ON TOTAL STOPPING TIMES UNDER $3 x+1$ ITERATION

Paul Andaloro

Kent State University, Stark Campus, North Canton, Ohio
(Submitted May 1998-Final Revision September 1998)

1. INTRODUCTION

Let \mathbf{N} denote the nonnegative integers, and let \mathbb{P} denote the positive integers. Define T : $2 \mathrm{~N}+1 \rightarrow 2 \mathrm{~N}+1$ by $T(x)=\frac{3 x+1}{2^{j}}$, where $2^{j} \mid 3 x+1$ and $\left.2^{j+1}\right\rangle 3 x+1$. The famous $3 x+1$ Conjecture asserts that, for any $x \in 2 \mathbb{N}+1$, there exists $k \in \mathbb{N}$ satisfying $T^{k}(x)=1$. Define the least whole number k for which $T^{k}(x)=1$ as the total stopping time $\sigma(x)$ of x, and call the sequence of iterates $\left(x, T(x), T^{2}(x), \ldots\right)$ the trajectory of x. Note that $\sigma(x)=\infty$ if the trajectory of x diverges, and that $\sigma(1)=0$. Furthermore, if $k \in \mathbb{P}$ is fixed, and x is the smallest positive odd integer satisfying $T^{k}(x)=1$, we say that x is minimal of level k. In this paper, we employ a specific partition of the positive odd integers to show that if x is minimal of level $k \geq 3$, then $\sigma(x)=\sigma(2 x+1)$. In addition, a set of positive integers satisfying $\sigma(x)=\sigma(2 x+1)$ is characterized. Using a related partition, we then show that the arithmetic progression $(1 \bmod 16)$ is a "sufficient set," in other words, to prove the $3 x+1$ Conjecture, it suffices to prove it for all $x \equiv 1 \bmod 16$. In [4], Korec and Znam proved that the arithmetic progressions $\left(a \bmod p^{n}\right.$), where 2 is a primitive root (\bmod p^{2}) and (a, p) $=1$, are sufficient sets; however, this result does not apply when p is a power of 2 .

A thorough summary of some known results on the $3 x+1$ Conjecture is given in Lagarias [5] and Wirsching [6]. It is important to observe that our formulation of the function $T(x)$ differs from that in [3], in which $T: \mathbf{P} \rightarrow \mathbb{P}$ is given by $T(x)=\frac{x}{2}$ if x is even and $T(x)=\frac{3 x+1}{2}$ is x is odd. As a consequence, our total stopping times are different. For example, $\sigma(27)=41$ under our formulation, whereas $\sigma(27)=70$ in [3].

It is the author's hope that the results of this paper, or perhaps the techniques used in proving the results, will be useful in computing $\pi_{a}(x)$, which counts the number of positive integers $y \leq x$ such that $T^{k}(y)=a$ for some nonnegative integer k. The strongest known results along this line are given in Applegate and Lagarias [1].

2. TOTAL STOPPING TIMES OF MINIMAL NUMBERS

We begin by constructing a partition of the positive odd integers. For $a, b \in \mathbb{P}$, denote the arithmetic progression $(a m+b)_{m=0}^{\infty}$ by $(a m+b)$. Next, define subsets of $2 N+1$ as follows:

$$
\begin{aligned}
& S_{1}=\bigcup_{n \in \mathbb{P}}\left(2^{2 n+1} m+2^{2 n-1}-1\right), \\
& S_{2}=\bigcup_{n \in \mathbb{P}}\left(2^{2 n+2} m+2^{2 n+1}+2^{2 n}-1\right), \\
& S_{3}=\bigcup_{n \in \mathbb{P}}\left(2^{2 n+1} m+2^{2 n}+2^{2 n-1}-1\right), \\
& S_{4}=\bigcup_{n \in \mathbb{P}}\left(2^{2 n+2} m+2^{2 n}-1\right)
\end{aligned}
$$

It is easy to verify that $\left[S_{1}, S_{2}, S_{3}, S_{4}\right]$ is a partition of $2 \mathbf{N}+1$. We will also need the following two preliminary lemmas, both of which follow directly from the definition of $T(x)$.

