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1. THE FUNCTION Sk
m(n) AND RELATED RESULTS 

This article was motivated by a question posed to me by Professor H. W. Gould [2], speci-
fically: What can be said about the number theoretic function 

Gm(n)= X 1 > where tff>-2,w>l? (1) 
!<«!,..., am<n 
(fl1,.. . ,flIB)=l 

The Jordan totient function Jm(ri) generalizes Euler's totient function </>(ri). In this paper we 
investigate the function S^(n)9 which generalizes both Jordan and Euler's totient functions. Thus, 
with m>\ n> 1, and k > 1, let 

Sk
m{n)= Z l . (2) 

\<a],...,arp<n 
(ai,...,am,k)=l 

The case k~n retrieves Jm(ri), while S"(ri) is Euler's totient function. Also, it is clear that 
Sl

m(n) = nm = IJn). In fact, am(n) = £«/,„ Sl
m{d), from which we obtain by Mobius inversion that 

d\n V a 7 

Also, since £rf|/f Jm{d)Sl
m{n), it follows that 

JM = Z M(d)SlM = » f f l I ^ and am(n) = £ £ Jm(r). 

We shall make use of the following known result. 

Theorem 1: Let f(n) and F(n) be number theoretic functions such that F(n) = Td\nf(d). 
Then, for any integer N9 

N 

I 5>(«)=II/(<o=L/o) 
«=1 d\n j=l 

We may use this theorem to obtain the result that 

;=! j=\ J=l d\n ;=1 

J 

UJ\ (3) 

We now prove our next result. 

Theorem 2: Let k = IJ^i pf1 be the prime decomposition of A, where e, > 1, then 
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Proof: It follows by the inclusion-exclusion theorem that 
n n n n n n n n n 

£<»)=»--II- Z1 + 1 1 - I 1 +-+HySZ- Ei 
i{=l / ' 2 = 1 / T O = 1 / ' i = l ; ' 2 = 1 / ' i = l 

Pi \(h,~,'«, *) A P / lO'i> •••>'«»*) 
l ^ J l < z < / < * 

'1=1 '2=1 'm=l 

i</OT<[-] i</OT<[-] i</OT<[-] ! < 7 l < y j</2<[^_] ! < / m < y î b^d ^-fe] 

n 
.Pi. 

m 
+ 

-PPj. 
+ •••+(-!)' 

PiPi-Psl dH •;M5r. 
where the subindices are as defined in the first line. 

For the special case of k = n and m = l,it follows that 

as expected. Also 

Pi PiPj Pi-Ps l
Pi{ P) % d 

Un) = rT-\ji\ + 
m ( \m 

KPPjj + ••• + (-i)'f—^—)=«TT(I-— 1=«T 
again as expected. 

Similarly, it may be shown that 

Further, by setting , we obtain the result, 

#(«)= Ii=5>(<0 
l</<« d\k 

On the other hand, by defining 

(rf,it)=i 

we obtain the following result. 

Theorems: Sk
T(n)= X 1 = X ^ ^ f e ) 

(rf,fc) = l 

We may generalize the function S„(ri) by setting 

.£(»,«) = £l = I* = 
ISa am<" l<6„...,*mi[f] 

l* a"'k)=a (h «w.i)-i 

oa/k 

0, 

ifa/k, 

otherwise. 

(4) 
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We now let Sf (x) denote the generating function for S*(w), then 

tf(*)=Itf(")^ = 1*^-1 
«=i »=i 

< " + ! 
n=l /W>> x" + - + ( - i y X 

n=l 

n 

«=i 
Z^" ~xA Z — r A + ' " + ( - 1 ) ^ P l ' " / 7 j Z 

»=AL^J n=px...ps 
PlPl-Ps 

- + -(1 - x)2 (1 - x)(l- x") ' (1 _ X)( l - *"*) 

where we have used the result, 
1 I x"~k=-

+ - + ( - i y 

|x|<l. 

Pllh-P, 

rpl-p, 

( l -xXl -* P | - p * ) ' 

(1-xXl-x*) ' 

We now use Theorem 2 to partially answer Gould's question, as follows. 

Theorem 4: Let Gm(n)= ^ 1 , where AW > 2, A? > 1. Then 
\<ax,...,am<n 

A?=l l<ai,...,am_i<n fc=l fc=l d\k 
(fll,...,am_i,fc)=l 

, by Theorem 2. 

We now restrict the function S^(n) somewhat and define a new function thus: 

Lk
m(n) = ]T l where AW > 1, n > 1, k > 1. 

{ax,...,am,k)~l 

The case A = 1 gives the following result. 

