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In [1], Dazheng studies Fibonacci matrices, namely matrices M such that every entry of every
positive power of M is either O or plus or minus a Fibonacci number. He gives 40 such four-by-
four matrices. In the following, we give an interpretation of these matrices, from which we give
simpler proofs of several of his theorems. We also determine all two-by-two Fibonacci matrices.

Let ¢ = ¢?™" be a primitive fifth root of unity. Then £ is a root of the irreducible polynomial
X'+ X3+ X2+ X +1, so the field Q(¢) is a vector space of dimension 4 over Q with basis
B={1,¢,¢2% ¢%. The ring of algebraic integers in Q(¢) is Z[£]. The units of this ring are of the
form (—{)"¢", 0<sm<9, neZ, where ¢ =(1+~/5)/2=—~(?+¢7?).

If o €Q($), then multiplication by o gives a linear transformation of Q(¢), regarded as a
vector space over QQ, and hence a matrix M(a) with respect to the basis B. For example, let
a=¢=—(2+¢%. Then

p1=-1-0-1.8,
$6=C =g =T1+1¢ 418,
==L 121 +1.82 418,

$-C=-1-1-1-¢
Therefore,
01 0 -1
0 1 1 -1
M@#=121 11 o
-1 01 0

This is the transpose of the matrix Fj, of [1]. Similarly, we have the following matrices:

1 0 -1 O 0 -1 0 O -1 0 0 1
/11 -1 -1 »n_ |1 -1 -1 0 sn_|-1 =1 0 1
M(P) = 11 0 -=1b M 9) = 1 0 -1 =1/ M) = 0 -1 -1 1/
01 0 O 1 0 0 -1 0 0 -1 0
0 01 O -1 1 0 -1 1 0 =11
an_ |-1 0 1 1 N 10 0 1 -1 n_ 10 1 -1 0
Mmep=|T0 0L UL M= 0 0 T men=|0 D Y
-1 01 -1 -1 -1 0 -1 01 -11
0 -1 1 -1 -1 1 -1 1 1 -1 1 0
2 - 1 -1 0 O _ -1 0 0 O _ 0 0 01
M(§z¢ l): 0 0 0 -1/ M(§3¢ 1): 0 0 —-1 1} M(§4¢ l): 0 -1 1 0
1 -1 1 -1 -11 -1 0 1 -1 0 1

In the notation of [1], these are the transposes of the matrices Fyy, Fiy, F5, K, F}, F¢, F,, B,
and Fi,, respectively. Letting F,,_, = —F gives a set of 20 matrices corresponding to the numbers

1999] 333



SOME REMARKS ON FIBONACCI MATRICES

™", 0<m<4, n==11. Note that any one of these numbers (often called fundamental units),
together with —¢, generates the group of units of Z[{].

Various properties of the matrices F, follow immediately from the above. The following four
propositions can be proved by straightforward calculations, but it is perhaps inore interesting to
see "conceptual” proofs.

Proposition 1 (= Proposition 4 of [1]): Let 1<i <20. There exists k such that ' = F; .
Proof: Let F, correspond to &=1("¢". Let F, correspond to & =+{™¢™". Then EF,

corresponds to multiplication by £ 'e=1,s0 F,F, =1. O

Proposition 2 (= Proposition 5 of [1]): Let 1<i<20. Then det(F)=1.

Proof: The determinant is the norm of the corresponding number (see [3]). It is well known
that the norm of a unit (of the ring of algebraic integers) is £1. Since the norm of a number from
Q(4) can be expressed as a product of two numbers times the product of their complex con-
jugates, the norm must be nonnegative. Therefore, the norm of a unit is 1. Since the numbers
(™" are units, the determinants of the corresponding matrices must be 1. [

Proposition 3 (= Proposition 6 of [1]): Let 1<i, j<20. Then FF,=FF,.

Proof: Multiplication in Q({) is commutative; therefore, multiplication of the corresponding
matrices is commutative. [J

Define the matrix

11 1 1
|-1 0 0 o0
4=10 -1 0 of

0 0 -1 0

An easy calculation shows that 4 is the transpose of M(—{*). Note that the powers of —¢* give
all ten tenth roots of unity in Q($).