Lemma 1: Let $x \in 2 \mathbf{N}+1$, and let $k \in \mathbf{N}$ satisfy $k \leq \sigma(x)$. Then $\sigma\left(T^{k}(x)\right)=\sigma(x)-k$.
Lemma 2: Let $x \in 2 \mathrm{~N}+1$ with $x \neq 1$. Then $\sigma(x)=\sigma(4 x+1)$.
The following two lemmas give total stopping time properties of certain subsets of the positive integers obtained from our partition. For notational convenience in the upcoming proofs and throughout this paper, we write $2^{j} \| n\left(2^{j}\right.$ exactly divides $\left.n\right)$ if $2^{j} \mid n$ but $2^{j+1} \mid n$.

Lemma 3: If $x \in S_{1} \cup S_{2}-(1)$, then $\sigma(x)=\sigma(2 x+1)$.
Proof: First, consider the case in which $x \in S_{1}$ with $x \neq 1$. By the definition of S_{1}, x is of the form $2^{2 n+1} m+2^{2 n-1}-1$. Application of the function T yields:

$$
T^{2 n-1}(x)=\frac{3^{2 n-1} \cdot 4 m+3^{2 n-1}-1}{2^{j}}
$$

where $2^{j} \| 3^{2 n-1} \cdot 4 m+3^{2 n-1}-1$. Note that $3^{2 n-1}-1 \equiv 2 \bmod 4$, therefore $j=1$. Furthermore, $T^{2 n-1}(2 x+1)=3^{2 n-1} \cdot 8 m+3^{2 n-1} \cdot 2-1$. Thus, $4 \cdot T^{2 n-1}(x)+1=T^{2 n-1}(2 x+1)$. Applying Lemma 2 , we obtain $\sigma\left(T^{2 n-1}(x)\right)=\sigma\left(T^{2 n-1}(2 x+1)\right)$. Hence, by Lemma 1 , it follows that $\sigma(x)=\sigma(2 x+1)$.

Next, consider the case $x \in S_{2}$. By definition of S_{2}, x is of the form $2^{2 n+2} m+2^{2 n+1}+2^{2 n}-1$. Application of the function T yields:

$$
T^{2 n}(x)=\frac{3^{2 n} \cdot 4 m+3^{2 n} \cdot 2+3^{2 n}-1}{2^{j}}
$$

where $2^{j} \| \cdot 3^{2 n} \cdot 4 m+3^{2 n} \cdot 2+3^{2 n}-1$. Since $3^{2 n}-1 \equiv 0 \bmod 4$ and $3^{2 n} \cdot 2 \equiv 2 \bmod 4$, we see that $j=1$. Furthermore, $T^{2 n}(2 x+1)=3^{2 n} \cdot 8 m+3^{2 n} \cdot 4+3^{2 n} \cdot 2-1$. Hence, $4 \cdot T^{2 n}(x)+1=T^{2 n}(2 x+1)$. Applying Lemma 2 yields $\sigma\left(T^{2 n}(x)\right)=\sigma\left(T^{2 n}(2 x+1)\right)$, so, using Lemma 1 , we conclude that $\sigma(x)=\sigma(2 x+1)$.