ÂI + AW-1^ TheoremS: Ll
m(n)-

m 

400 = I i = I I i = 
\<a<b<n i=l ;=1 
(a,b,l) = l 

Proof: We prove the result by induction on AW. First of all, the case AW = 2 gives 

2 2 [ 2 

We now assume the result true for 1, 2, 3, ..., AW and consider 

4+1(») = I I - I i = I 4 f t ) = Z'-/ 
AW 

Now let / = j + m -1. After reverting back to the original variable, we obtain 
j+n-l/ . 

C(»)=I i 
;=m 

AW + AI 
AW + 1 

see Gould [3, (1.52), p. 7], and hence, the induction goes through. 

1999] 

(5) 

69 



A GENERALIZATION O F THE EULER AND JORDAN TOTIENT FUNCTIONS 

Alternatively, we may show that 

where S^m, i) represents Stirling numbers of the first kind in Gould's notation [4]. We note that 
s(n,m) = (-l)n~mSl(n-l,n-m), where $(n,m) represents Stirling numbers of the first kind in 
Riordan's notation [6]. The equivalence follows from the fact that 

m-l 

/=0 

And, of course, 

= fj{-\)i-'ns{m, />' = (-1)^!^") = /*•(' 

;=0 V ' 

n+m-\ 
m 

From Theorem 5 and the standard result, 

*-Sv> /=o 

=2-
where the Fn are Fibonacci numbers, we may deduce that 

where ll(n) = IVn. 

We now let k = n/=i P?, where ex > 1, and prove our next result. 

Theorems: Lk
m{n) = Y,Kd)Ll

m 

Proof: 
d\k 

n h n h *m-l 

4(«)=z»-2 I - Si +2 2+-+ I1 
/ 1 = 1 / 2 = 1 /OT = 1 /i = l / 2 = l im = l 

pi\(il,...,im,k) piPj \(ilt„.,imfk) 

n h im-i 

+-+(-i/2Z- I1 
/'i = 1 /2 = 1 im = 1 

= 4(»)-4 +£ 
A/7; + -+(-l)'Zi « 

PiPi-P. d\k 

The special case k = n gives the result 
n\(d+m-l 

m 
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which implies that l}m{n) = £rf|„ Ld
m(d). Equivalently, 

»=1 1 - x n=\ \l-X) 
(6) 

or 
oo jn L"M ^Lj(n) ^)Z^F=Z: 

n=l n=l Ji-

lt follows from Theorem 1 that 

^0), 
that is, 

which, on letting m + j ~ 1 = f and reverting back to the original variable, gives 

ilU) 

m+n-l 

j=m 
^ \m) [m + l j ^ 

J=l 
Hn(J)- (7) 

The case m = 1 gives the result E[(n) = (j>{n). Following are the tables of the values of the Ln
m(n) 

and l}m(n) arrays. 

TABLE 1 
m \ 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
1 
2 
3 
4 
5 
6 
7 
8 

. Values of the ZJ, 

3 
2 
5 
9 
14 
20 
27 
35 
44 

4 
2 
7 
16 
30 
50 
77 
112 
156 

5 6 

4 2 
14 13 

34 43 
69 107 

125 226 

209 428 
329 749 

494 1234 

(if) Array 

7 8 

6 4 
27 26 

83 100 
209 295 
461 736 

923 1632 
1715 3312 

3002 6270 

TABLE 2 

m \ 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
3 
4 
5 
6 
7 
8 
9 

* Values of the Zj,(w) Array 

3 
3 
6 
10 
15 
21 
28 
36 
45 

4 
4 
10 
20 
35 
56 
84 
120 
165 

5 6 

5 6 
15 21 

35 56 
70 126 

126 252 

252 462 
462 924 

792 1716 

7 8 

7 8 
28 36 

84 120 
210 330 

462 792 

924 1716 

1716 3432 

3003 6435 
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We obtain a recurrence relation for Ll
m(n) as follows: 

ri / , i\ (m+n\ (m+n-\\ , (n + m-l) ri / \ , ri / M \ 

A»("+i) = [ OT J=[ w J+[ OT_! J = 4,(»)+Vi(»+i)-
With the exception of boundary conditions, we note that this relation is the same as equation (1.1) 
of Carlitz and Riordan [1]. Its generating function Ll

m(x) is 

4(*) = I4(«)*"=S4X»+i)*"-I4-i(»+iK 
n=l «=1 «=1 

n=2 n=2 
which implies that 

that is, 

But 

and, therefore, 

We may also let 

xDm(x) = £ I}m(n)x" - x4(l) - X 4,- i (»K + *4- i0 ) , 

r\ /v\ _ A»-l(x) _ AC*) 
m W 1-X (1 -x ) - 1 " 

l\(x) = X Z}(/i)x" = £ > " = 7 r ^ - r 
w = l w = l ( I -*) 2 

(l-x)OT+1 

w=i w=iv / m=o\ / v / v 
2/n j 

Similarly, we may define and show that 

T_f(n+m-i\_f1(A_(2m 

We now seek the generating function of S„. And so, with S0 = 0, let 

We now use the result 

v n I v ' v n 
to obtain 

^ = (-l)"f2"]2-2", n>0, 

fffiy = S(-l)"(fy"x" = (1-4*)*; 
hence, 
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see Gould [4, p. 16]. 
Finally, we may consider the function 

1 1 
-Jl-4x l-x 

£(«) = £ l , n>m. 
\<al<a2<---<am<n 

The case k = 1 gives 
n-(m-l) n-(m-2) n 1Zxs(m,i)ri 

This is a known result. 

