SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS-PART II

R. S. Melham

School of Mathematical Sciences, University of Technology, Sydney
PO Box 123, Broadway, NSW 2007 Australia
(Submitted March 1998-Final Revision June 1998)

1. INTRODUCTION

The identities

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} L_{k}^{2}=L_{n} L_{n+1}-2=L_{n} L_{n+1}-L_{0} L_{1} \tag{1.2}
\end{equation*}
$$

are well known. The right side of (1.2) suggests the notation $\left[L_{j} L_{j+1}\right]_{0}^{n}$, which we use throughout this paper in order to conserve space. Each time we use this notation, we take j to be the dummy variable.

In [2], motivated by (1.1) and (1.2), together with

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k}^{2} F_{k+1}=\frac{1}{2} F_{n} F_{n+1} F_{n+2}, \tag{1.3}
\end{equation*}
$$

we obtained several families of similar sums which involve longer products. For example, we obtained

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k} F_{k+1} \ldots F_{k+2 m}^{2} \ldots F_{k+4 m}=\frac{F_{n} F_{n+1} \ldots F_{n+4 m+1}}{L_{2 m+1}} \tag{1.4}
\end{equation*}
$$

for m a positive integer. By introducing a second parameter, s, we have managed to generalize all of the results in [2], while maintaining their elegance. The object of this paper is to present these generalizations, together with several results involving alternating sums, the like of which were not treated in [2]. In Section 2 we state our results, and in Section 3 we indicate the method of proof. We require the following identities:

$$
\begin{align*}
& F_{n+k}+F_{n-k}=F_{n} L_{k}, \quad k \text { even, } \tag{1.5}\\
& F_{n+k}+F_{n-k}=L_{n} F_{k}, \quad k \text { odd, } \tag{1.6}\\
& F_{n+k}-F_{n-k}=F_{n} L_{k}, \quad k \text { odd, } \tag{1.7}\\
& F_{n+k}-F_{n-k}=L_{n} F_{k}, \quad k \text { even, } \tag{1.8}\\
& L_{n+k}+L_{n-k}=L_{n} L_{k}, \quad k \text { even, } \tag{1.9}\\
& L_{n+k}+L_{n-k}=5 F_{n} F_{k}, \quad k \text { odd, } \tag{1.10}\\
& L_{n+k}-L_{n-k}=L_{n} L_{k}, \quad k \text { odd, } \tag{1.11}\\
& L_{n+k}-L_{n-k}=5 F_{n} F_{k}, \quad k \text { even, } \tag{1.12}
\end{align*}
$$

$$
\begin{align*}
& L_{n}^{2}-L_{2 n}=(-1)^{n} 2=(-1)^{n} L_{0} \tag{1.13}\\
& 5 F_{n}^{2}-L_{2 n}=(-1)^{n+1} 2=(-1)^{n+1} L_{0} \tag{1.14}\\
& 5 F_{2 n}^{2}-L_{2 n}^{2}=-4=-L_{0}^{2} \tag{1.15}
\end{align*}
$$

Identities (1.5)-(1.12) occur as (5)-(12) in Bergum and Hoggatt [1], while (1.13)-(1.15) can be proved with the use of the Binet forms. In some of the proofs we need to recall the wellknown identity $F_{2 n}=F_{n} L_{n}$.

2. THE RESULTS

In this section we list our results in eight theorems, in which $s>0$ and $m \geq 0$ are integers. In some of the theorems the parity of s is important, and the reasons for this become apparent in Section 3. Our numbering of Theorems 1-5 parallels that in [2], so that both sets of results can be easily compared.

Theorem 1:

$$
\begin{align*}
& \sum_{k=1}^{n} F_{s k} F_{s(k+1)} \ldots F_{s(k+4 m)} L_{s(k+2 m)}=\frac{F_{s n} F_{s(n+1)} \ldots F_{s(n+4 m+1)}}{F_{s(2 m+1)}}, s \text { even }, \tag{2.1}\\
& \sum_{k=1}^{n} F_{s k} \ldots F_{s(k+2 m)}^{2} \ldots F_{s(k+4 m)}=\frac{F_{s n} F_{s(n+1)} \ldots F_{s(n+4 m+1)}}{L_{s(2 m+1)}}, s \text { odd } \tag{2.2}
\end{align*}
$$

Theorem 2:

$$
\begin{align*}
& \sum_{k=1}^{n} L_{s k} L_{s(k+1)} \ldots L_{s(k+4 m)} F_{s(k+2 m)}=\left[\frac{L_{s j} L_{s(j+1)} \ldots L_{s(j+4 m+1)}}{5 F_{s(2 m+1)}}\right]_{0}^{n}, s \text { even } \tag{2.3}\\
& \sum_{k=1}^{n} L_{s k} L_{s(k+1)} \ldots L_{s(k+2 m)}^{2} \ldots L_{s(k+4 m)}=\left[\frac{L_{s j} L_{s(j+1)} \ldots L_{s(j+4 m+1)}}{L_{s(2 m+1)}}\right]_{0}^{n}, s \text { odd. } \tag{2.4}
\end{align*}
$$