Proposition 4 (= Proposition 7 of [1]): Let ,={F, |k=1,3,7,8,10,11,13,14,18,20} and let
%F,={F, |k=2,4,56,9,12,15,16,17,19}.
(@ Leti=1or2. Given F,, F, €%, there exists F, € %, such that F;F, = +F*.
(b) If F, €% and F, €%,, then there exists n such that F,F;, = A”.
(© Leti=1or2 IfF,F, €%, then F"=F" forallneZ.
Proof: The matrices in &, correspond to numbers of the form ("¢ and those in &, corre-

spond to numbers of the form +{™¢~'. The properties of the matrices now follow from the form
of these numbers. O

We now come to the main theorem. It was proved in [1] by fixing indices 1 <A <20 and
0<i <9 and expressing the entries of F}°* in terms of Fibonacci numbers of the form +F,,,, or
0 for £=0,1,2,.... This gives the additional information that, for each index A, each Fibonacci
number occurs in F;" for some n (in fact, this property was included in the definition of a Fibo-
nacci matrix in [1]). With a little more care, this can be deduced from the following proof.
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Theorem 1 (= Proposition 1 of [1]): Let 1<h <20 and let n be a positive integer. Every entry
of F" is either 0 or +F,, for some Fibonacci number F,, where m=n—1,n, orn+1.

Proof: Fix n>1. For eachamod 5, let

s@= 3 ()
j=0
J=a (mod 5)
Lemma 1: 5g,(a)=X}, & (1+<Y)"

Proof: The right side is

n 4
Z n Z L,
,-=o(] ) i=0
Since X%, £ = 0 when b # 0 (mod 5) and equals 5 when b = 0 (mod 5), the result follows. O

Lemma 2: For any values of a and b, the difference g,(a)—g,(b) is either 0 or +F,, for some
Fibonacci number F,, where m=n-1,n, orn+1.

Proof: Using the fact that 1+¢=-¢"2¢, 1+£2=¢¢7, 1+83 =¢797, and 1+¢* =-¢%9,

we find that
4

58,(@)—58,(b) = Z( A+ =D TS

i=0
— (_¢)n(§a+2n +C—a—2n _Cb+2n _é»—b~2n)
+ (¢—l)n(é'n—2a +é'—n+2a _ gn—lb _ é'—n+2b)'
Since a +2n = 2(n—2a) (mod 5), we find that we have the following cases:
(1) §a+2n+é~—a—2n — §+§—l — ¢—1 and 4*n—2a +4———n+2a = §2+§3 — _¢,
(2) §a+2n + g—a—2n — CZ + 43 - _ ¢ and {n—za + §—n+2a - é’ + é——l - ¢—1’
(3) ¢a+2n + ;—a—Zn =2 and gn—2a + {—n+2a =2.

Similarly, we have three cases for the terms involving b.
The coefficient of (—¢@)" is therefore 0 or one of the following:

(@) Hg'-(-9) =5,
(b) Hg'-2)=FS5¢7,
() H(-¢-2)=F5.
The corresponding coefficients of ¢~ are 0 and F+/5, F/5¢, and F/5¢7!, respectively.

Putting everything together, we find that 5g,(a) —5g,(b) is, up to sign, either O or one of the
following:

V5((-¢)" = ¢7) = (-1)'5F,,
V5((-gy " =47 = )SE,,
59y =47 = (D)5,

This proves the lemma. O
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We can now prove Theorem 1. The matrix F;” corresponds to a number of the form
(£™$*)", which is of the form +£2(1+¢)" or of the form +£%(1+¢?)". We may ignore the =+ .

Consider first $?(1+¢)”. We must multiply this times a power of ¢ and then express the
result as a linear combination of elements of the basis B. Since the exponent « is already arbitrary,
we need only show that when we express a number of the form “(1+¢)” in terms of B the coef-
ficients are Fibonacci numbers (up to sign) or 0. By the binomial theorem, we have

n ) 4 ) 3 )
=37 =Yg i-a)! = Y (8- )~ ,4-a)]
=0 i=0 i=0
Lemma 2 yields the result in this case.

