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1. INTRODUCTION 

Diagonal polynomials have been defined for Chebyshev, Fermat, Fibonacci, Lucas, Jacobsthal 
and other polynomials, and their properties have been studied (see, e.g., [9]. [5], and [7]). How-
ever, these are not applicable to the diagonal polynomials associated with the Morgan-Voyce 
polynomials (hereafter denoted as MVPs) B„{x),b„{x), c„(x), and Cn(x), defined by: 

Bn(x) = (x + 2)B„_l(x)-B„_2(x) («>2), (1.1a) 
with 

B0(x) = l, Bl(x) = x + 2; ( l i b ) 
hn(x) = (x + 2)b„_l(x)-b„_2(x) (»>2), (1.2a) 

with 
b0(x) = l, bl(x) = x + \; (1.2b) 

c„(x) = (x + 2)c„_1(x)-c„_2(x) (n>2), (1.3a) 
with 

c0(x)-l, Cj(x) = x + 3; (1.3b) 
C„(x) = (x + 2)C„_i(x)-Cn_2(x) (»>2), (1.4a) 

with 
C0(x) = 2, Q(x) = x + 2. (1.4b) 

Many interesting results have been proved regarding these MVPs (see [10], [11], [14], [12], 
[1], [2], [6], and [8]), and some of the important known results are listed in Section 2 for ready 
reference as well as for establishing the results regarding their associated diagonal polynomials. 

2. SOME IMPORTANT PROPERTIES OF THE MORGAN-VOYCE POLYNOMIALS 

Interrelations: 

b^^B^-B^x) (n>\), 
xB„(x) = bn+1(x)-b„(x), 

C„(x) = Bn(x)-B„_2(x) (n>2), 

*c„(x) = bn+1(x) - bn_x{x) (n > 1), 
Cn(x) = c„(x)-c„„l(x) (»>1), 
xcn(x) = Cn+l(x)-C„(x), 
c„(x) = B„(x) + B„_l(x) (n>l), 

from [10]. 
from [10]. 
from [14], [13]. 
from [14], [13]. 
from [6]. 
from [6], [13]. 
from (2.4) and (2.5). 
from [13]. 

(2.1) 
(2.2) 
(2.3) 
(2.4) 
(2.5) 

(2.6) 
(2.7) 
(2.8) 
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Closed-Form Expressions: 

Bn(x) = t { " l l - i i y , from [11]. (2.9 

*»(*) = X f c j f c V ' from [11]. (2.10 

c»w=£jjrri{"-k)xk' from < 2 - 8 ) a n d <2-9)- < 2 1 1 

Q W = 2 + E f { , I ^ A 1 ) * * ' from (2.4) and (2.10). (2.12 

It should be noted that (2.12) has been derived earlier (see [2]). 
Zeros: 

5„(*):x„ = - 4 s i n 2 | ^ y - | j J i - = l,2,...,ii, from [12]. (2.13 

b„(x): ^ = - 4 s i n 2 | ^ - | ] , r = l,2,...,n, from [12]. (2.14 

c„(x): ^ = _ 4 s i n 2 | ^ - T - | | , r = 1,2,...,n, from [1]. (2.15 

C„(x): xr = - 4 s m 2 { ^ - - | J , r = l,2,...,«, from [14]. (2.16 

Generating Functions: 
00 

B(x,t) = J]Bn(x)tn = [l-(xt + 2t-t2)yl, from (1.1a). (2.17 
o 

b(x, t) = ££„(*)/" = (1 - t)B(x, t), from (2.1) and (2.17). (2.18 
o 
00 

<tx, 0 = Y*cn(x)fn = (l + *)B(x, t), from (2.8) and (2.17). (2.19 
o 

c(*> 0 = £ C*(*)'w = 1 + (1 - *2)£(*> 0, from (2.3) and (2.17). (2.20 
o 

Differential Equations: 
Bn(x): x(x + 4)y" + 3(x + 2)yf-n(n + 2)y = 0, from [12]. (2.21 

bn(x): x(x + 4)y" + 2(x + l)y'-n(n + l)y = 0, from [12]. (2.22 

c„(x): x(x + 4)y"+ 2(x + 3)y'-n(n + l)y = 0, from [13]. (2.23 

Cn(x)\ x(x + 4)y" + (* + 2 ) / - w2)/ = 0, from [3]. (2.24 
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Orthogonality Property: 
Bn(x): Orthogonal over (-4,0) with respect 

to the weight function ^-x(x + 4)? from [11]. (2.25) 

bn(x): Orthogonal over (-4,0) with respect 
to the weight function ^J-(x + 4)/x, from [11]. (2.26) 

cn(x)\ Orthogonal over (-4,0) with respect 
to the weight function ^/-x/(x + 4), from [13]. (2.27) 

