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1. INTRODUCTION 

Sequences of integers satisfying linear recurrence relations have been studied extensively 
since the time of Lucas [5], notable contributions being made by Carmichael [2], Lehmer [4], 
Ward [11], and more recently by many others. In this paper we obtain a unified theory of the 
structure of recurrence sequences by examining the ratios of recurrence sequences that satisfy the 
same recurrence relation. Results of previous authors usually derived from many complicated 
identities. Evidently, our method is simple and more conceptual. 

The method of using ratios modulo/? or over a finite ring has been used in several papers 
including [1], [3], [6], and [7] among several others. Many known results due to Lucas [5], 
Lehmer [4], Vinson [9], Wall [10], and Wyler [13] can be derived easily from the well-known 
method of utilizing ratios. However, our point of view is really different from that of previous 
authors, so that we obtain our main result (Theorem 3.6(iii)), which improves on a result of Wyler 
[13], and we also get new information (Corollary 4.3) concerning Wall's question [10]. 

2. PRELIMINARIES AND CONVENTIONAL NOTATIONS 

Given a and b in the ring 2/1 with h a unit, we consider all the second-order linear recurrence 
sequences {un} in 2/1 satisfying un = aun_l+bun_2. (However, in this paper we exclude the case 
un = 0 for all"WGZ.) We call the sequence {un} a second-order recurrence sequence with 
parameters (a, b). 

Our idea comes from the following observation: Let {un} and {u'n} be a pair of sequences in 
2/1 that satisfy the same recurrence relation defined above. Suppose that there exists a unit c in 2/1 
such that ut = cu't+s and ut+l = cu't+s+l for some integers t and s. Then, since b e 27T, by the recur-
rence formula, we have that un -cu'n+s for all n GZ. Recall that the two elements (x0,XX) and 
(y0, yx) in the projective space P*(2/l) are the same if x0 = cy0 and xx - cyx for some c e 2/1*. 
Hence, if we consider (un, un+l) as in the projective space P1(2/l), then (ut, ut+l) = (tif+s, Uf+s+l) in 
Pl(<3t) for some t implies (un,un+l) = (u^+s,w^+1) in .P 1 ^) for all n. We have the following 
definition. 

Definition: Let {un} be a second-order linear recurrence sequence defined over 2/1. Consider 
rn - (um un+l) as an element in the projective space P1(2/l). We call rn the /1th ratio of {un} and we 
call the sequence {rn} the ratio sequence of {un}. 

We say that two sequences {un} and {u'n} which both satisfy the same recurrence relation are 
equivalent if there is c e 2ft* and an integer s such that un+s - cu's for all n. Let {rn} and {rw'} be 
the ratio sequences of {un} and {u'n}, respectively. Then {un} and {rn} are equivalent if and only if 
there exist integers s and / such that rs = r/ in Pl(*3l). 
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In pztrticular, suppose that ut = ut+s and ut+l = ut+s+x for some integers t and s. Then we have 
that un =un+s for all n. In this case, we say that {un} is periodic and the least positive integer 
k such that u0 = nk and ux=uk+l is called the period of {un}. . When {un} is periodic, the ratio 
sequence {rn} of {un} is also periodic. The least positive integer z such that r0 = rz in Pl(Qk) is 
called the rank of {un}. Suppose that the period of {un} is k and the rank of {uj is z. It is clear 
that z | AT andr^rj in P 1 ^ ) for all 1 < I > j < z . 

We remark that, If 2ft, Is a finite ring, then the linear recurrence sequence {un} is periodic. 

3, RECURRENCE SEQUENCE MODULO p 

In this section, we will extend our method to treat general second-order linear recurrence 
sequences. Results in Lucas [5], Lehmer [4], and Wyler [13] can be derived easily using our 
method. 

Fix a and b e Z. We consider second-order recurrence sequences of parameters (a, b). 
Thus, we consider the sequences of integers {ww}̂ =0 defined by un = aun_x+hun_2 for all integers 
n > 2, where u0 and ux are given integers. In the case in which u0 = 0 and ux = 1, the sequence 
{tt„}*=0 is called the generalized Fibonacci sequence and we denote its terms by f0, f x , . . . . 