Now consider £°(1+¢?2)", which equals

n 4
Z('})é’z““ = Zgn(3i—3a)5 [since 2j+a=i (mod 5) = j =3i-3a]
j=0 i=0

3
= Z (gn(3l - 361) - gn(2 - 361))4’ .
i=0
The result again follows from Lemma 2. O

The Two-by-Two Case

Theorem 2: Let M be a two-by-two matrix such that each entry of M” for n=12,3, ... is either
0 or plus or minus a Fibonacci number. Suppose in addition that not all of the entries of M" are
bounded as n— . Then £M is a power of one of the following matrices:

0 =1 1 +1 2 =l -1 =1
1 1) (&1 0) \F¥1 -1 \#1 2 )

Remark: 1t is well known, and will follow from the proof of the theorem, that
0 Y _(Fa F
1 1) " E.

-1 -1 _(1'E_, -F
. E Fa)
From the point of view used above, the first matrix arises from multiplication by ¢ with respect to

the basis {1, ¢} of Q(+/5), and the second matrix arises from multiplication by ¢ with respect to
the basis {1, ¢*}.

Proof: We start with the following.

and that

Lemma 3: Suppose a,, n=1,2,..., is a sequence of nonzero integers such that each a, is plus or
minus a Fibonacci number and such that A =lima,,,/a, exists. Then A is of the form +¢" for
some integer » > 0. If the sequence a, is unbounded, r > 1.

Proof: Let a,==*F, . The limit A cannot be of absolute value less than 1 since the g, are
integers. Clearly, A =+1 is equivalent to the boundedness of a,, so henceforth assume the
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sequence a, is unbounded. It follows easily that lim F,, =oo, hence limm, = . Therefore,
lim £, /¢™ =1/+5, so
By, 9™

A1 lim 2 e~ = i g,
m'l

Since the powers of ¢ are discrete in the positive reals, m,,, —m, must eventually be constant, say
r. Since m, — o, r > 1. This proves the lemma. O

Since the elements of the powers of a matrix satisfy a second-order recursion, we need the
following result. Recall that we can define Fibonacci numbers for negative indices by F, =
(_ 1)n+l F;z )

Lemma 4: Let a,a,,... be an unbounded sequence of integers satisfying a second-order linear
recursion with constant coefficients: a,,, = ua,,; +va,. Suppose each a, is either 0 or +F,, for
some Fibonacci numbers £, . Then there are integers r and s (possibly negative) and a choice
o = %1 of sign, independent of n, such that a, = §F,, . for all n (we allow Fibonacci numbers with

ru+s
negative indices; see above).

Remark: This result follows, for example, from work of van der Poorten (see the remarks at the
end of this article). However, it seems reasonable to give a self-contained proof.

Proof: We have not assumed that the coefficients u, v of the recursion are rational numbers,
so we first show that this must be the case. The recursion shows that each vector (a,,,,a,) is a
linear combination of (a,,q,) and (a;,a,). Suppose det(gz ;’;)= 0. If g, =0, then a, =0, so
a, =0 for all n, contrary to our assumptions. Therefore, assume a, # 0. Then all these vectors
are multiples of (a,, a;), which implies that

a=a(2]" 1)

a,

for all n>1. Therefore, |a,| & « (otherwise |a,/a;| < 1 and the sequence is bounded) and
a,.,/a,=a,/a. Since |a,| is a Fibonacci number [it cannot be 0 by (1)], Lemma 3 implies that
a,/ a,=*¢" for some r >1. Since all positive powers of ¢ are irrational, this is impossible. This
contradiction shows that the determinant is nonzero.

Since
a G jfu)_(49
a; a )\v a, )
and the matrix is invertible, the rationality of a,, a,, a;, a, implies that # and v are rational.

Remark: The recursion a,,, = ma,,, +(4—27)a,, which is satisfied by the rational numbers
a,=2", shows that the rationality of the numbers a, is not sufficient to guarantee that u, v are
rational .

Let aand B be the two roots of X* —uX —v. If a # f3, then there are constants 4 and B
such that a,= Aa”+Bf". There are several cases to consider, depending on the relative
magnitudes of @ and S.
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Case 1. |a]| > | S|

If A =0, we can replace the pair (a, ) by (B, 0) in the following argument (and eventually
conclude that 4 #0). Therefore, assume 40, so lima,,,/a,=a. Since the sequence is un-
bounded, |a| > 1, so a, #0 for all sufficiently large », and each a, is plus or minus a Fibonacci
number. By Lemma 3, o = +¢" for some r>1. Therefore, o is irrational, so the polynomial
X% —uX —v is irreducible in Q[X]. Since £ is also a root, it must be the conjugate +(—¢)™" of
a.

