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1. INTRODUCTION 

Let a^..^ar_x (r>2,ar_l^0) be some fixed real numbers. An r-generalized Fibonacci 
sequence {^}£?o *s defined by the linear recurrence relation of order r, 

^ r ^ + C i + , ' , + ^ r + i » ^ ^ r - l , (1) 

where V^..^Vr_x are specified by the initial conditions. A first connection between Markov 
chains and sequence (1), whose coefficients at (0 < / < r -1) are nonnegative, is considered in [6]. 
And we established that the limit of the ratio Vn I qn exists if and only if CGD{/ +1; at > 0} = 1, 
where CGD means the common great divisor and q is the unique positive root of the character-
istic polynomial P(x) = xr -a0xr~l ar_2x-ar_l (cf. [6] and [7]). 

Our purpose in this paper is to give a second connection between Markov chains and 
sequence (1) when the at are nonnegative. This allows us to express the general term Vn (n>r) 
in a combinatoric form. Note that the combinatoric form of Vn has been studied by various 
methods and techniques (cf. [2], [4], [5], [8], [9], and [10], for example). However, our method 
is different from those above, and it allows us to study the asymptotic behavior of the ratio Vn/qn, 
from which we derive a new approximation of the number q. 

This paper is organized as follows. In Section 2 we study the connection between Markov 
chains and sequence (1) when the coefficients a, are nonnegative and a0 + ••• +ar_x - 1, and we 
establish the combinatoric form of Vn for n > r. In Section 3 we are interested in the asymptotic 
behavior of Vn when the coefficients cij are arbitrary nonnegative real numbers. 

2. COMBINATORIC FORM OF SEQUENCE (1) WITH 
NONNEGATIVE COEFFICIENTS OF SUM 1 

2.1 Sequence (1) and Markov Chains 
Let |^}JS) b e a sequence (1) whose coefficients a0, ...,ar_x {ar_Y * 0) are nonnegative with 

a0 + —\-ar_l = l. Set 

X = and P = 

I 
0 
0 

-V-2 
^ r-\ a, r -2 

0 
a, 

0 

0 
at r-l -V-2 

(2) 

where Ir is the identity rxr matrix. The condition ZJTo ai = * imP^s that P = (P(n, m))n>0m>0 is 
a stochastic matrix. Consider the following general theorem on the convergence of the matrix 
sequence {P(k)}+

k=o, where P(k) = P-P P (ktimes). 
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Theorem 2.1 (e.g.9 cf. [3], [11]): Let P = (P(n, ni))n>0 w>0 be the transition matrix of a Markov 
chain. Then, the sequence {P^}t=0 converges in the Cesaro mean. More precisely, the sequence 
{ & } £ defined by 

converges to the matrix Q = {q(n, m)}n>^ m>0 with 

q(n,m)-- f>(n, rn) 

where p(n, m) is the probability that starting from the state n the system will ever pass through m9 

and /um is the mean of the real variable which gives the time of return for the first time to the state 
m, starting from m. 

It is obvious that the particular matrix given by (2) is the transition matrix of a Markov chain 
whose state space is N = {0,1,2,...}. We observe that 0,1,...,r-1 are absorbing states and the 
other states r,r + 1,... are transient, because starting from a state n>r the process will be 
absorbed with probability 1 by one of the states 0,1, . . . , r - l after n-r + l transitions. If m is a 
transient state, we have jum = +oo (cf. [3]), hence q(n, m) = 0 for m - r, r +1,.... If n and m are 
absorbing states, we have jum = l and p(n, m) = 5nm. Therefore, the limit matrix Q of Theorem 
2.1 has the following form: 

Q = 

0} 
p(r,0) 

p(r+ 1,0) 

p(n,0) 

P(r,r-l) 
p(r + l,r-l) 

p(n,r-l) 

0 
0 

0 
(3) 

The sequence defined by (1) may be written in the following form, 
X = PX. (4) 

From expression (4) we derive easily that X = P^X for n > 1, which is equivalent to X - QnX 
D l D ( 2 ) i . . . I r j ( M ) 

for n> 1, where Qn = n" . Thus, we have X = QX, where Q is given by (3). We then 
derive the following result. 

Theorem 2.2: Let {Vn}*™0 be a sequence (1) such that the real numbers a0, ...,ar_l are non-
negative with Z^/af = l. Then, for any n>r, we have 

V„ = p(n, 0)V0+p{n, \)Vl + - +p{n, r - l)Fr_,. (5) 
Note that the number p(n, j) (0 < j < r -1) is the probability of absorption of the process by 

the state j , starting from the state n. Theorem 2.2 gives the expression of the general term Vn for 
n>r as a function of the initial conditions V0,...9 Vr_x and the absorption probabilities p(n, j). 

2*2 Combinatoric Expression of p(n, m) 
For n>m>r, the number p(n,m) is the probability to reach the state m starting from the 

state w, because m is a transient state. To reach the state m starting from the state n, the process 
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makes k} jumps of j +1 units with the probability ay (0 < j < r -1) . The total number of jumps is 
kQ +&x H— + &r_i and the number of units is kQ + 2kx + ••• +rkr_x -n-rn. The number of ways to 
choose the kj (0 < 7 < r -1) is 

(*0+*! + - "+* r - l ) ! 

and the probability for each choice is afta*1 • • • a^. Hence, we have the following result. 

Theorem 2.3: For any two states n, m (n>m>r), the probability p(n,m) to reach m starting 
from n is given by 

kQ+2kl+-~+rkr_x=n-m KQ'K\' Kr-\ • 

Note that, for n>m>r, p(n, m) = H%}m+l(a0,...,ar_x), where {H%}m+l(a^...,a^)}^ is the 
sequence of multivariate Fibonacci polynomials of order r of Philippou (cf. [1]). 

