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1. THE FUNCTION S¥(n) AND RELATED RESULTS

This article was motivated by a question posed to me by Professor H. W. Gould [2], speci-
fically: What can be said about the number theoretic function
G,m= D1, wherem>2,n>1? 1
1<ay,..,a,<n
(ay, ., ay)=1
The Jordan totient function J,,(n) generalizes Euler's totient function ¢(#). In this paper we
investigate the function S%(n), which generalizes both Jordan and Euler's totient functions. Thus,
withm>1 n>1,and k >1, let

Sk(n) = Z 1 . 2
1<ay, .., a,<n
@y, s Ay )=1

The case k =n retrieves J,(n), while S;'(n) is Euler's totient function. Also, it is clear that
Slmy=n"=1,n). Infact, o,(n) = Zapn S}(d), from which we obtain by Mobius inversion that

Sy = T i) 2 ).

din

Also, since %, J,,(d)S,,(n), it follows that

J ()= ;md)s“( ) '"%”() nd o,0)=3 57,0

We shall make use of the following known result.

Theorem 1: Let f(n) and F(n) be number theoretic functions such that F(n)=1%,, f(d).
Then, for any integer N,

Sro-3 s @3]

n=1 d|n

We may use this theorem to obtain the result that

Y50 Z gzw) Z[ ] ) 3

j=1 1d|n
We now prove our next result.

Theorem 2: Let k =TI, pf be the prime decomposition of k, where ¢, > 1, then

509 = L[ 5"

dlk
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Proof: 1t follows by the inclusion-exclusion theorem that

n

S,’,‘,(n):n’"—ii--- Zl +ZZ Zn:1 +---+(—1)’izn: 21

iy=1 ip=1 im=1 i=1iy= i=1 iy=1ip=1 ipy=1

P,|('| 2 i K) PPy i k) PrP2 - Pl (i) s B K)

<i<s 1<i<j<s
BN TD SRD D SN SR S
1sip<[2] 1sins[z] 1sins[z] 1si<m] 1sd ] 1i, <[] i) syl

=nm—[§]”+{;:’p—,}'" ] gl

where the subindices are as defined in the first line.
For the special case of k =n and m =1, it follows that

_n,n s _1 )
p(n)=n P,»+P,p ++(=1) 7 s—ng(l )—nz

d|n

as expected. Also

i y "1 1) e ()
J, (n)=n" (P:}{P;P,) vt (- D(p ps)—n E!(l p"’) ndzln

again as expected.
Similarly, it may be shown that

Sn(na) nmaH( p ) mazlu(d)‘ (4)

pln din

Further, by setting , we obtain the result,

Sto)= Y1=Yu@)| 4]

1<isn  dlk
G, k)=1
On the other hand, by defining
Sim= X1,
din
(d k)=1

we obtain the following result.

Theorem 3: S*(n) = Zl = Z ,u(d)r(%).
(ddk‘;’=1 41em

We may generalize the function S¥(n) by setting

Stmay= Y1 = Y1 = SZ”‘([%D, ifalk,

12ay,.,a,Sn 1<by,..,b,<[2] 0, otherwise.
(al"“’a’"’k)=a (bl’--ubm’%)=l
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We now let $¥(x) denote the generating function for Sk(n), then

SH(x) = ZSI () %" —Z:Inx —Z[p)]x +z[ ,p,J v 1)Z[plp2 ]
_an _xp.Z[ﬂxn—p,-+..,+(_1)sxpl...ps 3 [__'J_ps]xn—pl...px

n_p. "=P1-~~ps p1p2'

_ x B xPi xPin e xPiPs
Ta-x? d—nd-x) (1-x)(1-x"") rore (1-x)(1—xP-P)’°

where we have used the result,

3| L -
gc[—k_:lx —(1—x)(]_xk)’ lx| <1

We now use Theorem 2 to partially answer Gould's question, as follows.

Theorem 4: Let G, (n) = 21 ,Where m>2, n>1 Then
1€ay,.,0,%n

(@) =1

G, (n) = Zl = Z (m= Z Z,u(d)[ ] , by Theorem 2.
k=1 188y, mty Sn k=1 k=1 dlk
(a m-1-K)=1
We now restrict the function S¥(#) somewhat and define a new function thus:
L= Z] , wherem>1 n>1k>1. 5)
1<aj<ay<--<a,<n
(ay, .., ay, k)—

The case £ =1 gives the following result.