Lemma 4: If $x \in S_{3} \cup S_{4}-(3)$, then there exists $y<x$ satisfying $\sigma(y)=\sigma(x)$.
Proof: First, consider the case in which $x \in S_{3}$. By definition of S_{3}, we have $x=2^{2 n+1} m+$ $2^{2 n}+2^{2 n-1}-1$. If $n=1, x=8 m+5$, so choosing $y=2 m+1$ and applying Lemma 2 gives the result. If $n>1$, we can choose $y \in 2 \mathbf{N}+1$ satisfying $2 y+1=\boldsymbol{x}$. Note that $y \in S_{2}$, so using a computation similar to that in the proof of Lemma 3, we see that $4 \cdot T^{2 n-2}(y)+1=T^{2 n-2}(x)$. Applying Lemmas 2 and 1 , we obtain $\sigma(y)=\sigma(x)$. Now consider the case in which $x \in S_{4}$ with $x \neq 3$. By definition of S_{4}, we have $x=2^{2 n+2} m+2^{2 n}-1$. Again, choose y so that $2 y+1=x$. Clearly, $y \in S_{1}$, so again by the proof of Lemma 3, it follows that $4 \cdot T^{2 n-1}(y)+1=T^{2 n-1}(x)$. Noting that $y \neq 1$ and applying Lemmas 1 and 2, we obtain $\sigma(y)=\sigma(x)$.

The following result pertaining to total stopping times of minimal numbers can now be proved.

Theorem 1: If x is minimal of level $k \geq 3$, then $\sigma(x)=\sigma(2 x+1)$.

Proof: Let $x \in 2 \mathbf{N}+1$ be minimal of level $k \geq 3$. Note that $x \neq 1$ and $x \neq 3$. Using the definition of minimality and Lemma 4, we see that $x \notin S_{3} \cup S_{4}$. Therefore $x \in S_{1} \cup S_{2}$, so Lemma 3 implies that $\sigma(x)=\sigma(2 x+1)$.

Remark: The arguments in Lemmas 3 and 4 actually show that the appropriate trajectories coalesce after a certain number of steps, irrespective of whether or not they converge to 1 . This is in part due to the fact that if $f(x)=4 x+1$ and x is odd, then $T(f(x))=T(x)$. Note also that if $g(x)=2 x+1$, the relation $T(g(x))=g(T(x))$ holds true for x odd. Furthermore, it can be demonstrated by straightforward computation that if $g_{a, b}(x)=a x+b$ with $a-b=1$ and x is of the form $2^{n} m+2^{n-2}-1$ or $2^{n} m+2^{n-1}+2^{n-2}-1$ with $n \geq 3$, then $g_{a, b}\left(T^{k}(x)\right)=T^{k}\left(g_{a, b}(x)\right)$ for $k \leq n-3$. A study of the interaction of various linear functions $g_{a, b}(x)$ with $T(x)$ under composition deserves further exploration.

3. A SUFFICIENT CONDITION FOR TRUTH OF THE $3 x+1$ CONJECTURE

By use of a similar technique, it can now be demonstrated that to prove the $3 x+1$ Conjecture, it suffices to prove it for all positive $x \equiv 1 \bmod 16$. This improves a result given in Cadogan [2].
Lemma 5: Suppose that for all positive $x \equiv 1 \bmod 8$ there exists $k \in \mathbf{N}$ such that $T^{k}(x)=1$. Then, for all $x \in 2 \mathbf{N}+1$. we can find $k \in \mathbf{N}$ such that $T^{k}(x)=1$.

Proof: For $i=1,2,3,4$, define $T_{i}=S_{i} \cap(8 m+7)$, where $\left[S_{1}, S_{2}, S_{3}, S_{4}\right]$ is the partition of $2 \mathbf{N}+1$ used in Lemmas 3 and 4. We repartition the positive odd integers as follows:

$$
2 \mathbf{N}+1=(8 m+1) \cup(16 m+3) \cup(16 m+11) \cup(8 m+5) \cup T_{1} \cup T_{2} \cup T_{3} \cup T_{4} .
$$

Now let $x \in 2 \mathbf{N}+1$ be given. We can assume that $x \neq 1$ and $x \neq 3$, as the theorem follows trivially for these values of x. We examine the following cases:

Case 1. If $x \in(8 m+1)$, by the hypothesis of Lemma 5 , there exists $k \in \mathbf{P}$ such that $T^{k}(x)=1$.