Fix a prime number p. We consider the recurrence sequence of parameters (a, b) modulo p. 
Suppose that p\b. Then it is easy to see that un = an~lux (modp). Therefore, for the remainder 
of this section, we always assume that p\b and, hence, {un} is periodic modulo/?. 

The positive integer z is called the rank of apparition of the generalized Fibonacci sequence 
modulo p if it is the smallest positive integer such that fz = 0 (mod p). Let /; =(fi,fi+i) in 
Pl(l/pZ) be the Ith ratio of {/„} modulo p. Since r0 = (0,1) = rz in Pl(Z/pZ) and z is the least 
positive integer such that rz = (0,1) in P\Z/pZ), it is clear that the rank of apparition of the gen-
eralized Fibonacci sequence modulo p is equal to the rank of the generalized Fibonacci sequence 
modulo p. 

Given a sequence {un}9 there exists r eZ such that {un} modulo p is equivalent to the 
sequence {u'n} modulo p with «g = 1 and u[ = r. Therefore, without loss of generality, we only 
consider the sequence with uQ = 1 and ut = r. 

Lemma 3J Let {un} be the recurrence sequence with parameters (a, b) and u0 = 1, I/J = r. Then 
the rank of {un} modulo p' equals the rank of {fj modulo pi if p\r2 -ar~b. 

Proof: Suppose that the rank of {un} modulo pi is t and the rank of {/„} modulo pj is z. 
Set u'„ = bfn_x +rfn. We have that uf

n=auf
n_x +bu'n_2 (mod pj) and UQ = 1 and u[ = r (mod /?''). 

Thus, MjJ = i/n (mod /?7') for all n. Hence, MZ+1 = f/z+1 = ruz (mod /71') because fz = 0 (mod /?'') and 
A/z-1 = /z+1 (mod pj). This says that (wz, i/z+1) = (n0, i/^ in Pl(Z/pjI) and, hence, / |z. On the 
other hand, we have that bft+rft+l=r(bft_x+rft) (mod p;'X by the assumption that ut+x=rut 

(mod pj). Substituting ft+l = aft +bft_l9 we have that (r2-ar~b)ft = 0 (mod py)- Therefore, 
(r2 - ar - ft, p) = 1 implies that ft = 0 (mod /;''). This says that z 11. D 

Remark: Suppose that r2-ar-b = 0 (mod/?) and {un} is the sequence with parameters (a,Z?) 
and i^ = l, ux=r. Then we can easily obtain un = rnu0 (mod/?). Hence, the rank of {un} modulo 
pis 1. 
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Proposition 3.2 (Lucas): Let z be the rank of the generalized Fibonacci sequence with param-
eters (a, b) modulo/?. Let D - a2 +4b and denote (/) to be the Legendre symbol. Then 

(i) z\p + l,if(D/p) = -l. 
(ii) z | /?-l,if(Z)//?) = l. 

(Hi) z = p,ifp\D. 

Proof: (i) Suppose that {Dip) - - 1 . Then x2 -ax-b = 0 (mod/?) has no solution. Thus, by 
Lemma 3.1, every recurrence sequence with parameters (a, b) has the same rank modulo/?. Let t 
be the number of distinct equivalence classes of recurrence sequence of parameters (a, b) modulo 
p. Let {{uin} 11 < / < f} be a representative of these equivalence classes and {{rjn} 11 < / < *} be 
their ratio sequences in Pl(Z/pI). By definition, we have that ris^rit in Pl(Z/pZ) for all 
\<s^t<z and, if i *j, {rt n) and {rjn} are disjoint. Since, for any r ePl(I/ pi), {u0ru^) = r 
gives a sequence {un}, we have that {rll,...,riz}<j>--Kj{rhl,...,rtz} = Pl(I/ pi). It follows that 
zt - p +1 because the number of elements in Pl(ZIpi) is p +1. 

(ii) For (D/p) = l, there exist two distinct solutions to x2-ax-b = 0 (mod p). By the 
Remark following Lemma 3.1, these two solutions give us sequences of rank 1. Consider all the 
distinct equivalence classes of sequences that have the same rank as the Fibonacci sequence mod-
ulo p. As in the above argument, their ratio sequences form disjoint subsets of equal numbers of 
elements of l(Z/ pZ). Since the number of these ratios is p +1 - 2, our claim follows. 

