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The aim of this paper is to prove the following theorem which was conjectured in [1] and [2] 
(and originated in a work of Yu [3]). 

Theorem 1: Set 
N 0j 

y=i J 

Then, if v(x) denotes the highest exponent of 2 that divides x (i.e., the 2-adic valuation), we have 
v(Sl(2m)) = 2m+2m-2 forw>4. 

For the sake of completeness, note that a direct computation shows that 
v(Sl{2m)) = 2m + 2m+dl{m\ 

with 4(0) = 0, dx{\) = - 2 , dx{2) = - 3 , and dx(3) = - 1 , the theorem claiming that d^m) = -2 for 
rn>4. 

Before proving this theorem, we will need a few lemmas. In this paper, we will work entirely 
in the field Q2 of 2-adic numbers, on which the valuation v can be extended. 

Lemma 2: We have 
CO fjj 

X — = 0 inQ2. 
j=\ J 

Proof: Since the function 
oo / 

Li1(x) = - log( l -x) = X - ? 7 
;=1 J 

converges in Q2 for v(x) > 1, and satisfies 
Ux(x) + L i ^ ) = - log((l - x)(l - y)) = Ux(x + y - xy) 

for all x and y such that v(x) > 1 and v(y) > 1, we deduce that our sum is equal to Lix(2) and that 

2Li1(2) = Li1(0) = 0, 

so Lij(2) = 0 as claimed. • 

Lemma 3: We have 

J=l J 
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Proof: This time we set 
L i2W = Z ^ 2 

J=\ J 

This is the 2-adic dilogarithm, and converges in Q2 for v(x)> 1. Most of the usual complex 
functional equations for the dilogarithm are still valid in the p-adic case. The one we will need 
here is the following: 

-X \ 1 i- 2/ U2(x) + Li2 ( j - y = -^log2(l - x), 

valid for v(x) > 1. This can be proved by differentiation, or simply by noting that it is a formal 
identity valid over the field C, hence also over any field of characteristic zero. 

Setting x = 2, we obtain 

2Li2(2) = -log(-l)212 = -Ul(2)2/2 = 0 

by Lemma 2, thus proving Lemma 3. D 

Remark: Lemmas 2 and 3 cannot be generalized immediately to polylogarithms. For example, an 
easy computation shows that Li3(2) * 0, and in fact that v(Li3(2)) = -2 (this is the explanation of 
d^m) = - 2 , as we will see below). I do not know if the value (in Q2) of Li3(2) can be computed 
explicitly. See also Theorem 8 below. 

We can now prove the following. 

Lemma 4: For all N> 0, we have 

Sl{N) = ±^ = -N^Nt 2J 

Proof: From Lemma 2, we deduce that 

Applying Lemma 2 again, we deduce that 

Sl(N) = Sl(N) + 2NYtK = N2NYt- V 

j PJU + N)-
Finally, applying Lemma 3, we obtain 

S1(N) = Sl(N)-N2»±^ = -N>2N±-^— 
j=\J y=l7 U + M) 

as claimed. D 

We can now prove Theorem 1. It follows from Lemma 4 that 

2J 
v(Sl(2m)) = 2m+2m+v(Tl(2m)) with Tl(2m) = YJ 
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Thus, Theorem 1 is equivalent to showing that v(IJ(2?w)) = -2 for m > 4. This will immediately 
follow from Lemma 5. 

Lemma 5: Set 

wx(J,m) = v ( V 
Vf(j + 2m\ 

Then, for m > 4, we have wx(J, m)>~l for all j except for j - 4 for which wx(4, m) = -2. 
Since there is a unique term in the sum defining 7[(2W) having minimal valuation, it follows 

that the valuation of 2̂ (2W) is equal to that minimum; therefore, Theorem 1 clearly follows from 
Lemma 5. 

Proof: Set j = 2ai with i odd. lfa<m, we have ^ ( j , /w) = 2a? - 3a > 2a - 3a, with equality 
only if / = 1. Clearly, the function 2a -3a attains a unique minimum on the integers for a = 2, 
where its value is equal to - 2 ; hence, if a < m, wx(j, m) > -1 except for a - 2 and i = 1, i.e., for 
j = 4 for which wx(J, m) = - 2 . Note that this value can be attained only if 2 < m, i.e., if m > 3. 

If a < m, we have wx(j, m) = 2ai-2a-m>2ai-3a + l>-l for all j by what we have just 
proved. 

Finally, if a = m, we have w^j^m) = 2mi-3m~v(i + 1). We note that, for all i, we have 
v(/ + l )< / . Thus, 

wl(j,m)>(2m~l)i-3m>2m-3m-l>-l form>4. 

Note that this is the only place where it is necessary to assume that m > 4 (for m = 3 the minimum 
would be - 2 , so we could not conclude that the valuation of the sum is equal to - 2 , and in fact it 
is not). This proves Lemma 5, hence Theorem 1. D 

Remark: Lemma 4 and suitable generalizations of Lemma 5 allow us more generally to compute 
v(Sl(h2m)) for m > 4 and a fixed odd h. I leave the details to the reader. 

