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1. INTRODUCTION 

In this paper we discuss the Fibonacci matrices which are matrices whose elements are the 
classical Fibonacci numbers. Some properties are given for these matrices. The relations between 
these matrices and the units of the field 2(0), (6A + 6?> + 62 + Q+l = 0) is also discussed. As an 
application, we deduce an interesting relation which includes the Fibonacci and Lucas numbers by 
using the properties of these Fibonacci matrices. 

2. FIBONACCI NUMBERS AND FIBONACCI MATRICES 

It is well known that if 2 = 0*1 ^en 2W =[Fp'1 / " )• Many Fibonacci and Lucas identities 
have been developed using 2, (see [1]). 

We are interested in finding other matrices like 2 so that the /2th power of the matrix has only 
the Fibonacci numbers as its elements. If such matrices exist, then we want to know their proper-
ties and what relations exist between the matrices and the Fibonacci numbers. 

For matrices of order 2, we examine the set 

F-{(1 £>=0or,}. 
One can easily see that the only matrices that work are 

1 = 1 1 1 J ' 2 V 1 0 J ' 1? -°̂ 2> -°^1 > ~°^2 • 

For matrices of order 4, we let 

fo i o ol 
1 1 0 0 
0 0 0 1 

v0 0 1 1, 

> # 2 = 

(o o i o"! 
0 1 0 1 
1 0 1 0 
0 1 0 0) 

Note that Hx and H2 behave like 2, and are made up of submatrices that are Fibonacci matrices of 
order 2, the null matrix or matrices that have properties similar to the Fibonacci matrices of order 
2. However, Hx and H2 are not irreducible, so we ask whether there exists any irreducible matrix 
of order 4 that behaves like 2,. 

Definition: A square matrix 3i of order r with integer elements is called a Fibonacci matrix if and 
only if: 

(a) s&n, n = 1,2,... has only Fibonacci numbers as its elements. The elements may be posi-
tive, zero, or negative. 

(b) sin is irreducible (a matrix B is called irreducible if the matrix B cannot be reduced to a 
block diagonal matrix by permuting some rows or some columns). Our definition of irreducible is 
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different from the common definition in order to avoid combining two Fibonacci matrices of order 
2 to obtain a Fibonacci matrix of order 4. 

(c) {si" | n > 1} has Ft Gsin for all / and some n. 

A is called a basic Fibonacci matrix if si has only 1 , -1 , and 0 as its elements. 

3. FIBONACCI MATRICES OF ORDER 4 AND THEIR PROPERTIES 

Proposition 1: The matrices 
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(-Fx 
0 
Fy 

-F, 
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Fy 0 

C-F, - i v -Fn -F,' 2 
F2 

-Fy 
0 

0 
Fy 

-F2 
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f 

0 

-Fy 

-Fy 
Fy 

-F0 

Fy Fx 

-F, 0 
^o ~Fy. 

F0 -F; 

-F0 
Fy Fx 

are all basic Fibonacci matrices. We denote these matrices, respectively, by Fl9 F2,..., Fl0. 

Proof: For Fh we can easily calculate Fx
2, i^3 , . . . , FJ10. For example, 

F™ = 

F9 

Fyo 
0 

-Fyo 

0 
Fyy 
*io 

-^ io 

-Fy0 

Fy0 
Fyy 
0 

-Fy0) 
0 

*io 
F9 ) 

By using the basic definition and the well-known properties of the Fibonacci numbers, one can 
easily prove by induction that 

(R 
WlOk Fx

im = 

I0k-l 
K lOifc 

0 

0 
10/M-l 

-F, 
F, 

l O f c 

lOJfc 
Fy 

-Fy 10k 

lOJfc 

F\Qk 

K I0k+l 
0 

0 

F\0k-lj 

£ = 1,2,. 

If we multiply F / , i = 1,2,..., 9, by F^, k = 1,2,..., and use the basic properties of the 
Fibonacci numbers, we have the 10 patterns Fi°k+l. For example, 
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Fx 
IOfc+1 . 

rlOk+l 
0 

M O H l 

10fc+2 

10fc+l 

Aofc+1 
MOJt+2 

1 10fc+l 

^OJfc+2 

0 
ft lOk+2 

£ 10&+1 

~Fl0k 

Fi 10fc+2 . 