Cn(x): Orthogonal over (-4,0) with respect 
to the weight function l/^/-x(x + 4), from [2]. (2.28) 

Simson Formulas: 

5,+1(x)5w_1(x)-^(x) - - 1 , from [11]. (2.29) 

6w+1(x)V1(x)-^(x) - x, from [12]. (2.30) 

«Wi(x)cll.1(x)-c2(x) = -(x + 4), from [13]. (2.31) 

Q+1(x)Q.1(x)-Q2(x) = x(x + 4), from [13]. (2.32) 

3. MSWG DIAGONAL POLYNOMIALS 

In order to define the diagonal polynomials associated with the Morgan™Voyce polynomials 
in a manner similar to the diagonal polynomials defined for Chebyshev, Fermat, Fibonacci, and 
other polynomials (see [9], [5], [7]), we first need to express the MTVTs Bn(x), bn(x)y cn(x), and 
Cn(x) in descending powers of x. By letting i = n~k in (2.9), (2.10), (2.11), and (2.12), we get 
the following expressions for the MVPs: 

r2m + l-i 

" f 2n-i 

j 
n_1 - f2n-\-i 

4M=ir7"'r; (3-D 

w=Xf2Y'V'; (32) 

c " { x ) = x " % - ^ i \ i )x""+2- <3-4) 

We now rearrange C„(x) into a form that will help in formulating a closed-form expression for the 
corresponding rising diagonal polynomial. It can be shown that 

n (2n~l-i\^2n (2n-l-i 
n~i\ i ) i \ '"-1 

Hence, (3.4) can be rewritten as 
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or 
cn(x) = x»+£f-(2"r_\-iy-i. 0.5) 

Let us first consider the rising diagonal polynomial R„(x) associated with the MVP Bn(x). 
We see from (3.1) that 

Ro(x) = 1, R^x) = x, R2(x) = x2 + 2, R3(x) = x3 + 4x,..., 

R„(X)=X-+[2"j-2]^-2
+^2n~5y~4

+^n-*y-<+.... 
The above may be rewritten as 

2n + \\„ J2n-2\ „-i ,(2n-5] „_4 

Hence, 
[n/2l 

[?] V L2J J 

Similarly, starting with (3.2), (3.3), and (3.5), we may derive the following polynomial 
expressions for the rising diagonal polynomials r„(x), p„(x), and P„(x) associated, respectively, 
with the MVPs hn{x), cn(x), and C„(x): 

7=0 V J 

<*>-tm3{,"T*y*: (3,, 
P,W = *" • •&!!f!l.(2»7^*y->: (3.9) 

Z: 
[if/2],. 

/=! 
It is readily seen that all the four sets of diagonal polynomials are even for even values of n and 
odd for odd values of n. Table 1 lists the diagonal polynomials up to n = 8. 

4. SOME INTERRELATIONS AMONG J^(JC), I;(JC), /^(JC) AND PW(JC) 

Consider the expression R„{x) -i^_2(*) • Then, from (3.6), we have 
l"4](2n + 1-3(1..,-» '"«1-Y2» - 3 - SAy^-a 

= « " + ! 
[—]2»-4/ + l (2»-3Q... (2» - 4/ + 2) „. x"-2/ 

M ' ('"1)1 
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= rn(x), using (3.7). 

Hence, we have the result that 

rn(x) = Rn(x)-RrI_2(x) («>2). (4.1) 

It is interesting to compare this result with the corresponding one relating the respective MVPs, 
namely, 

bn(x) = B„(x)-B„_1(x) (»>1). 

We now prove that 
xRn(x) = rn+l(x)-r„_l(x) (n>l), (4.2) 

a result which corresponds to (2.2) with respect to the original MVPs Bn(x) and hn(x). First, 
consider r2n+l(x) - r2n-i(x) • Then, from (3.7), 

y (4n + 2 - 3A x2n+i-2i _ y(4n - 2 - 3i} ^n-\-n 
7=0V l ' ;=0^ rM(x)-r l̂(x) = s r7 -»w- + i - 2 i - z r " r x 

=^+xi(^+j-*^»-x£^+*-*}*»-» 
.2/H-l , ^ ^ + 1 -31^2 /7 -2 / 

I 
= z x "" 1 + x Z | "*,; ~|r 

7=1 

7=0 V ' 

= xR2n(x), using (3.6). 