(Hi) Since, for p/D, there exists exactly one solution to x2-ax-b = 0 (mod/?), by the 
above argument, our claim follows. • 

Remark: From the proof of Proposition 3.2, the number of distinct equivalence classes of recur-
rence sequences with parameters (a, b) that have the same rank z as the generalized Fibonacci 
sequence modulo p is (/? +1) / z (resp. (p -1) / z, 1) if (DIp) = -1 (resp. (DI/?) = 1, p \ D). 

Lemma 33: Let {un} and {u'n} be two recurrence sequences with parameters (a, b). Then 

buruf
s + ur+lu'+l = bur+lu's_x + ur+2u>s. 

Proof: By the recurrence formula, we have that 
bur+luf

s_x 4- ur+2u> = ur+l(u's+l - au's) + (aur+l + bur)u's = ur+luf
s+l + buru[. • 

Let r = (a,b) and rf - (a\ b') be two elements in Pl(Z/pZ) with a, a\ b, and bf ^ 0 (mod/?). 
Then we define r-rf - (aaf,bbf) in Pl{Z I pZ). Let {rn} be the ratio sequence of the generalized 
Fibonacci sequence modulo/? and let z be the rank of the generalized Fibonacci sequence modulo 
/?. Since bfz_2 +afz_{ =fz = 0 (mod /?) and fy = 1, f2 = a, we have that bfjz^_x +/+1/z_/ s 0 
(mod/?) by Lemma 3.3 and by induction. This says that /••rz_l-_1 = (1,-J) in P\Z/pi) for 
1 < i < z - 2. Because ^ • r2 rz_2 = (/j, /^ j ) in P^Z /p i ) , we have the following Lemma. 

Lemma 3.4: Let {fn} be the generalized Fibonacci sequence with parameters (a, b) and let z be 
the rank of {fn} modulo/?. 
(i) Ifz is even, then / ^ = (-ft)(*-2>/2 (mod/?). 

fii) If z is odd, then /2_j = r(-ft)(z_3)/2 (mod/?), where r2 = -6 (mod/?). 
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We remark that in Lemma 3.4(ii), r = /(z+1)/2 / f(z-iy2 (mod/?). 
Since /z+1 = afz + bfz_Y s bfz_Jx (mod /?) and fz s 0 s ft/^ (mod /?), it follows that /„+z = 

¥z-i/w (mod /?) for all fi and, hence, fn+Az = (pfz_^xfn (mod /?). Suppose that {i/n} is a recur-
rence sequence with parameters (a,b). Then, since un = bu^f^+uj^ we also have that un+z = 
%-ittn (mod/?) for all w. Furthermore, suppose that {uj modulo/? is not equivalent to {fn} 
modulo p and suppose that {rn'} is the ratio sequence of {un} modulo /?. Since un # 0 (mod /?) 
(otherwise {un} is equivalent to {/„}), it follows that r{-r{"-"rz' = (ul9uz+l) in Pl(Z/pi) and, by 
the above argument, (ul9 uz+l) = (1, A/^) in Pl(Z/pi). 

Now we consider the product of all the ratios of nonequivalent sequences modulo p with the 
exception of (/z_1? fz) and (/z, / z + 1 ) . By Proposition 3.2, we have the following: 

(i) If x2 - ax - b = 0 (mod /?) is not solvable, then 

(l,rWz-i)(p+1)/z) = a ( p - l ) ! ) = (l,-l) inP'CZ/pZ). 
Hence,(6/^1)(/M-1)/* = ^6(mod/>). 

(ii) If x2 - ax - b = 0 (mod p) is solvable with a double root y, then 

a/P-i)-(i ,r) = (i,0>-i)D = 0,- i) inPV/^Z) . 
Notice that y2 - ~b (mod/?). 

(iii) If x2 - ax - b = 0 (mod /?) is solvable with two distinct solutions a and /?, then 

(1, b-\bfz_x)^lz)• (1, a)• (1, p) = (1, (/?-1)!) = (1, -1) in P^Z//?Z). 

