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1. INTRODUCTION AND STATEMENT OF RESULTS 

One of the most Important applications of continued fractions deals with the approximation 
of real numbers by rationals. The famous approximation theorem of A. Hurwitz [7] states that for 
every real irrational number £ there are infinitely many integers u and v > 0 such that 

. 1 
Sv ,2 • 

The constant 1 / V5 is well known to- be best-possible in general 
S. Hartman [6] was the first to introduce congruence conditions on u and v; the best approxi-

mation result of this type up until now is due to S. Uchiyama [12]: 

For any irrational number £, any s>\ and integers a and b, there are infinitely 
many integers u and v ̂  0 such that 

4v2 

and 

(i . i) 

(1.2) u = a mod s, v = b mod s, 

provided that a and b are not both divisible by s. 

A wTeaker theorem was proved by J. F. Koksma [9] in 1951. Recently, the author [2] has 
shown that the constant 1/4 in (1.1) is best-possible. 

But one expects that weaker arithmetical conditions in (1.2) on numerators and denominators 
will imply smaller constants in (1.1). A result of this kind is proved in [3]: 

Let 0 < s < 1, and let/? be a prime with 

P> P 
h denotes any integer that is not divisible by p. Then, for any real irrational number £, 
there are infinitely many integers u and v > 0 satisfying 

. (\ + e)pm 

V5v2 (1.3) 

and 
u = hv=£Q mod p. (1.4) 
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In this paper, we shall improve this result as far as possible, where additionally coprime inte-
gers u and v are considered. 

Theorem 1.1: Let s denote any positive integer having an odd prime divisor/? such that pa \ s for 
some positive integer a. Moreover, let h be any integer. Then, for every real irrational number 
^, there are infinitely many integers u and v > 0 satisfying 

Sv2 

and 

u == hv mod s, (u, v) < — . 
Pa 

In general, the constant 1 / 4s is best-possible. 

Corollary LI: Let $ = pa denote some prime power with an odd prime/?. Moreover, let h be 
any integer. Then, for every real irrational number £, there are infinitely many coprime integers 
u and v > 0 satisfying 

(1.5) 
Sv2 

and 
u = hv mod s. (1.6) 

By Theorem 3.2 in [1] with 8- 1/10 and £= 12 + V145, all fractions ulv with odd coprime 
integers u and v > 0 satisfy 

2 
Sv2 

Hence, Corollary 1.1 does not hold in the case s = 2 and h-l. Also, the bound on the right of 
(1.5) must be enlarged in the case of moduli s having more than one prime divisor. 

Theorem 1.2: Let s be some positive integer having at least two prime divisors. Moreover, h 
denotes any integer. Then there is a real quadratic irrational number £ with the following prop-
erty. For every pair u and v of coprime integers with |v| > 1 and u = hv mod $, the inequality 

2vl 

holds. 
It is suggested by the above-mentioned theorems that approximation results with an 

additional condition like (1.6) depend on arithmetic properties of the modulus s. A general result 
of this kind is expressed in our final Theorem 1.3. For an integer s > 1, the number 

p\s 

is the square-free kernel of s9 where p runs through the prime divisors of s. In what follows, p0 is 
the smallest prime divisor of s, and 
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Theorem 13: For arbitrary integers s>l and h and for every real irrational number £, there are 
infinitely many coprime integers u and v > 0 satisfying 

b v 
S 

and 
u = hv mod s. 

For further improvements of the bound on the right-hand side of (1.5) in Corollary 1.1 for all 
numbers £ from a certain set of measure 1, the author [4] applies the mean value theorem of 
Gauss-Kusmin-Levy [10] from the metric theory of continued fractions. This set depends on p. 
To prove our theorems, we shall need some well-known elementary facts from the theoiy of con-
tinued fractions (see [11] or [5]). By 

1 £; = [a0;aha2,...] = a0+- 1 
1 a2 + • • • 

we denote the continued fraction expansion of a real number £. 

2. PROOFS OF THEOREMS 1.1 AN© 1.2 

Proof of Theorem 1.1: The proof of Theorem 1.1 is based on the following proposition. 

Proposition 2.1: Let p > 2 b e a prime number. Among any six consecutive convergents 
Pn+i I ̂ n+t (n - ®> ' ~ ®> ^ ^, 3,4, 5) of a real irrational number 77 there is at least one fraction, say 
pvl qv, such that 

Pv 

9v Sq\ 
(2.1) 

holds and qv is not divisible by p. 

Proof: We denote the set effractions from "fj-,...,-f|~ satisfying (2.1) by sln. From a 
famous theorem of A. Hurwitz which asserts that at least one of three consecutive convergents 
satisfies (2.1) (see, e.g., Satz 15, ch. 2 in [11]), we know that 2 < \sin\ < 6. In what follows, we 
consider several cases according to the distribution of fractions from $l„. 