Let o =sign(a), so o =o¢”. Let §, be the sign of a,. Note that

. a
A=lim—2—,
(o¢")"

This implies that &, = sign(4)o” for n sufficiently large. Also, a, =35,F, , so

. da, 1

lim ¢nm,, = i
Therefore,

. 0a o sign( A4) ,. -
A=lim—225 g "g™ " = —=2—lim ¢,
¢m,, n ¢ Jg ¢

Since the powers of ¢ are discrete, eventually m, —nr must stabilize: there exists s € Z such that
m, —nr = s for all sufficiently large n. This also yields 4 =+¢°/+/S. Since the terms with ¢
cancel in the equation

Aop )+ Blo(—p)") = a, = 6,F, =sign(A)o"E, .
_ sign(4)c” rts ¢ g—l\rn+s
= SO (s gty

it follows that B = —sign(A)(—¢)™*/+/5. We have proved that a,=*(x1)"F,,, . By changing the
signs of r, s if necessary, we can absorb the (£1)”. This yields the result of the leroma in Case 1.

It remains to show that the other cases do not occur.
Case2. a=-F4

In this case, # = a + =0, so the recursion is a,,, =va,. Since the sequence is assumed to
be unbounded, |v| >1 and some a, #0. Therefore, a, 3417/ @, 12k = v e Q. Since the numbers
Ay ok = anovz" are nonzero, they are Fibonacci numbers up to sign. Lemma 3 implies that v2 = ¢"
for some > 1. This is impossible.

Case3. a=p
In this case, a, = Aa" + Bna". Hence, a, # 0 for sufficiently large n, and lima,,,/a, = .
By Lemma 3, a = +¢” for some r >1. Since a =u/2 € (), this is impossible.

Cased. =0, a=pf
Since a, = Aa" +Ba"€ Q for all n, we must have B=A4. Write 4= Re” and a = pe'?.
Then

a, = Rp"e™%"" + Rp"e "% = 2Rp" cos(nf+y).
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Suppose first that 8/27z ¢ Q. By a theorem of Weyl (see [2], Theorem 445), the sequence of
fractional parts of n6/27 is uniformly distributed in the interval [0,1]. In particular, there is a
sequence of integers #, such that n,6/2x+(60+2y)/4x—k; is very small for some integers £,
and the limit is 0 as # — co. Therefore, cos(r0+y) is very close to cos(27k;, — 0/ 2) = cos(-8/2)
and cos((m; +1)8+y) is very close to cos(d/2)=cos(-0/2). Therefore, lima,,,/a, =p.
Lemma 3 shows that p=¢" for some »>0. But v=af = p?, so ¢* € Q, which in;plies r=0.
Therefore, the sequence a, is bounded, contrary to assumption.

Now suppose that 6/27=w/z € Q, where w,z € Z. Choose n, such that a, #0. Then
@ s(icst)z | Apoiie = 7 for £=0,1,2,.... Lemma 3 implies that p* = ¢” for some r > 0. Therefore,
¥ = p** =v? € Q, so r = 0, which is impossible.

It is easy to see that Cases 1-4 exhaust all possibilities for , . This concludes the proof of
Lemma 4. O

Corollary: Suppose A, B, a, f are complex numbers such that for each »>1 the number a, =
Aa”+Bp" is either 0 or plus or minus a Fibonacci number, and such that the sequence a, is
unbounded. Then there are integers » > 1 and s such that (assume |a| > |5])

a=14, B=2(-¢)"
and
gort pozCO
‘/g >
Proof: This is a restatement of what was proved above, combined with the fact that the
sequence a, uniquely determines the numbers 4, B, a, . O

We can now prove Theorem 2. Suppose the matrix M is as in the statement of the theorem,
and let a, B be the roots of the characteristic polynomial of A/. The case a = § corresponds to
Case 3 in the proof of Lemma 4, and the reasoning below shows that it cannot occur, so we
assume a # 3. Then M is diagonalizable, so there are complex numbers a, b, c, and d with

ad = bc # 0 such that
M= 1 a ba 0\d -b
- ad —bc\C d)\0 ﬂ - a )