Since a/3 = -A (mod/?), it follows that {hfz_x){p-l)lz = 1 (mod/?). 
Notice that in (ii), since z = p is odd, by Lemma 3.4, fp-i = (-b)(p~3)/2r (mod/?), where 

r = /(z+1)/2 / f{z-iyi (m°d Z7) and r2 = -6 (mod /?). We have that r = -y or r = y (mod /?). Since 
- I s / ^ = rp~2y (mod/?), it follows that y= - r (mod/?). Thus, -/(/7+1)/2I f{p-\)ii is. the double 
root to x2 - or - 6 = 0 (mod/?). 

Using a similar argument, by considering (i) and (iii), we can improve the results in Proposi-
tion 3.2. 

Proposition 3.5 (Lehmer): Let z be the rank of the generalized Fibonacci sequence with param-
etrs (a, b) modulo/? and let D = a2 +4b. Suppose that /? is an odd prime such that p\D. Then 
{-b //?) = 1 if and only if z | ^ » . 

Proof: If z is odd, then, by Lemma 3.4(ii), we have that (~b/p) = l. Since /?-(/)//?) is 
even, we have that 2z\p-{DTp). Suppose that z is even. Then, by (i) and (iii) above, and by 
Lemma 3.4, we have that 

p-(D/p) p-\ 

(_1)—T-(-4)T- = i (mod/?). 

Our proof is complete because (-b I p) = (-&)(/7"1)/2 (mod /?). D 
From Lemma 3.4, we realize that the relation between the period and the rank of {fn} 

modulo/? depends on the order of ~b modulo/?. Denote ordp(d) to be the least positive integer 
x such that dx = 1 (mod/?). We begin with the following easy observation. For n e N , w e have 

1999] 345 



ON SECOND-ORDER LINEAR RECURRENCE SEQUENCES: WALL AND WYLER REVISITED 

ordJd) 
ordp(d") = P\\A\Y 

p gcd(rc, ord Jd)) It is also easy to check that 

ord J-d) = \ 
ordp(d), -i£oTdp(d) = 0 (mod 4), 
±ordp(d), ifordp(d)^2 (mod4), 
2ord Jd), if ord Jd) = 1 (mod 2). p 

Furthermore, suppose that x2 = d (mod/?) is solvable and suppose that X is one of its solutions. 
Then 

f2ordp(<f), i f o r d ^ ^ O (mod 2), 
° r p^ ' " [2ordp(d) or otdp(d), ifordp(d) = 1 (mod 2). 

We remark that, if {dip) = 1 and ordp(<f) is odd, then the order of one of the roots of x2 = d 
(mod/?) is odd and the order of another root is even. 

Theorem 3.6: Let {fn} be the generalized Fibonacci sequence with parameters (a, b) and let z be 
the rank and k be the period of \fn} modulo p, respectively. Let z = 2 V and ordp(-b) - 2Mh, 
where z9 and h are odd integers. 

(i) If v^ / / , then £ = 21cm[z, ordp(-A)]. 
(i# If v = // > 0, then k - lcm[z, ord^-i)] . 

(Hi) In the case v = /u = 0. 

f21cm[z, ordp(-b)l if ordp(/(z+1)/2 //(z_1)/2) is odd, 
jlcmfz, ordp(-6)], if ordp(/(2+1) /2//(z. iy2) is even. 