2. INVERSE AND ORTHOGONAL RELATIONS 

Using Theorem 2, we may now prove our next result. 

Theorem?: t ( » ) = X M ^ f l ^ j ) . 
d\k 

The case k = n gives 

d\n \ / v ^ 

from which it follows that T£{n) = (̂w) and 2^(m) = 1. Mobius inversion then 

hence, 

or 
(1-x) m+1 

It follows from Theorem 1 that 

t^( j \ (n + 1 

j=nr 
m + l ) j=md\j ;=wL 

U{j). 

Following a technique of Gould [5, p. 252], we may set 

£(&V>: 
hence, 
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J=m v> / ' L # " J jz=mj=m v ^ y v y 

y,-,-l( » V7 + 1 

From this, we may obtain the inverse to T^(n) as 

Also, since 

TO*" _ * 

*>)=S(-ir'n;i 

1 - r w (l-x) m+1 ' 

we may consider 
oo J 

1 ^ 0 ) 7 7 ^ = I Z("l> r iv-r7 + l 
f' + l (i-jcy+1 

- l i i c - ^ j z y : ^ > + lV_JE_Y 

But 
00 / . \ 00 

zu+
+iJ*-5sUJ«-=zUJ5*"-ibzUJ^=a^ \W+2 ' 

Therefore, 

and so 
_/=/ z/;; i + n f £ 

x - l y l x - 1 

2v/n °° 

(l-x)' J+2 

Vr r A ^ _ ( * - ! ) * y 
%mU)(l~xy+l~ l-x ,f j e . - » . = . x 

l-x" 

From equations (10) and (13), we obtain the following result. 

Theorem 8: The functions Km(n) and T%(n) satisfy the orthogonality relations 

tW)Kj(n) = S"m and tKn>(J)lJ(n) = K-
j-m j=m 

Therefore, we have the following general inversion result. 

Theorem 9: For any ordered function sequence pair, (/(«, m), g(n, m)}, 

fin, m) = | > ( » , j)TJ,(J) if and only if g{n, m) = £ / ( » , j)Km(j). 

(12) 

(13) 

;=m j=m 
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The ordered function pair 

n + \ 
m + l 

is a particular case of this theorem. 
We also note the following concerning l%(n): 

j=l j=l d\n \J J j=l d\n u \J 

that is, Zy=i TJ(n) is divisible by n. Furthermore, 

;=1 ;=1 d\n \ a ) \ J J d\n V a / 

from which we obtain 

Similarly, 

;=1 J=l \<a]<a2<---<aj<n d\n \ u ' 
{ax,...,aj,n)=\ 

— \n-i(n + l\\ ' L . / _ W i\w-/f«+MV 
7=1 

From which we obtain 

Inversely, it may be shown that 

j=\\J ' 7 = 1 

a result similar to one obtained by Gould [5, p. 255]. Following are tables of the arrays of the 
two functions T£(ri) and Km(n). 

TABLE 3, The T£(n) Array 
\ / 1 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
0 
0 
0 
0 
0 
0 
0 

2 
1 
1 
0 
0 
0 
0 
0 
0 

3 

~¥ 
3 
1 
0 
0 
0 
0 
0 

4 

T 
5 
4 
1 
0 
0 
0 
0 

5 
4 
10 
10 
5 
1 
0 
0 
0 

6 
~~2~ 
11 
19 
15 
6 
1 
0 
0 

7 
~6~ 
21 
35 
35 
21 
7 
1 
0 

8 
4 
22 
52 
69 
56 
28 
8 
1 
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TABLE 4. 

m x 
1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
0 
0 
0 
0 
0 
0 
0 

2 

7̂~ 
1 
0 
0 
0 
0 
0 
0 

3 

~T 
-3 

1 
0 
0 
0 
0 
0 

The Km{n) Array 

4 
-1 
7 

-4 
1 
0 
0 
0 
0 

5 6 

I ^T 
-15 -4 

10 -19 
-5 15 

1 -6 
0 1 
0 0 
0 0 

7 
1 
7 

28 
-34 

21 
-7 

1 
0 

8 
-1 

127 
-28 

71 
-56 

28 
-8 

1 
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