Case L There is an integer m such that ^- , ~^- ^An. 
It is a well-known fact that qm and qm+l represent coprime integers and, therefore, the prime 

number/? cannot divide both of the numbers qm and qmH. 

Case 2, There are no consecutive convergents of 77 in $l„. 

Case 2. L It is •§=-, ^—^ e si„ for some integer m. 

Let us assume that/? divides both qm and qm+2. Then the recurrence formula of the q'$ yields 
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<*m*Am*\ = ?m+2 ~ <Jm = 0 m o d p . 

From (qm, qm+l) = 1, we know that qm+l is not divisible by p. Therefore, p divides aw+2, and we 
have am¥2 > p > V5. It follows that 

n- Pm+l 

' ^ + 2 ^ + i Vs$ ,2
 : 

m+1 

hence ~^- ^sin. But we know that —- e,sz£w from the hypothesis of Case 2.1, which is incompat-
ible with the hypothesis of Case 2. We have proved that p\qm and p\qm+2 cannot hold simul-
taneously. 

Case 2.2. It is —^, | ^ - e ̂  for some integer m. 

As in the preceding case, we assume that/? divides both of the denominators qm and^ + 3 . 
We have 

Qm+3 = am+3^lm+2 + {7ro+l> 

*Im+2 ~ am+2(Jm+l+9my 

for some positive integers am+2,am+3 from the continued fraction expansion of r/. Putting the 
second equation into the first one, we obtain the identity 

^m+3~am+3^m ~ \am+2am+3 + vftw+l* 

Our assumption on p implies that the integer (am+2am+3
+ OflWn *s divisible by p. Since qm and 

qm+l are coprime, p | ̂ /M+1 is impossible. It follows that p divides am+2am+3 +1 anc^ consequently, 
we have am+2am+3 +1 > /? > 3. Hence, it is impossible to have am+2 - am+3 = 1. We discuss the 
remaining cases. 

Case 2.2. J. am+2 > 3 or am+3 > 3. 
From 

n-
weget 

Pm Pm+l g oj 
9m 9m+l 

«„+l?n 
(»>1) , 

(if am+2 > 3), 

& ± i 5 ^ ± i e ^ n (ifaro+3>3). 

Again there is a contradiction to the hypothesis of Case 2. 
Case 2.2. 
We have 
Case 2.2.2. am+2=am+3 = 2. 

^m+2:=[2;2,a/w+4,aw+5,...]>2 + 1 = 7 
2 + 1 3: 

and finally, it follows that 

fj- Pm+l 

lm+l ®m+2<l2m+l 1(ll+l J*lLl ' 
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Hence, it is 

9m 9m+l 

Case 2.2.3. am+2 = 2, am+3 = 1. 
a contradiction, 

Cas 
It is 

and 

Again we get 

Case 2.2.4. am+2 = 1, am+3 = 2. 

®m+2:=i2>l>am+4>am+5>-]>2 + 

1 + 1 2 

Pm+1 

9m+l 

2 1 
<___—<_ 5?i+i ^ 9 i m+l 

9m 9m+l 

First, note that am+3 : = [2; am+4, am+5,....] > 2. We get 

7]- Pm+2 

9m+2 

1 
9m+2(am+3?m+2 + 9m+l) ^2 [ 2 + ^ m + 1 ] 

V 9m+2 / 
1 

1 < 
tf m+2 M2+fc«w..,«j 

by [1; aw+1,..., a j < 2. The contradiction arises from 

Pm+2 Pm+3 ^ ^ 

9m+2 9m+3 

Hence, it is proved that p \ qm and p | ̂ m+3 cannot ho!d simultaneously. Since for every integer 
m > 0 there is at least one fraction among the convergents | ^ - , ~^-, and | ^ - satisfying (2.1) by 
Hurwitz's theorem, we have finished the proof of Proposition 2.1. 