Proof: First, we consider the case v > 0. Since z is even, by Lemma 3.4 and the discussion 
following Lemma 3.4, we have that k Iz = ordp(b{-bfz~~2)l2) = ordp(-(-b)z/2). Suppose v > ju. 
Thenordp((-b)z/2) = h/gcd(z',h) = l (mod 2). Hence,k /z = 2hIgcd(z',h). Therefore, £ = 
2lcm[z, ordp(-6)]. On the other hand, suppose // = v. Then ordp((-b)zf2) = 2h Igcd(z', h) = 2 
(mod 4). Thus, k/z = hI gcd(z', h), and hence, A: = lcm[z, ovdp{-b)]. Similarly, suppose ju > v. 
Then ordp((-b)z/2) = 2^~v+lh I gcd(z', h) = 0 (mod 4). Therefore, k/z = 2^~v+lh I gcd(z', h), and 
hence, k = 21cm[z, ordp(-h)]. Now we consider the case v = 0. Since z is odd, we have k /z = 
ordp(h(-h)(z~3)/2r), where r =/(z+1)/2 //(z_1)/2 and r2 = -b (mod /?). Hence, i / z ^ o r d ^ - r * ) . 
Suppose /i > v. Then ord^(r) = 2ordp(-b); hence, ordp(rz) = 2ordp(-Z>)/gcd(z,h) = 0 (mod 4). 
Therefore, £ Iz - 2ord/?(-£)/gcd(z, A); hence, k = 21cm[z, ordp(-b)]. Finally, suppose ju = v = 0. 
Then either ord^r) = ordp(-b) or ordp(r) = 2ordp(-h). Suppose ordp(r) = ordp(-b) (that is, 
ord^r) is odd). Then ordp(rz) = ord^-6) / gcd (z, h) = 1 (mod 2). Therefore, £ / z = 2ord/7(-Z>) / 
gcd(z, h); hence, A: = 21cm[z, ordp(-b)]. On the other hand, suppose ordp(r) = 2ordp(-b) (that 
is, ordp(r) is even). Then ovdp(rz) = 2ordp(~b) I gcd (z, h) = 2 (mod 4). Thus, A: / z = ordp(-Z>) / 
gcd(z, h) and hence, A: = lcm[z, ordp(-ft)]. D 
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Remark: Cases (i) and (ii) of Theorem 3.6 above are stated as Wyler's main theorem in [13]. 
However., our approach is different and Wyler does not settle the case in which both z and 
ordp(-£) are odd (that is, case (iii) of our theorem). 

4. RECURRENCE SEQUENCE MODULO pt 

We now treat the case of the generalized Fibonacci sequence modulo p* for t > 2. 
Let us denote by z(pj) the rank of {fn} modulo /?'. We begin with an easy observation: If 

{uj is equivalent to {/„} modulo p\ then the number of possible ratios of {uj modulo p1+l is 
z(p') or pz(pt). By Lemma 3.1, the rank of such a sequence modulo pt+l equals z(pt+l). 
Therefore, the rank of z(pt+l) divides pz(pf). Since zip1) \z(pt+l), it follows that either 
z(p^)=z(p') or z(p^) = pz(p<). 

Theorem 4.1: The rank of apparition of the generalized Fibonacci sequence modulo p* equals 
the rank of apparition of the generalized Fibonacci sequence modulo pt+l if and only if there 
exists a sequence which is equivalent to {fn} modulo pt but is not equivalent to {/„} modulo 
p1+l. 

Proof: {un} is equivalent to {fj modulo p* if and only if (ul9 u^) = (fi9 fi+l) in Pl(Z/p'Z) 
for some /'. On the other hand, by the above argument, z(pt+l) =z(pt) if and only if there exists 
r e Z such that (l,r) = (fi9fM) in P\Z/p?Z) for some / but (l,r)*(fj9fJ+l) in Pl(Z/pt+lZ) 
for all j E Z. Combining these two statements, our proof is complete. D 

We remark that {un} is equivalent to {/„} modulo p* if and only if ui = 0 (mod pl) for some 
?'. 

Example: Consider the Fibonacci sequence 
{Fn}f - {1,1,2,3,5,0,5,5,2,7,1,0,1,1,...} (mod 8) 

and the Lucas sequence 
{ZX ^ {1,3,4,7,3,2,5,7,4,3,7,2,1,3,...} (mod 8). 

The rank of apparition of the Fibonacci sequence modulo 2, 4, and 8 is 3, 6, and 6, respectively. 
We have that {Ln} is equivalent to {FJ modulo 4 because L, = 0 (mod 4) but {LJ is not equiva-
lent to {FJ modulo 8 because Ln 4 0 (mod 8) for all n. 