Case 2. Let $x \in(16 m+3)$. Then $x=2 y+1$ for $y \in(8 m+1)$. A simple computation shows that $T^{2}(x)=T^{2}(y)$. By the hypothesis of Lemma 5, there exists $k \in \mathbb{P}$ such that $T^{k}(y)=1$, hence $T^{k}(x)=1$.

Case 3. Let $x \in(16 m+11)$. Then $T(x) \in(8 m+1)$, so the hypothesis of Lemma 5 guarantees that there exists $k \in \mathbb{P}$ satisfying $T^{k}(T(x))=1$. Thus, $T^{k+1}(x)=1$.

Case 4. Let $x \in T_{1} \cup T_{2}$. If $x \in T_{1}$, we can write $x=2^{2 n+1} m+2^{2 n-1}-1$, where $n \geq 2$. Then $T^{2 n-2}(x)=3^{2 n-2} \cdot 8 m+3^{2 n-2} \cdot 2-1$, and since $3^{2 n-2} \equiv 1 \bmod 8$, we see that $T^{2 n-2}(x) \in(8 m+1)$. If $x \in T_{2}$, we can write $x=2^{2 n+2} m+2^{2 n+1}+2^{2 n}-1$, where $n \geq 2$. Then $T^{2 n-1}(x)=3^{2 n-1} \cdot 8 m+3^{2 n-1}$ $\cdot 4+3^{2 n-1} \cdot 2-1$, which simplifies to $T^{2 n-1}(x)=3^{2 n-1} \cdot 8 m+2\left(3^{2 n}-1\right)+1$, and since $3^{2 n}-1 \equiv 0 \bmod$ 4, we obtain $T^{2 n-1}(x) \in(8 m+1)$. Invoking our hypothesis yields $T^{k}(x)=1$ for some k.

Case 5. Let $x \in T_{3} \cup T_{4}$. If $x \in T_{3}$, then x is of the form $2^{2 n+1} m+2^{2 n}+2^{2 n-1}-1$, where $n \geq 2$. Choose y satisfying $2 y+1=x$. By a computation similar to that used in the proof of Lemma 4, we see that $4 \cdot T^{2 n-2}(y)+1=T^{2 n-2}(x)$, hence $T^{2 n-1}(y)=T^{2 n-1}(x)$. If $n=2, y \in(16 m+11)$, and if $n>2, y \in T_{2}$, so by the proofs of Case 3 and Case 4, respectively, there exists k satisfying
$T^{k}(y)=1$, hence $T^{k}(x)=1$. If $x \in T_{4}$, then x is of the form $2^{2 n+2} m+2^{2 n}-1$, where $n \geq 2$. Let y satisfy $2 y+1=x$. Again, $4 \cdot T^{2 n-1}(y)+1=T^{2 n-1}(x)$, so $T^{2 n}(y)=T^{2 n}(x)$. But $y \in T_{1}$, so by Case 4, there exists k satisfying $T^{k}(y)=1$, hence $T^{k}(x)=1$.

Case 6. Finally, let $x \in(8 m+5)$. Define $f(w)=4 w+1$. Choose the smallest positive y satisfying $f^{n}(y)=x$ for $n \in \mathbf{P}$. Note that $y \notin(8 m+5)$, since $f(2 m+1)=8 m+5$. If $y \neq 1$ and $y \neq 3$, we can invoke the previous cases to obtain k satisfying $T^{k}(y)=1$. Since $T\left(f^{n}(y)\right)=T(y)$, we obtain $T(y)=T(x)$, and therefore $T^{k}(y)=T^{k}(x)=1$. If $y=3$, then $T\left(f^{n}(y)\right)=T(y)=T(3)=5$, hence $T^{2}\left(f^{n}(y)\right)=1$, so $T^{2}(x)=1$. If $y=1$, we have $f^{n}(y)=1+4+\cdots+4^{n}=\left(4^{n+1}-1\right) / 3$, hence $T\left(f^{n}(y)\right)=1$, so $T(x)=1$. Thus, in all cases, we have displayed $k \in \mathbf{N}$ for which $T^{k}(x)=1$.

