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PROBLEMS PROPOSED IN THIS ISSUE 

H-556 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 
Let f(x) and g(x) be continuous and differentiable in the immediate vicinity of x - a(& 0) 

and assume that, for some positive integer k, 
f(n\a) = g(n\a) = 0; 0<n<k-l. 

By definition, 

for any continuous and differentiable function f(x). Further, assume that one of the following 
conditions holds for n = k: 

a. fk\a)*0, g(k\a) = 0; 
b. / w ( a ) = 0, g(k)(a)±0; 
c. f(k\a)*0, g(k)(a)*0; 

Introduce the differential operator D:=x-^ and define, for m a nonnegative integer, 

fjx):=irf{x\ gm{x):=]Tg{x). 
Prove that 

hm J y - k a^O. 
*-»" g(x) gkia) 

H-557 Proposed by Stanley Rabinowitz, Westford, MA 
Let (wn) be any sequence satisfying the second-order linear recurrence wn = Pw„_x - Qw„_2, 

and let (vn) denote the specific sequence satisfying the same recurrence but with the initial condi-
tions vQ = 2, vx = P. 

Ifk is an integer larger than 1, and m = \kl2\, prove that, for all integers n9 

v v rm\t ( nn\m K> if £ is even, 

Note: This generalizes problem H-453. 

1999] 377 



ADVANCED PROBLEMS AND SOLUTIONS 

H-558 Proposed by Paul S. Bruckman, Berkeley, CA 
Prove the following: 

00 

n = Z H ) " (fe10«+l - fe10«+3 - 4^10n+5 - 6£lOn+l + 6^10»+9}3 (*) 

where em = a~m/m. 
SOLUTIONS 
Count on It! 

H-540 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 36, no. 2, May 1998) 

Consider the sequence U = {u(n)}™=h where u(n) = [na], its characteristic function 8u{n), 
and its counting function nv(n) = T/k=\8u(k), representing the number of elements of U that are 
<n. Prove the following relationships: 

(a) 8u(n) = u(n + l)-u(n)-l, n>l; 
(b) xu(F„) = Fn_l, n>\. 

Solution by H.-J. Seiffert, Berlin, Germany 
Let v(ri) = [na2], nGN,mdV = {v(n)}™=1. It is known (see [1], p. 472) that f / o V = $ and 

UKJV" = N'. In [1] it is proved that, for all « e JV, 

I<«(/I) + 1)-I#(I/(/I)) = 2 , (1) 

I<V(/I) + 1)-I<V(W)) = 1. (2) 
The equation 

u(Fn + l) = Fn+l + l, nzN, n>l, (3) 

is established on page 311 in [2]. 
Proof of (a): Let nsN, If n eU, then there exists k GN such that n - u(k). From (1), 

we get 
u(n +1) - i/(/i) - 1 = u(u(k) +1) - i<if(*)) - 1 = 1 = ^ ( / i ) . 

If n <£U, then W G F and n = v(k), where k GN. Hence, by (2), 
u(n +1) - i/(w) - 1 = u(y(k) +1) - f<v(Jfc)) - 1 = 0 = 8U in). 

Proof of (b): Summing the equations 8u(k) = u(k +1) - u(k) -1 over k = l9...,n and using 
u(l) -1 gives 

7ru(n) = u(n + l)-n-l, nsN. (4) 

If n > 1, then by (3) and (4), TT^FJ = u(Fn +1) - Fn - 1 = F„+1 - F„ = i ^ . 

References: 
1. V. E. Hoggatt, Jr. & A. P. Hillman. ,fA Property of Wythoff Pairs.,f The Fibonacci Quarterly 

16.5(1978):472. 
2. V. E. Hoggatt, Jr., & M. Bicknell-Johnson. "Representations of Integers in Terms of Greatest 

Integer Functions and the Golden Section Ratio." The Fibonacci Quarterly 17'.4 (1979):306-
18. 

Also solved by the proposer. 
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Just Continue 
H-541 Proposed by Stanley Rabinowitz, Westford, MA 

(Vol 36, no. 2, May 1998) 
The simple continued fraction expansion for F^/F^ is 

1 . 
11 + -

11 +• 
375131 +• 

1 + -
1 + -

1 + -
1 + -

1 + -
1 + • 

1 + -
1 + -

1 + 
2 + - L 

•+£ 
which can be written more compactly using the notation [11,11,3.75131,1,1,1,1,1,1,1,1,1,2,9,11]. 
To be even more concise, we can write this as 112,375131,19,2,9,11], where the superscript 
denotes the number of consecutive occurrences of the associated number in the list. 

If «>0 , prove that the simple continued fraction expansion for (Fl0n+3 / Fl0n+2)5 is 112/7, x, 
l0n~\2,9,1 l2w_1], where x is an integer, and find x. 

Solution by PaulS. Bruckman, Berkeley, CA 
We begin with the well-known isomorphism between simple continued fractions and 2x2 

matrices, namely: 
(<h l\(ai \\((h'\\m(am l)(pm Pm-i 
[l OXl 0 ^ 1 0) [l 0) [qm qm_K 

where pm I qm is the m^ convergent of the simple continued fraction denoted as [di,a2,a3,:..,am]. 
Normally, we will restrict the a/s to be positive integers. As a particular case, if all the a/s are 
equal (say to a), this result simplifies to 

r = r(a) = y2{a + 0}, s = s(a) = Y2{a-G}, and 6 = 6{a) = (a2 +4)#. 