A 1 (ada"—bcﬂ" —ab(a” - ﬂ"))

Therefore,

“ad—bc\ cd(a"-p") adB"-bca” |

We assume || > |3|. By the Corollary,
a=tf, P=H-¢)",

for some integer . Since not all entries are bounded, 7 >1. If ad =0 then bc # 0; looking at
the first entry in the matrix yields 8" € Z for all n, which is impossible. Similarly, bc # 0. By the

Corollary,

for some integer s. Therefore,
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ad be P -(-9)"*
= - =% =+F
! ad-bc ad-bc 5 52

sos=x1+2.
Consider the upper right corner of M”. Since ab# 0, the only possibility allowed by the
Corollary is ab/(ad —bc) = +1//5. Similarly, cd / (ad —bc) = +1/~/5. Therefore, ab = +cd.
Since the matrix (‘{)" l?d) commutes with ("(‘; /‘;’,.), we can replace the matrix (f, f;) with

(‘; 3)(‘ fa 0 d) and, therefore, assume a=d =1. This makes the calculations simpler. We now

have the following equations (the choices of signs are independent):

ad /(ad —bc

b=t b—lc:—-—-——bc/((ad_bc)) = (), s=41%2.

Since a, 8 € Q(/5), the diagonalizing matrix (‘; f;) may be assumed to have entries in Q(+/5).
Therefore, the case b=c, s=%1 and the case b =—c, s=12 cannot occur. Checking all solu-
tions in the remaining cases and substituting into the formula for M shows that +Af is the rth
power of one of the matrices in the statement of the theorem. The same calculation yields that
each entry of the powers of the matrices in the theorem is plus or minus a Fibonacci number. This
completes the proof of Theorem 2. O

In [1], the problem is posed to find all four-by-four Fibonacci matrices. This can be attacked
by the above method. One difficulty is proving the analog of Lemma 4 for fourth-order recur-
rences. A result of van der Poorten ([4], pp. 514-15) says that if an infinite sequence of elements
{by, by, ...} chosen from the members of a nondegenerate (i.e., no ratio of characteristic roots of
the recurrence is a root of unity) recurrent sequence {a,, a;, ...} again forms a recurrent sequence,
then there is an integer d > 0, and a set R of integers 7 with 0 <r <d, such that for all # we have
by=a,.pq and r, € R is periodic mod d. Since the entries in the powers of a matrix form a recur-
rent sequence, and the Fibonacci numbers form a nondegenerate sequence, this result applies, and
we find that the eigenvalues of the matrix must be roots of unity times powers of ¢. This reduces
the problem to the consideration of several cases for the characteristic roots.

The other difficulty is the calculation involving the matrix (‘; 3), since it must be replaced by
a four-by-four matrix. The calculations are probably possible, but surely would be more difficult.

To conclude, we give a few more four-by-four Fibonacci matrices. They are not as good
examples as Fy, ..., Fy since they all have powers that are reducible. However, they indicate vari-
ous possibilities that can arise. They were chosen using the fact that their eigenvalues must be
roots of unity times powers of ¢.

1. Let 00 0 -1
1o 0o -1 4

M=o 1 1 of

11 0 1

This is obtained by considering multiplication by {¢ on the basis ({1, 4,¢, {¢}. This matrix is
almost reducible in the sense that

3500
s_|5 8 0 0
M=10 0 3 s

005 8
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This of course can be predicted from the fact that ({g)’ = ¢°.
2. The matrix

0 0 1 1
0 0 -1 -2
-1 -1 1 0
1 2 0 1

is obtained from multiplication by @ on the basis {1, ¢, £, £#?}. The fifth power of this matrix is
reducible.

3. The matrix

0 0 0 -1
0 0 -1 -1
01 0 -1
1 1 -1 -1

is obtained from multiplication by 34 on the basis {1, 4, {5, {30} of Q(d,<3), where &3 is a
primitive third root of unity. The third power of this matrix is reducible.

4. The matrix

0 0 1 1
0 0 -1 2
-1 -1 0 O
1 2 0 0

is obtained from multiplication by i@ on the basis {1, ¢, i, i@} of Q(@, 7). More generally, any Fibo-
nacci matrix tensored with a permutation matrix, in this case (‘1’ 3), will give a Fibonacci matrix.
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