10Jfc+2 
- i ^ 10&+1 - i ^ 10A:+2 

~^10k+l M0fc+3 

V ^Oi t+1 0 

[ 10Jfe+3 
0 

M0it+3 

Ao&+2 

j7 ^ 
M0fc+2 
^ 1 10Jfc+l 

iofc+i 

lOfc+27 

This completes the proof of part (a) of the Definition for Fv Part (b) of the Definition can be 
proved by the exhaustive method for all permutations of rows and columns. Part (c) of the Defi-
nition is obvious. Similar proof exists for F2, ...,Fl0. We would like to observe that the proofs 
for F4 and Fl0 can be simpler. 

Proposition 2: If Fk is a Fibonacci matrix, then so is -Fk, k = 1,..., 10. 

Proof: This is obvious since (-F)n = ±Fn, n - 1,2,.... 

We now let F2l_k = -Fk, k = l,..., 10. 

Proposition 3: If Fk is a Fibonacci matrix, then so is Fk , k = 1,..., 20, where siT denotes the 
transpose of the matrix si. 

Proof: This is obvious since (Fk
Tf = (Fk

n)T. 

Thus, we obtain 40 Fibonacci matrices of order 4. However, it is sufficient to discuss only 
Fh...,F20. Weletg={i£|Jfc = l,...,20}. 

Proposition 4: If Fk e g, then Fk
l e $ for k = 1,..., 20. 

Proof: It is not difficult to verify that i^-1 = i^, i^"1 = i^4, i^"1 = Fl2, F4
l = F10, and Ffl = 

Fl3. The rest can be proved by using the relations F2l_k = -Fk, k = 1,..., 10. Another interesting 
result is the following. 

Proposition 5: If Fk e $ , then det(i^) = 1, where the det(4) denotes the determinant of matrix 
A. 

It is well known that, in general, the multiplication of matrices is noncommutative. However, 
for these Fibonacci matrices, we have the following. 

Proposition 6:IfFk,FhE$, then FkFh = FhFk. 

Proof: One can easily verify that this is true. In order to investigate the properties of multi-
plication for the matrices in gf, we start by studying the following 10 matrices. Let 

AX = A. 
(I 1 1 O 

- 1 0 0 0 
0 - 1 0 0 

v 0 0 - 1 0 , 
and 4 = ̂ '',/ = 1,2,.... 
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It is easy to verify that A5 = -E and 4̂10 = JB, where the E is the identify a matrix of order 4. Let 
si = {Ak | k = 1,2,..., 10}. Obviously, the multiplication group of sJ is isomorphic to the group 
iyk IY - exp(2^' /10), k = 0,1,2,..., 9). It is also easy to verify that AkFh = FhAk or that the 
multiplication of them's and F's matrices is commutative. Furthermore, one can easily show that 
si$ cz §f. In fact, we have the following multiplication table, where the product array is Fn -
AkFh. For example, Fl9 = A4F9. From the table and the properties of Ak9 it is easy to see the 
results in Proposition 7. 

t ^ l 
1 
2 

3 

4 

5 

6 
7 

8 

9 

10 

1 

10 
13 

3 

7 
20 

11 
8 

18 

14 

1 

2 

9 
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17 

15 

19 
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5 

4 
6 

2 

3 

7 
20 

11 
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18 
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1 
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13 

3 

4 
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2 

9 

16 

17 

15 
19 

12 
5 

4 

5 

4 
6 

2 

9 

16 

17 
15 

19 

12 

5 

6 

2 
9 

16 

17 

15 

19 
12 

5 

4 

6 

7 

20 
11 

8 

18 

14 

1 
10 

13 

3 

7 

8 

18 
14 

1 

10 

13 

3 
7 

20 

11 

8 

9 

16 
17 

15 

19 

12 

5 
4 

6 

2 

9 

10 

13 

3 

7 

20 

11 

8 
18 

14 

1 

10 

Proposition?: Let & = {F* \k = 1,3,7,8,10,11,13,14,18,20} and g2 =%\%l. Then 
(ii) For J F ^ G ^ , there exists ^ e gy such that FkFh = ±i^2, i = 1,2. 
(6) For ̂  e $ b ^ e $2> there exist 4* e ,st such that FkFh = An. 
(c) For any Fk, Fh e %•, î 10w =± i^1(\ where n = 0,1,2,..., and i = 1,2. 