n+m—g

o Tl =
Theorem §: Lm(n)—( m

Proof: We prove the result by induction on m. First of all, the case m =2 gives

LI w on [(n+2-1
lé(n)z 21 22212—54‘5: 2 .
1€a<bsn  i=1 j=1
(a,b,D)=1
We now assume the result true for 1, 2, 3, ..., m and consider
j+m-1
Loyn(m) = Z Z ZLZU @)= Z( J
=1 ip=1  jp=1 §j=1
Now let j'= j+m—1. After reverting back to the original variable, we obtain
jtn=1, .
j m+n
m+1(n) = ;Z;h ( ) (m+l))

see Gould [3, (1.52), p. 7], and hence, the induction goes through.
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Alternatively, we may show that

Ti%o Spei(m)Si(m—1,7)

L,(n)=
O S s

where §,(m, i) represents Stirling numbers of the first kind in Gould's notation [4]. We note that
s(n,m) = (=1)""8,(n—1,n—m), where s(n,m) represents Stirling numbers of the first kind in
Riordan's notation [6]. The equivalence follows from the fact that

z S .(mS,(m-1i)= ZS(m L, m-in’

- o= o 7))
And, of course,
'{ZlSl(m— Li)= (—1)"m!(7n1) =ml.
i=0

From Theorem 5 and the standard result,
e,
Fa=2("7)
“\J
where the F, are Fibonacci numbers, we may deduce that

[ﬂ.ﬂ] __L

RS ()RS ()3 )3

Jj=1
where I(n) = 1Vn.

We now let &k = [T, pfi, where e, > 1, and prove our next result.

Theorem 6: L (n) = a%'u @)L, ([ D
Proof:

n 0 Iy n i1
Lm=L,m-> Y Y1 +) Y+t D1
i=1iy=1 im=1 i=1iy=1 im=1
pil(il""’im’k) pip_j I(ila'"’im’k)

n i iy

ok (CD)FY D >

i=1iy=1 im=1
plpZ'“psl(il""vim’k)

T I R S PR

The special case k£ =n gives the result

Lo =Y ue i 5)= T u(5) 1),

din din
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which implies that L (n) =3, , L% (d). Equivalently,

Z (n)

—Z L (m)x" = _)—m:r (6)

@

or
é«(s)z m(n) z m(n)

It follows from Theorem 1 that

S =3 Y @)= z[ ]Lfm
j=1 Jj=1dl|j
that is,

57205 e

J=1

which, on letting m+ j—1= j' and reverting back to the original variable, gives

mtn=-1s . n

m+n AP

5 (-2 [5]mo Y

j=m j=l
The case m =1 gives the result j(n) = ¢(n). Following are the tables of the values of the L] (n)
and I} (n) arrays.

TABLE 1. Values of the L,(n) Array

SN2 3 4 5 6 71 8
1 [t 1 2 2 4 2 6 4
2 |12 5 7 14 13 27 2
3 {13 9 16 34 43 8 100
4 |14 14 30 69 107 209 295
5 |1 520 50 125 226 461 736
6 |1 6 27 77 209 428 923 1632
7 |1 7 35 112 329 749 1715 3312
8 |1 8 44 156 494 1234 3002 6270

TABLE 2. Values of the Il (n) Array

3 4 5 6 7 8
3 4 5 6 7 8
10 15 21 28 36

10 20 35 56 84 120
15 35 70 126 210 330
21 56 126 252 462 792
28 84 252 462 924 1716
36 120 462 924 1716 3432
45 165 792 1716 3003 6435

3

[~ IS B T A I S e B
i e e T T == T o = B
O 0NN A w|N
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We obtain a recurrence relation for ! (n) as follows:
+ +n-1 +m-1
L}n(n+1)=(mmn):(m . )+(nm’fl ):Li,,(n)JrL1 (1)

With the exception of boundary conditions, we note that this relation is the same as equation (1.1) -
of Carlitz and Riordan [1]. Its generating function L (x) is

L) =Y Lmx" =) Lm+)x"-> L} _ (n+1)x"
n=1 n=1 n=1

=3 L, -3 I (e,
n=2

n=2
which implies that
xL,(x) = " L, (n)x" — xLy, () =Y. L y()x" +xI,_, (1),
n=1 n=1
that is,
L= B L)
" I-x  (1-x)""
But

L(x)= 2 Lmx" =Y mx" =
2 HO =2 =
and, therefore,

X

1 —
Lm(x) - (1 _ x)m+1 s

|x|<1.
We may also let
e (ntm=-1\_<~(n+m-1\ (n-1)_(2n
= Sno=3( )-S5 1))
Similarly, we may define and show that

n=3 ()= (0)-(am)

J=m

We now seek the generating function of S,. And so, with S, =0, let

S(x)= gs,,x" -3 {(Zn”) - 1}.