In view of Lemma 3, it is natural to ask if there is a generalization of Theorem 1 to the 
dilogarithm. This is indeed the case. 

Theorem 6: Set 
N rsj 

j=\ J 

Then we have 
v(S2(2m)) = 2m+m-l form>4. 

For the sake of completeness, note that a direct computation shows that 
v(S2(2m)) = 2m + m + d2(m), 

with ^(0) = 0, d2(l) = - 3 , d2(2) - -4 , and d2{3) = - 3 , the theorem claiming that d2(m) = -1 for 
m>4. 

PYoof: By Lemma 3, we have 

y=tf+l/ % O + N) 2 
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Applying Lemma 3 once again, we have 

S2(N) = S2(N) + 2»± | = N2»± ^fr3-

The proof is now nearly identical to that of Theorem 1. We have 

v($2(2m)) = 2m + m+v(T2(2m)), 

with 

Further, we have 

Lemma 7: Set 

Then, for m > 4, we have w2(j, m)>0 for ally' except j = 4 for which w2(4, m) = - 1 . 

Since there is a unique term in the sum defining T2(2m) having minimal valuation, it follows as 
before that the valuation of T2(2m) is equal to that minimum; hence, Theorem 6 clearly follows 
from Lemma 7. 

Proof: Set j = 2ai with / odd. If a<m-l, we have w2(j,m) = 2ai-3a + l>2a-3a + l, 
with equality only if /' = 1. The function 2a - 3a +1 attains a unique minimum on the integers for 
a = 2, where its value is equal to - 1 . Thus, if a < m-1, w2(J, m)>0 except for a = 2 and i = 1, 
i.e., for j = 4 for which w2(/, m) = - 1 . Note that this value can be attained only if 2 < m -1, i.e., 
if/w>4. 

If a = m-l, we have w2(/ ,m)>2ai-3a + l > 2 a - 3 a + l. Now, since m>4, we have a > 3 , 
hence w2(/, m) > 8 - 9 +1 = 0. 

If a>m, wehwQW2(J,m) = 2ai-2a-m>2ai-3a + l>2a-3a + l>0 for ally, since m>2. 
Finally, if a = m, we have w2(j,m) = 2mi-3m-2v(i + l). We note that, for all /, we have 

v(/ + l)</;thus, 

w2(jym)>{2m-2)i-3m>2m-3m-2>0 form>4. 

This proves Lemma 7, hence Theorem 6. D 

Of course, once again this can be generalized to the computation of v(S2(h2m)) for a fixed 
odd h. 

As already mentioned, the polylogarithms of order k at 2 do not vanish if k > 3; therefore, the 
corresponding sums Sk{2m) have a bounded valuation. Using the same methods, one can prove 
the following theorem. 

Theorem 8: Denote by Ig k the base 2 logarithm of k, set e(k) = fig k~] and S(k) = 1 if k is a 
power of 2, and S(k) = 0, otherwise. Then, for k > 3, we have Li^(2) ^ 0, and in fact 

v(Lijfc(2)) = 2 W - fe(jfc) + <?(*). 
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More precisely (still for k > 3), if 
N OJ 

y=i J 
then 

v(Sk(N)) = 2e(k) - ke{k) + S(k) for N > 2<k)+5{k\ 

Proof: It is clear that all the statements of the theorem follow from the last. Assume first 
that k is not a power of 2. Then, if we set wk(J) = v(2j I jk) and j - 2ai with i odd, we have 
wk (j) = 2ai - fei. For fixed a, this is minimal for / = 1. Furthermore, if we set f(a) = 2a-ka, it 
is clear that/attains its minimum on the integers for a = e(k), and that this minimum is unique if a 
is not a power of 2. Hence, there is a single term with minimum valuation for j = 2e{^ < N, by 
assumption, so v(Sk(N)) = 2e{k) -ke(k), as claimed. 

Assume now that a is a power of 2. Then the minimum of/is attained for a = e(k) and for 
a = e(k) +1. The corresponding terms in the sum not only have the same valuation, but are in fact 
equal, hence the valuation w of their sum is simply 1 more than usual. We now notice that 
f(a +1)- f(a) = 2a-2e{^. Therefore, since we have assumed k>3, hence e(k)>2, we have 
| / ( a + l ) - / ( a ) | > 2 for a*e(k), so all the other terms have a valuation that is strictly larger 
than w, so v(Sk(N)) = w = 2e{k) - ke{k) + for N > 2e{k)+l, as claimed. D 

Remark: One can generalize the above results to other primes than p = 2, but the results are 
much less interesting. For example, it is easy to show, using similar methods, that the 3-adic 
valuation of 

f(2 + (_1y-i)3i 
y=i J 

is equal to 3m +1 for all m. 
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