It is also true that Om+2 = aOm+l + <X>m, m = 0,1,2,..., with 0»0 = 0, O, = 1. We note that 
0>m(l) = Fm, and also that r(l 1) = X 0 * + */5) = a\ s(\ 1) = )£(11 - S»/5) = p5; therefore, 

<S>m(U) = \l5F5m. (1) 

We will also utilize the following common identities: 
5FuFv = Lu+v-(-iyLv_u; FULV = Fu+V-(-IfFv_u; LULV = Lu+V + (-IfLv_u; 

and 

1999] 379 



ADVANCED PROBLEMS AND SOLUTIONS 

25(FJ5 = F5m - 5(-l)mF3m 4- lOFm. (2) 

For brevity, let p n = (Fl0n+31 Fl0n+2)5, n - 1,2,.... Also, we assume that p n = [1 l2w, £], where 
£ = t,n is not necessarily an integer. This implies that x = xn - |_£J (here " |_ J" denotes the "great-
est integer" function). Using the formula in (2), we find that 

Pn = (^50/7+15 + 5 ^30»+9 + 10F\0n+3) ! (^50/7+10 ~ 5 ^30»+6 + 10F10n+2) • ( 3 ) 

Also 

Thus, 

K^FlOn + FlOn-5 F\0n J 

Then we require that p n = (^Fl0n+5 + Fl0n) I (^Fl0rl + Fl0n_5). Now we substitute the formula in 
(3), cross-multiply, and simplify, using the multiplication identities previously indicated. After a 
tedious but straightforward computation, we obtain the following result: 

£ i = 5F20*+5 + 6 + (F20n+4 + 2 ) 7 ^Ow+5 • (4) 
Note that, if n > 0, the fractional part of %n lies in the interval (0,1), as we would expect. 

Thus, our earlier assumption is justified, and we conclude that 

*w = 5F20„+5 + 6. (5) 
By comparison with the desired expression, it remains to verify that 

^o n + 5 / (^o n + 4+2) = [l1 0"-1
)2,9,ll2"-1]. (6) 

In turn, it suffices to show the following: 

! JH iX? iXv T M f e :)• 
where C is some constant independent of n and the "*" matrix entries are not important to know. 
Based on our previous results, the left member of (7) is expanded as follows, 

M0« MO/2-5 
M 0 « - 5 MO/7-10 

* J' = 1 / 51 10" + lOw-l M0/?+2 J f MO/; AOn-5 | = 1 / 251 ^ 
V19^10»-l+9^10/7-2 1̂0»+1 J V^0«-5 ^lOit-loJ \Bn 

where (after simplification): 

A - l9L20n + 9L20n_l + L20n_3 = 5i^0„+5, 
4 = 1 9 / ^ + 9Z20„_2 + L20„_4 +19 - 27 +18 = 5F20n+4 +10. 

Thus, (7) is verified (with C = 1 / 5) and the proof is complete. • 

Note: This result invites generalizations. If rn = Fn+l/ Fn, we would like to find similar results 
involving (rn)k for various values of n and k. The following result (using the proposer's notation) 
is well known: 

380 [NOV. 



ADVANCED PROBLEMS AND SOLUTIONS 

'»= [!"]• (8) 
The following may also be shown: 

(rn)2 = [2,r-\ir-2l ifn>3. (9) 
Also, we may derive the following relations, valid for n > 1: 

(y3=[4-,m,4"-U2,in 
(^+ 2)3 = [4W, 10,4""1,2,2, l3""1]; (10) 
(r3n+3? =[4",\2,3,4"-\2,2,l3"l 

These kinds of expressions become more complicated for increasing values of k, and apparently 
require separate treatment for the different values of n (mod k). The matrix method indicated 
above seems to be the most efficient way to handle such problems. D 

Sum Problem! 

H-542 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 36, no. 4, August 1998) 

Define the sequence (ck)k>l by 
[1 if k = 2 (mod 5), 

ch=\-\ if k = 3 (mod 5), 
0 otherwise. 

Show that, for all positive integers n: 

\%^n-kY*=F^ o> 
1 2^K „kJ 4n-2 

2"-!*=. bXH)*M2;-r-ih=5^- <2> 

^ I H ) ^ 2 W % > * = ^ - , - (3) 
Solution by the proposer 

We consider the Fibonacci polynomials defined by F0(x) - 0, Fx(x) - 1, Fn+2(x) = xFn+l{x) + 
Fn{x), for n > 0. It is known that 

oo 

VFJx)zk = ^, for small \z\ 
h l-xz-z2 k=\ 

Replacing z by iz, i = ^/(-l), and taking x-ia, resp. x = i/3, gives 

£^(/aXfe)* = IZ
 2 , resp. ^F , ( ^ ( f e )* = — f — - . 

^ l + az + z2 £ i l + /fe + zz 

Subtracting the first from the second equation and dividing the resulting equation by iyfs yields 

fl^(Fk(m~Fk(ia))zk=- l + z + z2 +z3 +z4 ' 
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The sequence {ck)k>x has the generating function 

fc=l ; = 0 l Z 

Since l+z+z2 + z*+z4 = (l-z5)/(l-z), comparing coefficients gives 

ck=^(FkQfi)-Fk(ia)), k eN. (4) 

From H-518, we know that, for all complex numbers x mdy and all positive integers n, 

Taking y - 2/ and using Fk(2i) = kik~\ we find 

tk(n
2-kY~lF*M="(2+^r1. (5) 

From (4) and (5), we obtain 

Using 2 - P = a2 and 2 - a = J32 and the Binet form of F2n_2 gives the first desired identity (1). 
Since Fk(-x) = (~l)k~lFk(x), we also find 

k=l V / 

_ (2 + a)"-1-(2+^r1 

V5 ' 
Since 2 + a = j5a and 2 + /? = -4Sf3, if we replace ^ by 2fi - 1 and /? by 2/?, we easily obtain (2) 
and (3), respectively. 
Also solved by P. Bruckman 

•!• •!• * » 
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