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1. I N T R O D U C T I O N 

The identities 

X4 2 = 44+i (i-i) 
*=i 

and 

Zj^k~ 4 4 + i ~ 2 - LnLn+l - LQLt (1.2) 

are well known. The right side of (1.2) suggests the notation [LjLj+llfo, which we use throughout 
this paper in order to conserve space. Each time we use this notation, we take j to be the dummy 
variable. 

In [2], motivated by (1.1) and (1.2), together with 

X FkFk+l = ^FnFn+lFn+2, C1 -3) 

we obtained several families of similar sums which involve longer products. For example, we 
obtained 

Z J7 TT I ? 2 17 — nrn+l'''rn+4m+l (1 A \ 

rkrk+v..Pk+2m^.Ii
k+4m- j , U - 4 ) 

for m a positive integer. By introducing a second parameter, s, we have managed to generalize all 
of the results in [2], while maintaining their elegance. The object of this paper is to present these 
generalizations, together with several results involving alternating sums, the like of which were 
not treated in [2]. In Section 2 we state our results, and in Section 3 we indicate the method of 
proof. We require the following identities: 

PfHrk + Fn-k = 4 4 > k eVen> (1 «5) 
Fn+k + Fn-k = LnFk, k odd, (1.6) 

Fn+k - Fn-k = Fnh> k °d d> 0 -7) 
Fn+k~Fn-k = 4 4 , k even, (1.8) 

4+^ + 4 - * = 4 4 , *®ven, (1.9) 
Ln+k + Ln__k=5FnFk, £odd, (1.10) 

4+* ~ 4 - * = 4 4 > k odd, (1.11) 

4+* - Ln-k = 5 4 4 > k even, (1.12) 
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L2
n-L2n=(-iy2 = (-iyL0, 

5F^L2ri = (-irl2 = (-lT+lL0, 
5F2n-L2n = - 4 = -L20-

(1.13) 

(1.14) 

(1.15) 

Identities (1.5)-(1.12) occur as (5)-(12) in Bergum and Hoggatt [1], while (1.13)-(1.15) can 
be proved with the use of the Binet forms. In some of the proofs we need to recall the well-
known identity F2rj = FnLn. 

2. THE RESULTS 

In this section we list our results in eight theorems, in which s > 0 and m > 0 are integers. In 
some of the theorems the parity of s is important, and the reasons for this become apparent in 
Section 3. Our numbering of Theorems 1-5 parallels that in [2], so that both sets of results can be 
easily compared. 

Theorem 1: 

2«i ^sk^s(k+l) '' • ^s(k+4m)^s(k+2m) ~ 
* 'sn*1s(n+l) •'' ^s{n+4m+i) 

k=l Fm 
, s even, 

s(2m+l) 

Z" F F2 F _ FsnFs{n+l) • • - Fs(n+4m+l) , , 

rsk"' rs(k+2m) •'' rs(k+4m) ~ j ' ** O U U -
k=l ^s(2m+l) 

Theorem 2: 

2-i ^sk^s(k+l) •' • ^s(k+4m)Fs(k+2m) : 

*=1 

LsjLs(J+l) '' • AsQ+4/w+l) 

SFm s(2m+l) 
s even, 

(2.1) 

(2.2) 

(2.3) 

2d ^sk^s(k+l) ' • • £Js(k+2m) '' • ^s(k+4m) ~ 
k=l 

^sj^s{j+l) •'' ^s(j+4m+l) 

^s(2m+l) 
, s odd. (2.4) 

Theorem 3: 

2 ^ ^sk^s(k+l) - - 1 's(k+4m+2)'us(k+2m+l) " .../v \^«./ 
£=1 

2 L ^sk^s(k+l) •' • ^s(k+4m+2ys(k+2m+l) : 

^sn^sjn+l) '• • ^s(fi+4tn+3) 

F 

A ; A( /+ l ) • • • AsQ+4ffl+3) 

k=l 5F. s(2m+2) 

(2.5) 

(2.6) 

Theorem 4: 

2d FskFs(k+l)• • • Fs(k+4m)Fs(2k+4m) 
*=1 

2^ ^sk^s(k+l) ' ' ' *Js(k+4m)Fs(2k+4m) ' 
k=l 

F2 F2 F2 
rsnrs(n+\) ''' rs(n+4m+l) 

F. s(4m+2) 

' r2 j2 j2 

5F. s(4m+2) 

(2.7) 

(2.8) 
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Theorem 5: 
n p2 F2 F2 

X rp2j72 rp2 rp _ J sn1 s(n+l) " A s(n+4m+3) 
rskrs(k+l) • • • rs(k+4m+2)rs(2k+4n k=l 

4m+2) ' 

2^ ^sk^s(k+l) • *' ^s(k+4m+2ys(2k+4m+2) : 

k=l 

s(4m+4) 

j2 j2 f2 
^sj^sjj+l) '' • Ljs{j+4m+3) 