For every t GM,WQ denote k(pf) to be the period of {/„} modulo pl. By considering the 
"Binet form" of {/„}, Lehmer [4] proves that, for p * 2, if k(pl) = k(p) but k(pl+l) * kip), then 
k(pt) - pl"lk{p) for all t > I. Let z(p') denote the rank of apparition of {/„} modulo pt. By a 
similar method, we can prove that, for p*2, if z(pl)=z(p) but z(pl+l)*z(p)9 then z(p') = 
p*~lz(p) for all / > /. We note that this result was also proved by Lucas [5] and by Carmichael 
[2]. We remark that z(pM) *z(pl) implies k(pl+l) * k(pl), but the converse is not always true. 

Corollary 4.2: Let {/„} be the generalized Fibonacci sequence with parameters (a, b). Let/? be 
an odd prime and, for every t e N, denote zip1) to be the rank of {fj modulo pl. Suppose that 
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z(pl) *z(pl+l). If {//„} is a recurrence sequence with parameters (a, b) such that u{ = 0 (mod./?7) 
for some /, then, for every t > /, there exists jt such that Uj = 0 (mod /?')• 

Proof: z(pl)*z(pl+l) implies zip') * z(pt+l) for all t > I. Therefore, according to Theorem 
4.1, every sequence that is equivalent to {/„} modulo pl is also equivalent to {/„} modulo pt for 
all r > /. D 

Now we restrict ourselves to considering only the Fibonacci sequence {Fn}. For every t e N, 
we denote Kip') to be the period of {Fn} modulo p'. In [10], Wall asked whether K(p) = K(p2) 
is always impossible; until this day, it remains an open question. According to Williams [12], 
K(p) & K(p2) for every odd prime/? less than 109. Z.-H. Sun and Z.-W. Sun [8] proved that the 
affirmative answer to Wall's question implies the first case of Fermat's last theorem. 

Let Zip1) denote the rank of apparition of the Fibonacci sequence modulo p' for every 
t GN. We have that, for p *2, Kip') = Kip'+l) if and only if Zip') = Z(/?f+1). What makes 
Theorem 4.1 so interesting is the following Corollary. 

Corollary 43: Let/? be an odd prime and, for every t GM, denote Kip') to be the period of 
{Fn} modulo /?'. Suppose that Kip1) * K(j>l+l). Let {un} be a sequence satisfying the same 
recurrence relation as {Fn} such that ui =0 (mod pl) for some /'. Then, for every t>l, there 
exists jt such that uJt = 0 (mod p'). 

Remark: In particular, let/? be an odd prime such that Kip) & Kip2). Suppose that {un} is a 
recurrence sequence with parameters (1,1) and ut =0 (mod/?) for some'/. Then Corollary 4.3 
implies that, for every positive integer /, there exists jt such that ujt = 0 (mod p'). This is true 
for /? < 109 according to Williams [12]. 

Unlike the Fibonacci case, we have examples for which k(j?) - kip2) and zip) ^ zip2). 

Example: Let a - 8 and b = - 7 . Then {/X=o s {0,1,3,2,0,1,...} (mod 5) and {/X=o - {0,1,8, 
7,0,1,...} (mod 25). Consider the sequence {un} with u0 = 5, and ^ = 1 which satisfies un -
Su^-lu^. We have that {uj^o - {0,1,3,2,0,1,...} (mod 5) and {un}™=0 s {5,1,23,2,5,1,...} 
(mod 25). 

One might ask for what kind of parameters (a, 5) the generalized Fibonacci sequence has 
kip) = kip2), and whether or not k(p) = i(/?2) for infinitely many primes. From our construc-
tion above, we understand that this question is related to: "For a given integer x, does there exist a 
prime/? such that ord/7(x) = ord 2(^)?!S and "Are there infinitely many primesp such that, for a 
given integer x, ordp(x) = ord/?2(x)?fl. Of course, we can suppose that fix) = x2 -ax-b is irre-
ducible over the integers. Then we have to consider our question over the ring of integers of 
Q[^a2+4bj. We have not taken up in this paper the question of whether a given recurrence {un} 
has zeros modulo a given integer m or not. Ward [11] has shown that {un} has zeros modulo p 
for infinitely many primes p. For given parameters (a, h), suppose that we know there are only 
finitely many primes such that z(p) =z(/?2). Then, by Corollary 4.2, it follows that there exist 
infinitely many primes/? such that {uj has zeros modulo p{ for every t e N. 
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