According to Lemma 5, the arithmetic progression $(8 m+1)$ constitutes a sufficient set. The next theorem improves the sufficient set.

Theorem 2: Suppose that for all positive $x \equiv 1 \bmod 16$, there exists $k \in \mathbf{N}$ such that $T^{k}(x)=1$. Then, for all $x \in 2 \mathbf{N}+1$, we can find $k \in \mathbf{N}$ such that $T^{k}(x)=1$.

Proof: Let $x=8 m+1$ be given. A straightforward computation yields

$$
T^{2}(64 x+49)=\frac{9 x+7}{2^{j}}=\frac{72 m+16}{2^{j}}=\frac{9 m+2}{2^{j-3}},
$$

where $2^{j} \| 9 x+7$, and hence $2^{j-3} \| 9 m+2$. Also,

$$
T^{2}(x)=T^{2}(8 m+1)=\frac{9 m+2}{2^{k}},
$$

where $2^{k} \| 9 m+2$. By unique factorization, $k=j-3$, and hence $T^{2}(x)=T^{2}(64 x+49)$. Since $64 x+49$ is in the arithmetic progression $(16 m+1)$, we can invoke the hypothesis of Theorem 2 ; therefore, there exists k satisfying $T^{k}\left(T^{2}(x)\right)=1$. Thus, $T^{k+2}(x)=1$, and since x was chosen arbitrarily from ($8 m+1$), we can apply Lemma 5 to obtain the result.

Further strengthening of the result given in Theorem 2 certainly seems possible. An interesting question concerns which progressions of the form ($2^{n} m+1$) constitute "sufficient sets" whose convergence to 1 guarantees the truth of the $3 x+1$ Conjecture. Perhaps it can be proved that convergence of the set of numbers of the form $\left\{2^{n}+1: n=1,2,3, \ldots\right\}$ is sufficient.

4. OTHER NUMBERS WITH EQUAL TOTAL STOPPING TIMES

We now characterize an additional set of positive odd integers satisfying $\sigma(x)=\sigma(2 x+1)$. Let $L_{k}=\{x \in 2 \mathbb{N}+1 \mid \sigma(x)=k\}$, and define $G_{x}=\left\{f^{n}(x) \mid n \in \mathbb{N}\right\} \cup\left\{f^{n}(2 x+1) \mid n \in \mathbb{N}\right\}$, where $f(w)=4 w+1$. For convenience, we set $G_{x_{-1}}=\emptyset$. We inductively define the $j^{\text {th }}$ exceptional number of level k to be the smallest positive integer x_{j} satisfying $x_{j} \in L_{k}-\bigcup_{i=0}^{j} G_{x_{i-1}}$.

Note that for $j=0, x_{j}$ is simply the minimal number of level k. Also observe that Lemma 2 and Theorem 1 tell us that all numbers in $G_{x_{0}}$ are of level k, hence x_{1} is the smallest positive integer of level k not accounted for by $G_{x_{0}}, x_{2}$ is the smallest positive integer of level k not accounted for by $G_{x_{0}} \cup G_{x_{1}}$, and so forth. It turns out that the exceptional numbers share the same total stopping time property as the minimal numbers.

Theorem 3: Let x_{j} denote the $j^{\text {th }}$ exceptional number of level k with $k \geq 2$ and $x_{j}>3$. Then $\sigma\left(x_{j}\right)=\sigma\left(2 x_{j}+1\right)$.

