy + Ly,_y) and, for all n satisfying Ly, , <n<L, ,, pn) =g f(Ly_,)
and $(B(n), ;) eV . Let x=n—-1L,,_, so that 0<x<L,, , and note that, by 3.7, we have
Digits(L,,_,, L,,_, +x) = Digits(2L,,,2L,, +x). Therefore, Digits(L,,_,, L,,_,) = Digits(2L,,,
Ly, +Ly,_;). Using 2.1, we have, for L,, , <n<L,, ,, that (B(n), I;) starts with 100; thus,
B(£) starts with 100 for 2L, <{<L, ,+L, ,. We have proven (8), some more of (11), and
the last equality from (1).

Let T, = {-2k—2,—2k,2k +1}. Then we have F(B(L,,_, +1), Iy) = B(Ly,; + Ly, +1) and
F(B(Ly— D), Iy) = B(Ly,,—1). Forall nsatisfying L,, | <n<L,,, we have B(n) =7, f(L,,_;+1)
and $(B(n), ;) eV . Let x=n—L,, , sothat 0<x< L,, ,—1. Then Digits(L,, ,+1,Ly,_+x)=
Digits(Lyy g + Loy +1, Ly yy + Ly +x). We note that (B(Ly,_; + D)o = (B(Lyjys + Lopy + 1o,
so we actually have Digits(L,,_,, Ly, , +x) = Digits(Ly, ., + Ly, _,, Lyy .1 +.L,,_; +x) for 0<x <
L,, ,—1. Since also (8(Ly;,)), = (B(Ly.,))e We have, for x=L,, ,, that Digits(L,,_,, L,,) =
Digits(Ly, ,; + Ly, Lyi.,)- We have proven (9) and the last equality in (2).

The above also shows that, for £,, | <n<L,,, we know that F(B(n), I;) starts with 100.
Thus, for Ly, + Ly +1<£< Ly, ., —1, B({) starts with 100. After we check that S({) starts
with 100 for £ = L,, ,, we have completed the proof of (11).

Hence,

Digits(Lyy 1, Logsy) = Digits(Lyy iy, 2Ly, ) + Digits(2Lyy , Loy gy + Loy 1)
+Digits(Lyy ) + Log > Log1n)
= 2Digits(L,,_,, L,,) + Digits(L,,_,, L,,_,),
and (10) is proven. O
Proposition 3.9: For k>1:

(1) Ones(L,,,L,,.,)=F,,_,+1and Zeros(L,,, L,,,,) = F,, — 1.

(2) Ones(Ly,y, Lypyy) = Fopy —1 and Zeros(Ly,,y, Ly ip) = Fopyy +1.

(3) Ones(0,L,,)=F,, , and Zeros(0, L, ) = F,,,,.

(4) Ones(0,L,,,,)=F,, +1and Zeros(0,L,,,,) = F,,,, - 1.
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Proof: The first two results are proved by induction on k. It may be checked by inspection
that the formulas hold for k=1 and k=2. Let £ >3 and assume that the formulas hold for
smaller £. Then, by 3.8,

Ones(Lyy, Lyyyy) = 20nes(Ly,_y, Ly 1) +Ones(Ly,_y, Ly_p) =2Fy 4 +2+ Fy s—1=Fy_, +1
by the induction hypothesis. Similarly, using Lemma 3.8 and the induction hypothesis
Ones(Lyysy, Lygsn) +Ones(Lyy, g, Ly ) = 2By 3 =2+ Fy 4 +1=Fy —1
To prove the last two results, we note that
Ones(Lyy, Lyyyp) = Ones(Lyy, Lypyy) + Ones(Lyyyy, Lygy) = Fyy -

So
k-1 k-1
Ones(0, L) =1+ 3. Ones(Ly, L) =1+ 3 F
i=1 i=1
=h+FB++Fy ,=F
And

Ones(0, Ly, ,,) = Ones(0, Ly, ) +Ones(L,,, L, .,) = Fy_ +F,,_,+1=F,, +1 0O

Proof of 3.1: The formulas for Ratio(L,,) and Ratio(L,,.,) follow from 3.9. The limit fol-
lows from equation (2). To see that both sequences are decreasing, we use equation (3). We
have (F,;,,)* — Fy,_ Fy,.3 = —1<0, which implies that Ratio(L,,) > Ratio(L,,,,). We also have

() = Fyy o Fyprg =1 <Fy,y — Fy,_,. This implies that Ratio(Ly,,,) < Ratio(L,;_;). O

4. THE RATIO FOR NON-LUCAS NUMBERS

In this section we prove that the sequence Ratio(n) for n>2 is trapped between the two
decreasing sequences of Proposition 3.1, which both approach 572

Proposition 4.1: Let k>1. Then, for neN with L,, < n < L, .,, Ratio(L,;) < Ratio(n) <
Ratio(L,,_,).

We devote the rest of the paper to developing the lemmas which, when combined with some
of the results of the previous section, will allow us to prove Proposition 4.1.
The following lemma will be used repeatedly.