By the hypotheses of Theorem 1.1 on £, h, and s, we may choose r/:=(%-h)/s. From 
Proposition 2.1, we know that there are infinitely many convergents pm I qm of rj with 

izA„FzL 
S 9m 

1 
V§£' 

where /? and ^w are coprime integers. Put u: = %m + spm and v: = qm. Then, it is w = /iv mod s 
and 

£ - 1 
V5v2 

To estimate the greatest common divisor of u and v, we conclude from (pm9 qm) = 1, p|fm, and 
p^l^ that 
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(spm,qm) = (s,qj<-

By (u, v) = (hqm+$pm, qm) = (spm, qm)9 the first assertion of Theorem 1.1 follows. 
The corresponding assertion of Corollary 1.1 follows immediately. But it remains to show 

that Theorem 1.1 cannot be improved in general. For this purpose, let $> 0 and h be integers. 
Put £:=/f + s(l + V5)/2. In what follows, we shall show that for every s>0 there are at most 
finitely many fractions u I v, where v > 0, 

u = hv mods (2.2) 
and 

* V V5v2 ' 
(2.3) 

There is nothing to prove in the case in which no fractions ulv satisfy (2.2) and (2.3) simul-
taneously. Otherwise, we conclude from (2.2) that u = hv+w$ holds for a certain integer w. 
Then we have, by (2.3), 

V5v2 >S 

which yields 
1 + V5 

1 + V5 w 
2 v 

1 \-e 
rvsv2-

(2.4) 

It is a well-known fact from the theory of continued fractions that there are at most finitely many 
solutions w/v in (2.4) (see, e.g., Th. 194 in [5]). One knows that every solution of (2.4) satisfies 

— = - ^ for some integer /i, and v2 < —. 

Our assertion follows from the inequality \v%-u\ < s/S, which has at most finitely many solu-
tions for every integer v, 

Proof of Theorem 1.2: Let p and q be different primes with pq\s. Moreover, we define 
a sequence (an)n>o of nonnegative integers as follows. Put a0 := 0 and ax := p. Let a2 be the 
unique solution of the congruence 

a2p = -l mod g, (2.5) 

where 1 < a2 < q. Since (/?, q) = 1, solutions of (2.5) do exist. Finally, put av := p for v =3, 5, 7, 
... and av := q for v =4, 6, 8, ... . Then we have q0 = 1, qx = p, q2 = a2p + 1 = 0 mod q. Applying 
mathematical induction, we conclude that 

[0 mod p, if v = 1 mod 2 
(2.6) qv = < ~ (v > 1). 

[0 mod q, if v = 0 mod 2 
Obviously, r/: = [a0; a1? a2,...] and ^: = h + s?j represent real quadratic irrational numbers. 

Now we assume that integers u and v do exist such that \v\>l9u = hv mod s, and 

u\ 
v 2v ,2 ' 
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Hence, there is an integer w such that u - hv + ws and 

n- w 
2v ,2 ' 

It follows from the elementary theory of continued fractions (e.g., see Th. 184 in [5]) that the 
fraction w/v satisfies 

v % 
(2.7) 

for some convergent pnlqn of 77. One may exclude the case where n = 0, since otherwise it fol-
lows from (2.7) and q0 = l that v\w. The integer w was defined by ws = u-hv, hence v divides 
u. This is a contradiction to the hypothesis on it and v, because we have deduced from n - 0 that 
(w,v)= |v| >1 . Therefore, we may assume n>0 in (2.7). By (2.6), either/? or q divides qn. 
Since pn and qn are coprime, (2.7) implies that v is divisible by the same primes that also divide 
qn. From pq | s and u = hv mod s, it follows that (u, v) > 1, a contradiction. It is proved that the 
integers 11 and v cannot exist, and the proof of Theorem 1.2 is complete. 

3e PROOF OF THEOREM 1.3 

Let a and b be integers with a > 0, h * 0. 77 denotes any real irrational number. In what 
follows, we consider two consecutive convergents -^J- and -^ of r/. For every integer n > 1 
satisfying aqn+bqn_l ^ 0 , we define 

ft 
*": 1 + K, + 1 -a */*„+*' (3.1) 

where an+l :=[a„+1;aw+2,aw+3,...] and /?„ \=laman^an_^...,a^. From aw+1 £<Q, we have 
fta„+1 - a ^ 0; it follows from 

Pn = <lr, 
<ln-\ 

(«>1) 

and aqn + bqn_x * 0 that a/?„ + 6 * 0 . 

Proposition 3.1: Let n > 1 and y := sign(ft/l„). Then we have 

f]-
apn+t>P„-i 
Wn+bqn-i 

yab 
K(a(ln+b<ln-l) 

This is Proposition 2.1 in [2] apart from different notations concerning an, /?„, and rj. 

At the beginning of the proof of Theorem 1.3, we apply Uchiyama's result mentioned in the 
Introduction. By (1.1) and (1.2), there are infinitely many integers u0 and v0 * 0 such that 

£_!5L 
4v0

2 

and 
UQ = h mod s, v0 = l mod s. 