Theorem 3:

$$
\begin{align*}
& \sum_{k=1}^{n} F_{s k} F_{s(k+1)} \ldots F_{s(k+4 m+2)} L_{s(k+2 m+1)}=\frac{F_{s n} F_{s(n+1)} \ldots F_{s(n+4 m+3)}}{F_{s(2 m+2)}}, \tag{2.5}\\
& \sum_{k=1}^{n} L_{s k} L_{s(k+1)} \ldots L_{s(k+4 m+2)} F_{s(k+2 m+1)}=\left[\frac{L_{s j} L_{s(j+1)} \ldots L_{s(j+4 m+3)}}{5 F_{s(2 m+2)}}\right]_{0}^{n} . \tag{2.6}
\end{align*}
$$

Theorem 4:

$$
\begin{align*}
& \sum_{k=1}^{n} F_{s k}^{2} F_{s(k+1)}^{2} \ldots F_{s(k+4 m)}^{2} F_{s(2 k+4 m)}=\frac{F_{s n}^{2} F_{s(n+1)}^{2} \ldots F_{s(n+4 m+1)}^{2}}{F_{s(4 m+2)}}, \tag{2.7}\\
& \sum_{k=1}^{n} L_{s k}^{2} L_{s(k+1)}^{2} \ldots L_{s(k+4 m)}^{2} F_{s(2 k+4 m)}=\left[\frac{L_{s j}^{2} L_{s(j+1)}^{2} \ldots L_{s(j+4 m+1)}^{2}}{5 F_{s(4 m+2)}}\right]_{0}^{n} . \tag{2.8}
\end{align*}
$$

Theorem 5:

$$
\begin{align*}
& \sum_{k=1}^{n} F_{s k}^{2} F_{s(k+1)}^{2} \ldots F_{s(k+4 m+2)}^{2} F_{s(2 k+4 m+2)}=\frac{F_{s n}^{2} F_{s(n+1)}^{2} \ldots F_{s(n+4 m+3)}^{2}}{F_{s(4 m+4)}} \tag{2.9}\\
& \sum_{k=1}^{n} L_{s k}^{2} L_{s(k+1)}^{2} \ldots L_{s(k+4 m+2)}^{2} F_{s(2 k+4 m+2)}=\left[\frac{L_{s j}^{2} L_{s(j+1)}^{2} \ldots L_{s(j+4 m+3)}^{2}}{5 F_{s(4 m+4)}}\right]_{0}^{n} \tag{2.10}
\end{align*}
$$

For $m=0$ we interpret the summands in (2.2) and (2.4) as $F_{s k}^{2}$ and $L_{s k}^{2}$, respectively. For s odd the corresponding sums are then

$$
\begin{equation*}
\sum_{k=1}^{n} F_{s k}^{2}=\frac{F_{s n} F_{s(n+1)}}{L_{s}} \quad \text { and } \quad \sum_{k=1}^{n} L_{s k}^{2}=\left[\frac{L_{s j} L_{s(j+1)}}{L_{s}}\right]_{0}^{n} \tag{2.11}
\end{equation*}
$$

which generalize (1.1) and (1.2), respectively.
Interestingly, for $m=0,(2.1)$ and (2.3) provide alternative expressions for the same sum, namely,

$$
\begin{equation*}
\sum_{k=1}^{n} F_{2 s k}=\frac{F_{s n} F_{s(n+1)}}{F_{s}}=\left[\frac{L_{s j} L_{s(j+1)}}{5 F_{s}}\right]_{0}^{n}, \quad s \text { even } \tag{2.12}
\end{equation*}
$$

Theorem 6:

$$
\begin{align*}
& \sum_{k=1}^{n}(-1)^{k} F_{s k} F_{s(k+1)} \ldots F_{s(k+4 m)} F_{s(k+2 m)}=\frac{(-1)^{n} F_{s n} F_{s(n+1)} \ldots F_{s(n+4 m+1)}}{L_{s(2 m+1)}}, s \text { even } \tag{2.13}\\
& \sum_{k=1}^{n}(-1)^{k} F_{s k} F_{s(k+1)} \ldots F_{s(k+4 m)} L_{s(k+2 m)}=\frac{(-1)^{n} F_{s n} F_{s(n+1)} \ldots F_{s(n+4 m+1)}}{F_{s(2 m+1)}}, s \text { odd } \tag{2.14}
\end{align*}
$$

Theorem 7:

$$
\begin{align*}
& \sum_{k=1}^{n}(-1)^{k} L_{s k} L_{s(k+1)} \ldots L_{s(k+4 m)} L_{s(k+2 m)}=\left[\frac{(-1)^{n} L_{s j} L_{s(j+1)} \ldots L_{s(j+4 m+1)}}{L_{s(2 m+1)}}\right]_{0}^{n}, s \text { even } \tag{2.15}\\
& \sum_{k=1}^{n}(-1)^{k} L_{s k} L_{s(k+1)} \ldots L_{s(k+4 m)} F_{s(k+2 m)}=\left[\frac{(-1)^{n} L_{s j} L_{s(j+1)} \ldots L_{s(j+4 m+1)}}{5 F_{s(2 m+1)}}\right]_{0}^{n}, s \text { odd } \tag{2.16}
\end{align*}
$$