Lemma 4.2: Let a,b,c,d eN and x,y eR. If £<x and $<y, then {5 <max{x, y}. When

each < is replaced by >, the result holds with max replaced by min.
Lemma 4.3: Fork>1:

(1) Ones(0,2L,,_,)=2F,,_,+1, Zeros(0,2L,, ,)=2F,, —1.

(2) Ones(0, Ly, + Ly, ) = Fyy + By, Zeros(0, Ly, + Ly, ) = Fypy +Fy .

(3) Ones(0,2Ly,) =2k, Zeros(0,2Ly,) =2Fy,;.

(49) Ones(0, Ly, + Ly, ) = By + Fy_y +1, Zeros(0, Ly, + Ly 1) = Fypg + Fy — 1.

Proof: We use Lemma 3.8 and Proposition 3.9. For example, for k >2, Ones(0,2L,,_,) =
Ones(0, Ly, ) + Ones(Ly;,, 2L,,_,) = Ones(0, Ly, ) + Ones(L,;,_,, L,,_,), using part (1) of Lemma
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3.8. Therefore, Ones(0,2L,,_,)=F,,_,+ Fy,_4+1=2F,,_,+1. The case k =1 can be checked
directly. The rest of the proofs are similar. [

Lemma 4.4 {F,,_,/F,}, is an increasing sequence that approaches 52 as k — .
Proof: Apply equations (2) and (3). O

Lemma 4.5: Let k>1. If 0<x<L,,,,, then Ones(Ly,,,, Ly, +X)/ Zeros(Ly; ,;, Ly + %)<
i
Proof: 1In the proof of this lemma, Digits stands for either Ones or Zeros. The proof is by

induction on k. The cases for £ =1 and k£ =2 can be checked directly. Assume k >3, and the
result is true for smaller £.

Casel. 1<x<L, ,. ByLemma 3.8 and the induction hypothesis,

Ones(Lyy s, Lyyyy +x) _ Ones(Ly,_y, Ly, +X) <p?.
Zeros(Lygas, Lypus +%)  Zer05(Lygy, Ly +)

Case 2. L), ,<x<UL, ;. Let y=x-1L,, , and z=y+L,,_,. Then O<y<L, 5 and
L,,_4<z<L,, ,. Thisimpliesthat L,, ., +x=2L, +y. We have

Ones(Lyyyy, Lyyyy +%) _ Ones(Ly,yy, 21y;,) +Ones(2Ly,, 2Ly, + y) .
Zeros(Lypyy, Lypy +%)  Zeros(Lyyyy, 2Ly, ) + Zeros(2 Ly, 2Ly, +y)

Note that using Lemma 3.8,
Digits(2Ly, 2Ly + y) = Digits(Lyy,_y, Ly +y)
= Digits(Ly,_3, Loy—o+ y) — Digits(Ly_3, Ly_»)
= Digits(Ly, 3, Ly, 3 +2) =~ Digits(Ly, 3, Ly;_,).
Hence, using Lemma 4.3 and Proposition 3.9, we see that

Ones(Lyyp, Lypsy +%) _ 2By —(Fy + D) - By 3 +(Fy 4 + D) +Ones(Ly, 3, L, 3 +2)
Zeros(Lyyyy, Lyjyy %) 2B — (Fopya — D) = Fpoy + (Fypy — D) + Zeros(Ly, 5, Ly _3+2)

_ By +Ones(Ly, 3, Ly, 3+2) <p?
Fypo + Zeros(Ly,_3, Ly, 3 +2) ’

since Fy,_,/ Fy_, <2 by Lemma 4.4 and Ones(Ly,_s, Ly;,_; +2)/ Zeros(Ly, 3, Ly,_3 +x) < 72
by the induction hypothesis.

Case3. x=1,, ;. Then
Ones(Lyyp, Ly + i) _ B+ By +1-(F +1) _ By <p?
Zeros(Lysy, Lyn + L) Fopsa Py —1- (B =D Fy

using Proposition 3.9, Lemma 4.3, and Lemma 4 .4.
Cased. L,, ,<x<L,. Lety=x-1,, ;. SoO0O<y<L, ,. Wehave

Ones(Lyy 1, Lypsy +%) _ Ones(Lyyy, Ly + Ly o) + Ones(Ly, y, Ly, 1 +y)
Zeros(Lyysy; Lypyy +X)  Zeros(Lygyy, Lypyy + Loy y) + Zeros(Ly, g, Ly, +3)
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_ Bt By +1-(Fy + 1) + Ones(Ly, .y, Ly, +))
Fopia + By = 1= (Fypin = 1) + Zeros(Lyy,_y, Ly +y)

_ By +Ones(Ly, ,, Ly, +y) <p?
Fy + Zeros(Ly,_y, Ly +)

using Lemma 3.8, Proposition 3.9, Lemma 4.3, Lemma 4.4, and the induction hypothesis.