To prove Theorem 3, we need the following two preliminary lemmas.
Lemma 6: Let x_{j} denote the $j^{\text {th }}$ exceptional number of level k with $k \geq 2$ and $x_{j}>3$. Then $x_{j} \notin(16 m+3) \cup(8 m+5)$

Proof: Since x_{0} is minimal of level k with $k \geq 2$ and $x_{j}>3$, we have $x_{0} \notin(16 m+3) \cup$ $(8 m+5)$, hence the Lemma holds for $j=0$. Let $j \geq 1$. We prove that $x_{j} \notin(16 m+3)$ by contradiction. If $x_{j} \in(16 m+3)$, pick y satisfying $2 y+1=x_{j}$. Clearly $\sigma(y)=\sigma\left(x_{j}\right)$, hence $y \in L_{k}$. Since $y<x_{j}$ and x_{j} is the smallest number in $L_{k}-\bigcup_{i=0}^{j} G_{x_{i-1}}$, we see that $y \in G_{x_{i}}$ for some $i \leq$ $j-1$. Hence $y=f^{p}\left(x_{i}\right)$ or $y=f^{p}\left(2 x_{i}+1\right)$ for some $p \in \mathbf{N}$. Since $p \geq 1$ yields $y \in(8 m+5)$, which is impossible, we have $p=0$. Hence $y=x_{i}$ or $y=2 x_{i}+1$. But $y=x_{i}$ yields $2 x_{i}+1=x_{j}$, so $x_{j} \in G_{x_{i}}$ with $i \leq j-1$, contradicting the definition of x_{j}. Hence $y=2 x_{i}+1$. But $y \in(8 m+1)$ forces x_{i} to be even, again a contradiction. If $x_{j}=8 m+5$, then select $y=2 m+1$. Since $\sigma(y)=$ $\sigma\left(x_{j}\right)$ and $y<x_{j}$, we see that $y \in G_{x_{i}}$ for some $i \leq j-1$. But $x_{j}=f(y)$, hence $x_{j} \in G_{x_{i}}$, contradicting the definition of x_{j}. Hence $x_{j} \notin(8 m+5)$
Lemma 7: Let S_{3} and S_{4} be subsets of $2 \mathrm{~N}+1$ as defined in Section 2. Let x_{j} be the $j^{\text {th }}$ exceptional number of level k with $k \geq 2$ and $x_{j}>3$. Then $x_{j} \notin S_{3} \cup S_{4}$.

Proof: Suppose $x_{j} \in S_{3} \cup S_{4}$. Then x_{j} is of the form $2^{2 n+1} m+2^{2 n}+2^{2 n-1}-1$ or $2^{2 n+2} m+$ $2^{2 n}-1$. Furthermore, by Lemma 6, we have $n \geq 2$. Choose y satisfying $2 y+1=x_{j}$. As in the proof of Lemma 4, we have $\sigma(y)=\sigma\left(x_{j}\right)$, therefore, by definition of x_{j}, we must have $y \in G_{x_{i}}$ for some $i \leq j-1$. Therefore, $y=f^{p}\left(x_{i}\right)$ or $y=f^{p}\left(2 x_{i}+1\right)$ for some $p \in \mathbf{N}$. If $p \geq 1$, we have $y \in(8 m+5)$, hence $x_{j} \in(16 m+11)$, which contradicts the fact that $S_{3} \cup S_{4}$ and ($16 m+11$) are disjoint. Thus $p=0$, so either $y=x_{i}$ or $y=2 x_{i}+1$. But $y=x_{i}$ yields $2 x_{i}+1=x_{j}$, hence $x_{j} \in G_{x_{i}}$ for $i \leq j-1$, contradicting the definition of x_{j}. Thus, we have $y=2 x_{i}+1$, so $4 x_{i}+3=x_{j}$.

A simple computation shows that x_{i} must be in $S_{3} \cup S_{4}$. We therefore have proven that $x_{j} \in$ $S_{3} \cup S_{4}$ implies there exists $x_{i} \in S_{3} \cup S_{4}$ with $x_{i}<x_{j}$. Applying a simple induction and using the definition of S_{3} and S_{4} yields $x_{p} \in(8 m+5) \cup(16 m+3)$ for some p. But this contradicts Lemma 6, hence $x_{j} \in S_{3} \cup S_{4}$ is impossible.