The proof is omitted since it is very straightforward. 

4. THE CHARACTERISTIC POLYNOMIAL, CHARACTERISTIC VALUE, 
AND CHARACTERISTIC VECTOR OF A FIBONACCI MATRIX 

It is not difficult to compute the characteristic polynomial for Fk e $. 

Proposition 8: The characteristic polynomials of Fl (orF2), F3 (orF5), and FA are, respectively, 
A4+223+422+32 + l, 24 + 323+422+22 + l, and X4+2X3-A2-2A + 1. The other characteris-
tic polynomials can easily be reduced by using Proposition 4 and the fact that F21_^ = -Fk. The 
proofs are omitted. 

There is a very nice property for Fk if k = h (mod 10). We can verify the following. 

Proposition 9: Let Gk = Fk
10, * = 1,-..., 20. Then: 

(a) Gk only takes one of two forms, i.e., either 
0 -F -F \ ( F 
U M0 M0 I I M l 

Fin Fn Fm 0 Gk = Gx = 10 
0 K 10 

"^10 - ^ 1 0 

M0 

o 
•"10 

F9 j 

or Gk = G2 = 
10 F >\ 

M0 
[ 10 

V M 0 

1 10 

?10 

-Fl 10 

-K 10 

^11 
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(b) Gt = G?; 
(c) Gk, k = 1,..., 20, all satisfy the same characteristic equation, 

G£-246G% + l5131Gi-246Gk+E = 0. 

We conclude this section by giving some properties of the characteristic roots of the Fibo-
nacci matrices and looking at the characteristic vectors of Fn. 

Theorem 1: 
(A) Each characteristic root of Fh e $ is a linear combination of exp(2mk 15), k = 0,1,2,3, 

with integer coefficients. 
(B) Each characteristic root of Ff, n = 1,2,..., is a linear combination of exp(2mk/5), k = 

0,1,2,3, with integer coefficients. 

Proof: 
(A) One method of proof is the following. Let the elements of the first row of Fh be fhn, 

An? Ai3> Ai4> ^ = 1,.. •, 20, and let 0* = exp(2/r?l / 5), A: = 0,1,2,3,4. It is easy to verify that the 
yEj=ifhij0Jk~l a r e ^ e roots of the characteristic equation of Fh. Noticing that T£=o 0k

 = ®> w e s e e 

that 0k, & = 4,5,..., can be written as a linear combination of 0k, k = 0,1,2,3, with integer coeffi-
cients. Hence, the conclusion of (A) is true. 

(B) We notice that \AE-A\ = 0 implies that \XnE-An\ = \AE-A\ • |/l72~1£ + ̂ " 2 ^ + --. 
+ ^w_1| = 0. Hence, it follows that the characteristic root of Ffi is 2", where X is the character-
istic root of Fh. Looking at the proof of (A), the proof of (B) is now obvious. 

Concerning the characteristic vector of Fk
n, we have the following theorem. 

Theorem 2: Let 0k = (1,0k, 0j, Ofy7', 0k = exp(2m/5), * = 1,2, 3,4, and let the fhl/s have the 
same meaning as in the proof of Theorem 1(A). Then: 

(A) 0k is the characteristic vector of Fh corresponding to the characteristic value of 
2 ; = i / « , C U = l>2,3,4; 

(B) 0k is the characteristic vector of F£ corresponding to the characteristic value of 
(4=1 fhiA~l)\ k = 1,2,3,4, n = 1,2,.... 

Proof: 
(A) The proof of this is trivial. 
(B) First, we notice that (AE -A) = 0 implies 

XJE-An = (An-lE + An-2A + --' + A"-l)(AE-A) = 0. 

The conclusion is now obtained directly from (A). 