CaseS. L, <x<UL,,,,. Let y=x~Ly, and z=y+1L,, ,. ThenO<y<L, _, and L,, , <
z< L,,. As before, we have

Digits(Lyy 1, Lyyyy +%) = Digits(Lyy, 11, Lygin +3)
= Digits(Ly1y, Lyyyo) + Digits(Ly,, Ly, +y)

= Digits(Lyy1y, Lygso) + Digits(Ly,_y, Ly, +2) — Digits(Ly, _,, Ly).
Thus

>

Ones(Lyyiy, Lyjay +%) _ Fyp oy = 1=y 3= D+ Ones(Ly,_y, L, +2)
Zeros(Lyyyy, Lyjyy %) P +1= (g + ) + Zeros(Lyy,_y, Ly, +2)

_ By, +Ones(Ly, , Ly, +2) <p?
By + Zeros(Lyyy, Ly, +2)

using the induction hypothesis.

Case 6. x=1,,,,. Wehave

Ones(Lyy 1y, 2Ly;,,) __ 2Fy +D—(Fy +1)
Zeros(Lyyyy, 2Ly0) (2P0 =)= (B = 1)

Fy 2
=2k < g
Pz

Case 7. Ly, <x<2L,,. Let y=x-1L,,. So0<y<L, ,. We have, by the induction
hypothesis and using Lemma 4.3,

Ones(Lyy 11, Lypsy +%) _ Ones(Lypy, 2Ly41) + Ones(Ly,_y, Ly +y)
Zeros(Lyyyy, Lygsy +%)  Zeros(Lyy, 2Lyy41) + Zeros(Ly,_y, Ly + )

__ @Ry +)-(Fy +D+O0nes(Ly, .y, Ly, , +y)
(RFy4p =)= (Fypyp — ) + Zeros(Lyy_y, Lyy_1 +y)

_ B +O0nes(Lyy, Ly +y) <p?.
Fapsa + Zeros(Ly_y, Lyy—y + )

Case 8. 2L,, <x<Ly,, Lety=x-2L, andlet z=y+L, ,. Then O<y<lL,, , and
Ly, <z<Ly. Wehave

Digits(Lyy 41, Lyjyy +X) = Digits(Lyyy, Lypsy + Lyy) + Digits(Lyy g + Ly, Lygys + Ly +)
= Digits(Lyy11, Lygsa + Lyy) + Digits(Ly,, Ly, + y)

= Digits(Lyy 1y, Lygyg + Lyy) + Digits(Ly, g, Ly +2) — Digits(Lyy_y, Lyy).
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Thus,

Ones(Lyy 1, Lypy +%) _ B+ By =By + D) — (B3 =D+ Ones(Ly, _y, Ly, +2)
ZerosS(Lyyy1, Lyjy +%)  Fopps +Fopy = (Fopy = ) = (B + D+ Zeros(Ly,_y, Ly, +2)

_ B+ Ones(ly , Ly, +2) _ o

Py + Zeros(Lyy p, Ly 1 +2)

by the induction hypothesis. O

Proposition 4.6: Let k>1. If 0<x < L,,,, then Ratio(L,,, +x) < Ratio(L,, .,) .

Proof:

; Ones(0, Lyy.,1) +Ones(Ly; ., Lyjsy +%) ;
R 1 = + + +
L2414 ) = Zer05(0, L)+ Zeros(Lygans Lygmn +3) - 0 L2kt

since

OneS(szﬂ, Ly + x) <f2< j
< < Ratio
Zeros(Lyy,1, Ly sy +X) 4 o)

by Lemma 4.5 and Proposition 3.1. O

Lemma 4.7: Let k>1. If 0<x <L, ,, then

Ones(L,,, L,, +x) .
Zeros(Lzl;, Lzl; +Xx) 2 Ratio(Ly).

Proof: The proof of this lemma is similar to that of Lemma 4.5 and is omitted.

Proposition 4.8: Let k >1. If 0<x < L,,,,, then Ratio(L,, +x) = Ratio(L,,).

Proof: For x>1, we have

. _ Ones(0, L)+ Ones(Ly;, Ly, +x) .
Ratio(L, +x) = Zeros(0, in) + Zeros(l:k, L:k +x) 2 Ratio(Ly,)

by Proposition 4.7 and Lemma 4.2. For x=1, Ones(L,,, L,, +x) =1, Zeros(L,;, L,; +x)=0,
and the result follows. O
Proof of Proposition 4.1: By Propositions 4.6 and 4.8, it follows for £ >1 that, if L, <

n< Ly, .,, then Ratio(L,,) < Ratio(n) < Ratio(L,;.,) < Ratio(L,;,_;). Also, for k>1,if L,, <n<
L,, ., then Ratio(L,,) < Ratio(n) < Ratio(L,,_;). O

The following theorem has now been proven.

Theorem 4.9: The limit of the ratio of natural numbers having Property % to those not having
Property P is lim,,_, ., Ratio(n) = 7.
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CORRIGENDUM

In the November 1998 issue of The Fibonacci Quarterly (Vol. 36, no. 5), Clark Kimberling's article entitled

"Edouard Zeckendorf" appeared on pages 416-418. Due to an unfortunate printing error, the signature which was
to accompany the article was inadvertently omitted. We apologize to the author, and are pleased to present the
missing signature below:
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