ON PRIMES IN THE FIBONACCI SEQUENCE

Vladimir Drobot

Mathematics and Computer Science, San Jose State University, San Jose, CA 95192
e-mail: drobot@mathcs.sjsu.edu
(Submitted May 1998)
It is well known that primes can occur in the Fibonacci sequence only for prime indices, the only exception being $F_{4}=3$. This follows from the fact that for any two positive integers k and n, F_{n} divides $F_{k n}$. I could not locate the earliest reference to that result, but page 111 in [1] contains several proofs of this. Of course, if p is a prime, F_{p} may very well be composite; the first example of this is $F_{19}=4181=37 \cdot 113$. Here is the list of the next few terms F_{p} that are composite:

$$
\begin{aligned}
& F_{31}=1346269=557 \cdot 2471, \\
& F_{37}=24157817=73 \cdot 149 \cdot 2221, \\
& F_{41}=165580141=2789 \cdot 59369, \\
& F_{53}=53316291173=953 \cdot 55945741 .
\end{aligned}
$$

In this note we show that in fact F_{p} is composite for certain primes p. We prove the following result.

Theorem: Let $p>7$ be a prime satisfying the following two conditions:
I. $p \equiv 2(\bmod 5)$ or $p \equiv 4(\bmod 5)$;
II. $2 p-1$ is also a prime.

Then F_{p} is composite, in fact, $(2 p-1) \mid F_{p}$.
Proof: We start with the explicit formula for F_{p} :

$$
F_{p}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{p}-\left(\frac{1-\sqrt{5}}{2}\right)^{p}\right\} .
$$

Multiplying out by $\sqrt{5}$ and squaring, we get

$$
5 F_{p}^{2}=\frac{1}{2^{2 p}}\left\{(1+\sqrt{5})^{2 p}+(1-\sqrt{5})^{2 p}\right\}+2
$$

or

$$
2^{2 p-1} \cdot 5 F_{p}^{2}=\frac{1}{2}\left\{(1+\sqrt{5})^{2 p}+(1-\sqrt{5})^{2 p}\right\}+2^{2 p} .
$$

When we expand the powers inside the braces, the terms involving $\sqrt{5}$ will cancel out and we get

$$
2^{2 p-1} \cdot 5 F_{p}^{2}=1+\binom{2 p}{2} 5+\binom{2 p}{4} 5^{2}+\cdots+\binom{2 p}{2 p-2} 5^{p-1}+5^{p}+2^{2 p} .
$$

Since $2 p-1$ is a prime, $2^{2 p-1} \equiv 2(\bmod 2 p-1)$ and $\binom{2 p}{k} \equiv 0(\bmod 2 p-1)$ for $k<2 p-1$, so

$$
5 F_{p}^{2} \cdot 2 \equiv 1+5^{p}+4(\bmod 2 p-1)
$$

or

$$
\begin{equation*}
2 F_{p}^{2} \equiv 5^{p-1}+1(\bmod 2 p-1) . \tag{1}
\end{equation*}
$$

Now let $\left(\frac{a}{b}\right)$ denote the Legendre symbol. By Euler's theorem,

$$
\begin{equation*}
5^{p-1} \equiv\left(\frac{5}{2 p-1}\right)(\bmod 2 p-1) \tag{2}
\end{equation*}
$$

Suppose $p \equiv 2(\bmod 5)$ so that $p=5 k+2$ for some integer k. Since $2 p-1$ is a prime, by Gauss's reciprocity theorem,

$$
\left(\frac{5}{2 p-1}\right)\left(\frac{2 p-1}{5}\right)=(-1)^{\frac{4}{2} \cdot \frac{p p-2}{2}}=1
$$

so that

$$
\left(\frac{5}{2 p-1}\right)=\left(\frac{2 p-1}{5}\right)=\left(\frac{10 k+3}{5}\right)=\left(\frac{3}{5}\right)=-1
$$

Hence, by (1) and (2),

$$
2 F_{p}^{2} \equiv-1+1=0(\bmod 2 p-1) .
$$

This means that $2 p-1$ divides F_{p}, and since $F_{p}>2 p-1$ for $p>7, F_{p}$ is composite.
In a similar way, if $p \equiv 4(\bmod 5), p=5 k+4$ for some k, and

$$
\left(\frac{5}{2 p-1}\right)=\left(\frac{2 p-1}{5}\right)=\left(\frac{10 k+7}{5}\right)=\left(\frac{2}{5}\right)=-1
$$

and again, as before, $2 p-1$ divides F_{p}.
Here is the list of the first 21 prime indices p for which the above Theorem guarantees F_{p} to be composite: 19, 37, 79, 97, 139,157, 199, 229, 307, 337, 367, 379, 439, 499, 547, 577, 607, $619,727,829,839$.

REFERENCE

1. M. Bicknell \& V. E. Hoggatt. A Primer for the Fibonacci Numbers. Santa Clara, Calif.: The Fibonacci Association, 1973.
AMS Classification Numbers: 11A51, 11B39