Proof of Theorem 3: Consider the partition of $2 \mathbf{N}+1$ as defined in the proof of Lemma 5. By Lemmas 6 and 7, we see that $x_{j} \notin(16 m+3) \cup(8 m+5) \cup T_{3} \cup T_{4}$. Hence $x_{j} \in(8 m+1) \cup(16 m+$ 11) $\cup T_{1} \cup T_{2}$. Applying Lemma 3 , we obtain $\sigma\left(x_{j}\right)=\sigma\left(2 x_{j}+1\right)$.

Our final theorem enables us to conclude that there exists an exceptional number x_{j} of level k for all $k \geq 2$ and for all $j \geq 0$.
Theorem 4: For all $j \geq 0$ and $k \geq 2, L_{k}-\bigcup_{i=0}^{j} G_{x_{i-1}} \neq \emptyset$.
Proof: We proceed by induction on j. Since $L_{k} \neq \emptyset$ is well known [3], the result holds true for $j=0$. Now assume $L_{k}-\bigcup_{i=0}^{j} G_{x_{i-1}} \neq \emptyset$ for all $j<n$. We wish to show that $L_{k}-\bigcup_{i=0}^{n} G_{x_{i-1}} \neq \emptyset$. For all $j<n$, let x_{j} be the smallest integer in $L_{k}-\bigcup_{i=0}^{j} G_{x_{i-1}}$. Note that the sequence $\left\{x_{j}\right\}$ is strictly increasing, and that $x_{j} \notin G_{x_{i}}$ for $i \leq j-1$.

Consider the number $w=64 x_{n-1}+49$. We first prove that $w \notin G_{x_{i}}$ for all $i \leq n-1$ by contradiction. If $w \in G_{x_{i}}$ for some $i \leq n-1$, then $w=f^{p}\left(x_{i}\right)$ or $w=f^{p}\left(2 x_{i}+1\right)$ for some $p \in \mathbf{N}$. Since $w \in(8 m+1)$, we must have $p=0$. Therefore, $w=x_{i}$ or $w=2 x_{i}+1$, and since the latter contradicts oddness of x_{i}, we have $w=x_{i}$. But this implies that $x_{n-1}<x_{i}$, contradicting the fact that $\left\{x_{j}\right\}$ is strictly increasing. Hence $w \notin G_{x_{i}}$ for all $i \leq n-1$. Furthermore, as seen in the proof of Theorem 3, we have $\sigma(w)=\sigma\left(x_{n-1}\right)=k$, hence w is in $L_{k}-\bigcup_{i=0}^{n} G_{x_{i-1}}$, so $L_{k}-\bigcup_{i=0}^{n} G_{x_{i-1}} \neq \emptyset$.

Remark: An interesting question concerns whether all numbers x satisfying $\alpha(x)=\sigma(2 x+1)$ can be identified. The general question of finding all numbers x satisfying $\sigma(x)=\sigma(a x+b)$ for arbitrary whole numbers a and b looks difficult. Development of functions such as $f(w)=64 w+49$ which satisfy the condition $\sigma(x)=\sigma(f(x))$ appears to be a promising approach.

REFERENCES

1. D. Applegate \& J. C. Lagarias. "Density Bounds for the $3 x+1$ Problem. II. Krasikov Inequalities." Math. Comp. 64 (1995):411-27.
2. C. C. Cadogan. "A Note on the $3 x+1$ Problem." Caribbean J. Math. 3 (1984):67-72.
3. R. E. Crandall. "On the ' $3 x+1$ ' Problem." Math. Comp. 32 (1978):1281-92.
4. I. Korec \& S. Znam. "A Note on the $3 x+1$ Problem." Amer. Math. Monthly 94.8 (1987): 771-72.
5. J. C. Lagarias. "The $3 x+1$ Problem and Its Generalizations." Amer. Math. Monthly 92 (1985):3-21.
6. G. J. Wirsching. The Dynamical System Generated by the $3 n+1$ Function. Lecture Notes in Math. 1681. New York: Springer-Verlag, 1998.
AMS Classification Number: 11B83