5, APPLICATIONS AND REMARKS 

When we proved Proposition 1, we saw that the proofs for F4 and Fl0 could be simpler. That 
is so because the patterns of the signs for their powers has relatively small numbers. The matrix 
(sgn atj) is called the pattern of signs for the matrix (a^), where we have 
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sgn x = -
1, 
0, 
- 1 , 

x>0, 
x = 0 
x<0. 

One can easily verify that the pattern of signs for F£, n = 1,2,..., is a periodic function of n that 
the period is never more than ten. In fact, one can easily compute the following: 

[10, when Jfc = 1,2,7,12,13,15,16,18, 
The period ofsign's pattern for Fk = | ; j j j * = 3,5,6,8,9,14,19,20, 

[ 1,' when Jfc = 10,17. 

It is worth mentioning that in the sign's pattern of Fk, even F0 - 0, we understand that the F0 has 
a positive or negative sign. 

As an application, we look at Fl7 and deduce some wonderful relations between the Fibo-
nacci and Lucas numbers. 

By a tedious and careful investigation, one can obtain many relations like the following. 

Theorem 3: For n odd, we have 

F,n+i - 2L„F3n+2 + {L\ - 2)F2n+2 + 2LnFn+2 + 1 = 0, (1) 
F4n+l - 2Z„F3n+1 + (L2

n - 2)F2n+l + 2LnFn+l + 1 = 0, (2) 
F4n_x - 2 4 / v - , + ( 4 - 2)F2„_! + 2LnFn_x + 1 = 0, (3) 
F4n - 2 Z„F3„ + ( ^ - 2)F2n + 2L„F„ = 0. (4) 

For n even, we have 
F4„+2 - 2L„F3n+2 + ( 4 + 2)F2n+2 - 2L„Fn+2 + 1 = 0, (5) 
F4n+1 - 2L„F3„+1 + (Z* + 2)F2n+l - 2L„Fn+1 + 1 = 0, (6) 
FAn_, - 2Z„F3„_1 + 0„ + 2)F2n_l - 2LnFn_x + 1 = 0, (7) 
F4n - 2Z„F3„ + ( ^ + 2)F2„ - 2L„F„ = 0. (8) 

In order to prove Theorem 3, we need the following proposition. 

Proposition 10: Let Sn denote the sum of all principal 2 minors of Fx". Then 

_ J l}n + 2 when « is even, 
\l}n -2 when n is odd. 

A careful examination of Fl7 will show that Proposition 10 is equivalent to the following. 

[Z,„ - 2 when w is odd. 

Proof: Obviously, the left side of this equation is equal to (Fn_l +Fn+l)2 +2(Frj_lFn+l -F„). 
However, this is equal to the right side since we have Fn_xFn+l - F2 = (-1)" and Ln = Fn_x + Fn+l. 

We now give the proof of Theorem 3. Using the relation between the coefficients of the 
characteristic polynomial and the principal minors of a matrix, applying Proposition 10, and doing 
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some proper computation, we can see that the characteristic equation for the matrix Gn = Fx" is 
XA

n - 2L„l3
n + (Ll - 2)X2

n + 2LnXn + 1 = 0 when n is odd. Hence, we have 

Fl
4

7»-2LM"HLl-2)F£" + 2LnFll + E = 0 
by the Hamilton-Cayley theorem. Substituting Fl7'$ expression by Fn into the last equality and 
comparing the coefficients of the (1,1)-, (2,2)-, and (2,3)-elements of the resulting matrices, we 
obtain (2), (3), and (4) and (1) = (2) + (4). 

In a similar manner, we can prove the results when n is even. 

Remark 1: One can find a more uniform pattern than is given in Theorem 3 using the following 
proposition as an example. 

Proposition 12: The sum of all principal 2-minors of F^ is equal to l}n ± 3. 

Remark 2: In this paper, it is shown that the Fibonacci matrices play an important role in the 
connection between the ancient Fibonacci numbers and some properties of the field 2,(0), where 
the 6 is a zero of the polynomial x4 + x3 + x2 + x +1 = 0. 

Remark 3: Research problems. 
(a) Are there other Fibonacci matrices of order 4 besides the 40 matrices dealt with in this 

paper? 
(b) Are there any Fibonacci matrices of order higher than 4? 
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