n=0

(_n%) . Dn(?;:?) 272 n>0,

5 ()= S (3 e - -0,

n=0

We now use the result

to obtain

hence,
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1 1
S()=———x-———
0 Vi-4x 1-x
see Gould [4, p. 16].
Finally, we may consider the function
T (n) = 1, nzm. ®)
1Saj<ay<-+-<a,<n
(ay,.,0,,k)=1
The case k =1 gives
n—(m-1) n—(m-2) n _ Z,’il s(m, i)ni

pe="3 3 - 3

i=l =il =i+ Zi'llls(m’i)l

4 ©
noys(m iyl m\(n) (n‘J
miS(m-1,i)  m! m)’
This is a known result.
2. INVERSE AND ORTHOGONAL RELATIONS
Using Theorem 2, we may now prove our next result.
Theorem 7: T¥(n)=Y ,u(d)]:j([ﬁ]).
dlk d
The case k =n gives
o= Zu(5)(4)
din
from which it follows that 77 (n) = ¢(n) and 7,'(m) = 1. Mobius inversion then gives
(,’,1,) =Y Ti@);
d|n
hence,
5 L)X _ S (n) nem x"
m = "= X = 10
Zl e Zl ()" = x me = (10)
or
& T'(n) & Tin
(3 0 3 Tn)
n=1 n=1

It follows from Theorem 1 that

n(J) (n+l) < din_
Z(mj"(an"fgdu m(d)—gn[j]n(J). an

Jj=m

Following a technique of Gould [5, p. 252], we may set

[ﬂ - }:({ o

hence,
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S (AL e (h)ie

J=mi=m

£ Sern(teo-Ero S (L) s

i=m j=i J=i+l

From this, we may obtain the inverse to 7., (n) as

Km<n>=§<~1>"'f(§ﬂ)[ﬂ | (12)

Also, since

i nmx" _ x"”
“ol-x" (1-xy™
we may consider

T o

j=1 =mi=m

-

But
(225 He- BB EE)
x"= x" = X" = M ==
;ﬂ(m+l Z-;Z;n m ,z=1 m ng; 1_3"; m (1-x)"+?
Therefore,
S (J+N XY (X Yy
;(Hl)(x—l) (x-l)( %
and so
< ¥ (=1 l:!] N
— = : 13
g (1 Xyt 1-x g;, mi’ 1-x" (13)

From equations {10} and (13), we obtain the following result.

Theorem 8: The functions K, (n) and 77 (n) satisfy the orthogonality relations

ZTJ(])K (n)=6" and ZK T () =&,

J= J=m

Therefore, we have the following general inversion result.

Theorem 9: For any ordered function sequence pair, (f(n, m), g(n, m)),

S(n,m)= Zg(n DTG if and only if g(n, m) = Zf (n, NK,(J)-

J=m Jj=
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The ordered function pair

n+l)|n
m+1p|\m
is a particular case of this theorem.

We also note the following concerning 7 (n):

Sre=3 Y ua(f)=nS iz 4P (471

j=ld|n

that is, 27, 77'(n) is divisible by n. Furthermore,

Sroe-$ B2)e -l

=1 =1 d|n dln

from which we obtain

n n
ZT}"(’?):Z Zl :Z#(%)Zd.
J=1 J=1 15a|<a2<---<aan din

(ay,-maj,m)=1

Similarly,

ZK(n)xf—Z S5 ]X"Z( 1)""("+1)§[ J

J=li=j

From which we obtain

n

Sxm=Ser (i35 ]2 oL ()=E o ()

= j=1

Inversely, it may be shown that
=3 1350

a result similar to one obtained by Gould [5, p. 255]. Following are tables of the arrays of the
two functions 7,(n) and K ,(n).

TABLE 3. The T"(n) Array

SI1234 5 6 7 8
1 [1 122 4 2 6 4
2 o 13510 11 21 22
3 /0014 10 19 35 52
4 10001 51535 69
5 looo0o0 1 6 21 5
6 [0 000 0 1 7 28
7 looo0oo0 0 0 1 8
8 (0000 0 0 0
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TABLE 4. The K,,(n) Array

ST 2 3 4 5 6 1 8
1 1 -1 1 -1 1 -1 1 -l
2 [0 13 7 -15 4 7127
3 /0 0 1 -4 10 -19 28 -28
4 o0 0 0 1 -5 15 -3¢ 71
5 /0 0 0 0 1 -6 21 -5
6 [0 0 0o 0 0o 1 -7 28
710 0 0 0 0 0 1 -8
8 |0 0o 0 0o 0 0 0 1
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