Theorem 8:

$$
\begin{align*}
& \sum_{k=1}^{n}(-1)^{k} F_{s k} F_{s(k+1)} \ldots F_{s(k+4 m+2)} F_{s(k+2 m+1)}=\frac{(-1)^{n} F_{s n} F_{s(n+1)} \ldots F_{s(n+4 m+3)}}{L_{s(2 m+2)}} \tag{2.17}\\
& \sum_{k=1}^{n}(-1)^{k} L_{s k} L_{s(k+1)} \ldots L_{s(k+4 m+2)} L_{s(k+2 m+1)}=\left[\frac{(-1)^{n} L_{s j} L_{s(j+1)} \ldots L_{s(j+4 m+3)}}{L_{s(2 m+2)}}\right]_{0}^{n} \tag{2.18}
\end{align*}
$$

Some special cases of these alternating sums are worthy of note. For $m=0$ Theorem 6 yields

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k} F_{s k}^{2}=\frac{(-1)^{n} F_{s n} F_{s(n+1)}}{L_{s}}, \quad s \text { even } \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k} F_{2 s k}=\frac{(-1)^{n} F_{s n} F_{s(n+1)}}{F_{s}}, s \text { odd } \tag{2.20}
\end{equation*}
$$

An alternative formulation for (2.20) is provided by (2.16). For $m=0(2.15)$ becomes

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{k} L_{s k}^{2}=\left[\frac{(-1)^{n} L_{s j} L_{s(j+1)}}{L_{s}}\right]_{0}^{n}, s \text { even } \tag{2.21}
\end{equation*}
$$

3. THE METHOD OF PROOF

Each result in Section 2 can be proved with the use of the method in [2]. However, the significance of the parity of s in some of our theorems becomes apparent only when we work through the proofs. For this reason, we illustrate the method of proof once more by proving (2.4).

Proof of (2.4): Let l_{n} denote the sum on the left side of (2.4) and let

$$
r_{n}=\frac{L_{s n} L_{s(n+1)} \ldots L_{s(n+4 m+1)}}{L_{s(2 m+1)}}
$$

Then

$$
\begin{aligned}
r_{n}-r_{n-1} & =\frac{L_{s n} L_{s(n+1)} \ldots L_{s(n+4 m)}}{L_{s(2 m+1)}}\left[L_{s(n+4 m+1)}-L_{s(n-1)}\right] \\
& =\frac{L_{s n} L_{s(n+1)} \ldots L_{s(n+4 m)}}{L_{s(2 m+1)}}\left[L_{s(n+2 m)+s(2 m+1)}-L_{s(n+2 m)-s(2 m+1)}\right] \\
& =L_{s n} L_{s(n+1)} \ldots L_{s(n+2 m)}^{2} \ldots L_{s(n+4 m)}[\text { by }(1.11) \text { since } s(2 m+1) \text { is odd }] \\
& =l_{n}-l_{n-1} .
\end{aligned}
$$

Thus $l_{n}-r_{n}=c$, where c is a constant.
Now

$$
\begin{aligned}
c & =l_{1}-r_{1} \\
& =L_{s} L_{2 s} \ldots L_{s(4 m+1)}\left[L_{s(2 m+1)}-\frac{L_{s(4 m+2)}}{L_{s(2 m+1)}}\right] \\
& =L_{s} L_{2 s} \ldots L_{s(4 m+1)} \cdot \frac{L_{s(2 m+1)}^{2}-L_{s(4 m+2)}}{L_{s(2 m+1)}} \\
& =-\frac{L_{0} L_{s} L_{2 s} \ldots L_{s(4 m+1)}}{L_{s(2 m+1)}} \quad[\mathrm{by}(1.13)] \\
& =-r_{0}
\end{aligned}
$$

and this concludes the proof.

In contrast, when proving (2.3), we are required to factorize $L_{s(n+2 m)+s(2 m+1)}-L_{s(n+2 m)-s(2 m+1)}$ for s even, and this requires the use of (1.12).

As in [2], we conclude by mentioning that the results of this paper translate immediately to the sequences defined by

$$
\left\{\begin{array}{lll}
U_{n}=p U_{n-1}+U_{n-2}, & U_{0}=0, & U_{1}=1 \\
V_{n}=p V_{n-1}+V_{n-2}, & V_{0}=2, & V_{1}=p
\end{array}\right.
$$

We simply replace F_{n} by U_{n}, L_{n} by V_{n}, and 5 by $p^{2}+4$.

ACKNOWLEDGMENT

I would like to express by gratitude to the anonymous referee whose comments have improved the presentation of this paper.

REIERENCES

1. G. E. Bergum \& V. E. Hoggatt, Jr. "Sums and Products for Recurring Sequences." The Fibonacci Quarterly 13.2 (1975):115-20.
2. R. S. Melham. "Sums of Certain Products of Fibonacci and Lucas Numbers." The Fibonacci Quarterly 37.3 (1999):248-51
AMS Classification Numbers: 11B39, 11B37 \%\% \%