(3.2) 

(3.3) 
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Let d := (% v0) > 0. Every common prime divisor p of d and s is a divisor of v0, too. This is 
impossible, because v0 = 1 mod s. Hence, d and s are coprime, and therefore an integer d0 exists 
such that 

d-dQ = l mods. (3.4) 

Moreover, there are coprime integers u and v * 0 satisfying #0 = du and v0 = <i»>. Therefore, 
we have d0UQ = ddQu or u = M0 mod 5 by (3.3) and (3.4). Similarly, we conclude v = dQ mod s. 
Collecting together, we have proved the existence of infinitely many coprime integers u and v & 0 
with u = hv mod s and, by (3.2), 

s-- < —=- < —=-. 4v2 4v2 

If it is v < 0, this result is also true for —u and -v, and the assertion of the theorem is proved for 
S = s2/4. 

Now let TJ:= £ - = [a0;aj,a2,...], and let j - (» > 0) denote the convergents of rj. In what 
follows, we assume n > 1. 

Caw 7. (q„-i,s) = l. 
Put P„ := /?„_!, Q„ := 9„_!. Then we have 

P, 
(Pn,Qn) = \ (Qn,s) = \ 7" a a2 i2 ' (3.5) 

Case 2. (qn_x, s) > 1 and S(s) \qn_v 

Let 
a:= Y\p, Pn:=apn+pn^ Qn: = aqn+qn_v 

p\s 
Pkn-\ 

From the hypothesis of Case 2, we conclude that 
a>l 

By straightforward computations, one gets qnPn-pnQn - (~*)w> which implies that 

(^,a)=i-

(3.6) 

(3.7) 

Let/? denote any prime divisor of s. Ifp divides qn_x, we conclude that a is not divisible by p. 
Moreover, p does not divide g„ because qn and g ^ are coprime. Finally, we get p\Qn. 

Now, let/? and q ^ be coprime. Then we have p\a, and again/? does not divide Qn. Since 
p is an arbitrary prime divisor of s, we have proved that 

( & , * ) = !• (3-8) 
From the hypothesis (#„_,, ,s) > 1, we know that a certain common prime divisor of q„_1 and s 
exists. This and (3.6) imply that 

\<a<—^-J-, 
Po 

(3.9) 

where p0 denotes the smallest prime divisor of s. We apply Proposition 3.1 with h = l: 

32 [FEB. 



ON DIOPHANTINE APPROXIMATIONS WITH RATIONALS RESTRICTED BY ARITHMETICAL CONDITIONS 

a 
Qn\ \K\Qn |2 ' (3.10) 

where 
1 

2+aPn- . ««+l 

i + a^+A 

(3.11) 

\l~Pn\ 

We are looking for a suitable upper bound of \Xn\ *. For this purpose, we separate the argu-
ments into three cases. 

Case 2.1. 2+af)n- a. n+l <0. 

For n > 1, it is clear that an+l > 1 and fin>l. It follows from (3.11) that 

\Anri=i-Pn<i+ a n+\ 
a(l + a„+1p„) 

< 1 + a*+i < l + l < 2 . 
«(1 + «„+i) a 

(3.12) 

a Case 2.2. 0 < 2+a^„ - •=** < 1 + an+l($n. 
a 

Then we have 0 < pn < 1, and consequently 

IV1 si. (3.13) 

Case 2.3. 2+a0„-

We conclude that 

a «±L > ! + «„+lAr 

1 "' " » l + a„ + A !+/?„ 1 + 1 1+fl, 
(3.14) 

We know that a > 2, from (3.6). Collecting together from (3.12) through (3.14) we have proved 
that | A J - 1 < a holds for every integer n > 1. Hence, (3.10) yields 

"a 
a (3.15) 

Case 3. S(s)\q„_v 

Since qn_x and qn are coprime, it follows from the hypothesis that (qn, s) = l. Put Pn: = pn 
and Q, := qn. Obviously, the assertions for Pn and Q, from (3.5) hold. 

We collect together the results from (3.5), (3.7), (3.8), and (3.15): For a certain sequence of 
increasing integers n> 1, we get a sequence of rationals (PvIQv)v>i with coprime integers Pv and 
&, such that (gv,s) = l ( v £ l ) , 

and 
4-h Pv < ^ (v , l ) . 
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Let u: = hQv + sPv, v\-Qv. Then, by the upper bound for a from (3.9), we have 

' v 
c ^2(s) 

2 2 ' P> 
where u = hv mod s. We conclude from (gv, sPv) = 1 that f/ and v are coprime. Since Qv can be 
chosen as large as possible, the assertion of Theorem 1.3 is also proved for S - S>S2(S)-PQ2. 

4. CONCLUDING REMARK 

Using the well-known continued fraction expansion of Euler's number e, the author obtained the 
following result. 

Theorem: For every integer s> 2 there are infinitely many fractions PIQ with coprime integers 
P,Q>0 satisfying P = Qs 1 modsand Q-\Qe-P\ = o(l) for Q->oo. 
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