5Kt s(4m+4) 

(2.9) 

(2.10) 

For jii = 0 we interpret the suramands in (2.2) and (2.4) as F}k and l£k, respectively. For s 
odd the corresponding sums are then 

k=l L. 1 ^ = ^ ^ and £ Z ? 'sk 
k=l 

4/4(/+l) (2.11) 

which generalize (1.1) and (1.2), respectively. 
Interestingly, for /w = 0, (2.1) and (2.3) provide alternative expressions for the same sum, 

namely, 
n p p 

Z rp s sn1 s(n+l) 
^2sk = " F L 

*=1 

LsjLs(j+l) 

5R s even. (2.12) 

Theorem 6: 

±(-dkFskFsik+iy..Fs{k+4m)Fs(k+2m) = (rVWwy'-F***** , 5 e v e t l ) ( 2 . 1 3 ) 
k=l us(2m+l) 

i(-l)kFskFs(k+ir..Fs(k+4m)Ls{k+2m) = ( ^-Vr-Wl f 5 o d d . ( 2 1 4 ) 
k=l 1 s(2m+l) 

Theorem 7: 

2-f V ^) 4fc4(Jfc+l) ' • ' 4(fc+4/w)4(fc+2m) ~ 
k=l 

n 

2 L v V 4 f c 4 ( * + l ) ' ' ' 4(fc+4m)4(fc+2m) ~ 

( 1) L„-Ls,j+ly..Ls,j. 'sj s(j+l) ''' -L,s(j+4m+l) 

-^s(2m+l) 

fc=l 

( 1) LSJLSQ+Iy . . Lsy+4m^ 
5F. s(2m+l) 

, s even, (2.15) 
) 
i 

, sodd. (2.16) 
Jo 

Theorem 8: 
n (-\YF F F 

W l\kJ7 17 17 J7 - l ' sn 5 ( w + 1 > " -y("+4m+3) 
2 L ^ ~ L' rskrs(k+l) • ' • rs(k+4m+2)rs(k+2m+l) ~ r 
k=l ^s(2m+2) 

2-»V V 4it4(it+l)---4(it+4iii+2)4(Jt+2»i+l) _ 

i f c = l 

( 1) LsjLs(j+ly..Ls(j+4m+3<) 

^(2m+2) 

(2.17) 

(2.18) 

Some special cases of these alternating sums are worthy of note. For m = 0 Theorem 6 yields 
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and 

n (~]YF F 
X ( - l ) f c ^ = ( l ) y ™ , 5 even, 

n (-1YF F 

An alternative formulation for (2.20) is provided by (2.16). For m - 0 (2.15) becomes 

i H)%=I 
&=i 

( 1) LSjLS(j+i) 
L. , s even. 

(2.19) 

(2.20) 

(2.21) 

3. THE METHOD OF PROOF 

Each result in Section 2 can be proved with the use of the method in [2]. However, the 
significance of the parity of s in some of our theorems becomes apparent only when we work 
through the proofs. For this reason, we illustrate the method of proof once more by proving 
(2.4). 

Proof of (2.4): Let /„ denote the sum on the left side of (2.4) and let 

_ ^sn^s(n+l) ''' ^s(n+4m+l) 

Then 

A«i A«f »+n • • • A«/ 
rn Tn-\ 

_ •L^sn1^s(n+l) • • • ^(w+4/w) r j 
- j m 

s(n+4m) 
us(2m+l) 

us(2m+l) 

us(2m+l) 

's(n+4m+l)~ Ls{n-l)\ 

'sn'Ljs(n+l) ' *' s(n+4m) r r _ 
T tL's(n+2m)+s(2m+l) ±Js(n+2m)-s(2m+l) ] 

= 4*4(n+i) • • • L]{n+2m)... Ls(n+4m) [by (1.11) since s(2m +1) is odd] 

Thus ln-rn=c, where c is a constant. 
Now 

— LsL2s...LS(4i lm+l) 

— LsL2s... As(4m+1) 

-Js{4m+2) 

^s(2m+l) J 
I2 - I 

LQLSL2S . . • A(4/w+l) 

^ ( 2 m + l ) 

[by (1.13)] 
^(2^1+1) 

= -n o> 
and this concludes the proof • 
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In contrast, when proving (2.3), we are required to factorize Ls{n+2m)+s(2m+l) - Ls{ri+2m)_s(2m+l) 

for s even, and this requires the use of (1.12). 
As in [2], we conclude by mentioning that the results of this paper translate immediately to 

the sequences defined by 

\Un = PUn-i + U^, Uo = 0, f/, = l, 
Wn=PVn-^Vn_2, V0 = 2, V,=p. 

We simply replace Fn by Un, Ln by Vn, and 5 by p2 + 4. 
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