Let n and j be two states such that 0<j<r<n. Then n is a transient state, j is an absorbing 
one, and p(n, j) is the probability of absorption of the process by j starting from n. First, we 
suppose that n > 2r and 7 = 0. To reach 0 starting from n, the state r is the last transient state 
visited by the process. And ar_x is the probability of the jump from r to 0, which implies that we 
have p(n, 0) = ar_xp(n, r). More precisely, to reach j (0 < j < r -1) starting from n (n > 2r), the 
process must visit one of the following states r, r + l,...,r+j, because they are the only states 
from which the process can reach j in one jump. As arArk^^x (0 < k < j) is the probability to go 
from r + k toy and p(n, r + k) is the probability to go from n to r + k, we obtain 

P(P, J) = ar-j-\P(n,r)+ar_jp(n, r +1) + • • • + a^jpfa r + j). (7) 

From expression (6), we deduce that p(n,r + l)=p(n-l,r) for any n>r + l. Thus, for any 
n > 2r and j (0 < j < r), we have 

p(n, j) = a^j^in, r)+ar_jp(n -1, r) + • • • + a , . . ^ - j , r). 

Now suppose that n < 2r. Then we have two cases. If r + y < n, expression (7) is still verified. 
For the second case, r < n < r + j , we have 

P0*> J) = <Xr-j-\P(n>r)+^r-,P0* - 1 , r) + - + aw_7_!p(r, r). 

Hence, the expression of the absorption probabilities is given by Theorem 2.4. 

Theorem 2.4: Let n and j be two states such that 0<j<r<n. Then, if we set p(i, i) - 1 and 
p(i9 k) = Q if i <k, the probability of absorption p(n, j) is given by 

P(*> J) = ar-j-\P(n*r)+ar-jP(n - 1 , r) + • • • + fl^iPCw - 7, r\ (8) 

where p(w, 0) = ar_xp(n, r). 

2.3 Combinatoric Expression of Vn 

By substituting expression (8) in (5), we obtain the following result. 

Theorem 2.5: Let {Fw}£?0 be a sequence (1). Suppose that the coefficients a0, ...,ar_1 are 
nonnegative with SJTQ a,- = 1. Then, for any w > r, we have 
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Vn = A0p(n,r) + Alp(n-l,r) + - + Ar_lp(n-r + l,r), (9) 

where 4« = ar-¥m
 +''' + amK-i> *w = 0,1,..., r - 1 and the p(k, r) are given by (6) with p(r, r) = l 

and p(k, r) = 0 if k < r. 

If we take V0 = 1 and Vx = • • • = Vr_x = 0, we get Vn - a^pty, r). Therefore, the sequence 
{(p(n, r)}£?0 satisfies the following relation: 

p(n + l,r) = a0p(n,r)+alp(n-l,r)+---+ar_lp(n-r + l,r). (10) 
Relation (10) may be proved otherwise by considering the jumps of the process from the state 
T? +1 to the state r. 

2.4 General Case and Levesque Result 
Now suppose that the coefficients a0, ...,ar_1 are arbitrary real numbers and define the num-

ber p(n, r) by (6). Then we can prove by induction on n that expression (10) is satisfied. Hence, 
Theorem 2.5 is still valid in this general case. Such a result was established by Levesque in [5]. 

3. ASYMPTOTIC BEHAVIOR OF p(n, r) 

Let {Vn}*™0 be a sequence (1). Suppose that a0, ...,ar_l are nonnegative real numbers with 
UiZlai = 1- We have established, using some Markov chains properties, that sequence (1) con-
verges for any V0,..., Vr_x if and only if CGD{/ +1; at > 0} = 1 (cf [6], Theorem 2.2). When this 
condition is satisfied, we obtain 

lim Vn = 11(0)^ + XI(lFr_2 + • • • + H(r - 1)F0, (11) 

where 

57I1 a n ( ^ ) = ^r (7 L (cf- l6l Theorem 2.4). 
A=o(l + 1M 

By using expressions (9) and (11), we derive the following result. 

Theorem 3*1: Suppose that the real numbers a0,..., ar-1 are nonnegative with J^~Q at = 1. Then, 
if CGD{/ +1; af > 0} = 1, we have 

lim p(n, r) = -—r- :—, 

where p(n9 r) is given by (6). 

Now suppose XJTQ at^l. It was shown in [7] that under the condition CGD{i +1; af > 0} = 1, 
the characteristic equation xr = a0xr~l + •••• +ar_2x+ar_l of sequence (1) has a unique simple non-
negative root q, and the moduli of all other roots is less than q. If we set bt =aj/ql+1

y we have 
bt > 0, X-IQ k = 1, and CGD{i +1; a, >0} = CGD{i +1; bt > 0}. Thus, the sequence {WX=o defined 
by Wn = Vn I qn+l is a sequence (1) whose initial conditions are Wt = Vt I ql+l for ; = 0,1,..., r - 1 and 
W„+l = H1-=obiWn_i for n>r-l (cf. [6]). Therefore, we derive from Theorem 3.1 the following 
result. 
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Theorem 3.2: Suppose that a0,..., ar_x are nonnegative real numbers and CGD{/ +1; ai> 0} = 1. 
Then we have 

Km — P(n>r) = T 2 —, 

where p(n, r) is given by (6). 

From Theorem 3.2, we can derive a new approximation of the number q. More precisely, we 
have the following corollary. 

Corollary 3.3: Suppose that a0,...,ar_x are nonnegative real numbers and CGD{J +1; ax > 0} = 1. 
Then the unique simple nonnegative root q of the characteristic equation of (1) is given by 

q= lim %jp(n,r), 

where p(n, r) is given by (6). 
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