Similarly, we can show that 

r2n+2(X)-r2n(X) = xR2n+l(X)-

Hence, the result (4.2). 
Again, from (3.7), we have 

•xi^+f-*)x™ + xp^+^x*>-» 

= x2«+i + y 2(2w + l-2Q Un + l-3A 2„+i-2/ 

= Eta+1(x), using (3.9). (4.3a) 
Similarly, 

^ 2 W + ̂ W = P2«+2(*) • ( 4 3 b ) 

Combining (4.3a) and (4.3b), we get 
P„(x) = r„(x)+r„_2(x) (»>2), (4.4) 
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a result to be compared with (2.4). Using (4.1), the above relation may be rewritten as 
?„(x) = JR„(x)-Rri_4(x) (»>4), (4.5) 

the corresponding result for the MVPs being (2.3). 
Again starting with i^(x) + Rn_2{x) and using (3.6), we can show that 

p„(x) = Rn(x) + Rei_2(x) («>2), (4.6) 

which should be compared with relation (2.8) for the corresponding MVPs. Now, using (4.6), we 
have 

Pn(*) - Pn-2(X) = R*(X) - K-4(*) • 
Hence, from (4.5), we get 

J>„(x) = p„(x)-pn_2(x) (n>2), (4.7) 

the corresponding relation for the MVPs being (2.6). Further, using (4.4), we have 
p*+i (*) ~ p„-i (*) = fo+i(*) ~ Vi(*M + fa-i (x) ~ rn.3(x)} 

= xRn(x) + xRn_2(x), using (4.2), 

= xpn(x), using (4.6). 

Hence, 
xpn(x) = ?n+l(x)-Fn_l(x) (n>l), (4.8) 

a relation corresponding to (2.7) for the original MVPs. 
We may derive a number of such interrelationships among the diagonal polynomials R„(x), 

rn(x), pn{x), and Pw(x) corresponding to those of the MVPs Bn(x), bn(x), cn(x), and Cn(x). We 
will only list the following: 

$irl(x) = BH(x)+RH_1(xy, (4.9) 
7=0 

xfiRi(x) = rn+1(x)+rn(x)-l; (4.10) 
/=0 

it?i(x) = pn(x) + p„_1(x) + l; (4.11) 

* Z A ( * ) = P»+I(*) + P , , ( * ) - 2 . (4.12) 
/=o 

5. RECURRENCE RELATIONS AND GENERATING FUNCTIONS 

From relation (4.2), we have 

*R*(x) = r„+i(x) ~ r„-i(x) in > 1) 
= l^+i(*) - /?_,(*)} - {^-t(x) - /$_3(*)} (» * 3), using (4.1). 

Hence, 
Rn+l(x) = xRn(x) + 2Rn_l(x)-Rrl_3(x) (n>3). 
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Therefore, i^(x) satisfies the recurrence relation 
Rrl(x) = xRn_l(x) + 2Rn_2(x)-Rn_4(x) (w2>4), (5.1a) 

with 
Ro(x) = 1, Rt(x) = x, R2(x) = x2 + 2, R3(x) = x3 + 4x. (5.1b) 

Similarly, we can deduce that rn(x), pn(x), and Pw(x) satisfy the following recurrence relations: 

rn(x) = xrri_l(x) + 2rn_2(x)-rn_4(x) (/i>4), (5.2a) 
with 

r0(x) = 1, ^(x) = x, r2(x) = x2 +1, r3(x) = x3 + 3x; (5.2b) 

Pn(x) = xPn-l(x) + 2Pn-2(x)-Pn-4(x) ( ^ 4 ) > (5'3*0 
with 

p0(x) = 1? /^(x) = x, p2(x) = x2 +3, p3(x) = x3 +5x; (5.3b) 
P„(x) = xPw_1(x) + 2P,_2(x)-P„_4(x) (n>4), (5.4a) 

with 
P0(x) = 2, Pt(x) = x, P2(x) = x2 +2, P3(x) = x3 +4x. (5.4b) 

It is interesting to compare the above recurrence relations with those of the corresponding MVPs 
B„(x), bn(x), c„(x), and C„(x) given by (1.1), (1.2), (1.3), and (1.4), respectively. 

We shall now derive generating functions for these diagonal polynomials using the standard 
technique. Let gn(x) represent any one of the diagonal polynomials R„(x), rn(x), p„(x), or 
P„(x), and let G(x, i) be the corresponding generating function. Then, from [4], we have 

r\G(x, 0 - gQ(x) - gl(x)t - g2(x)t2 - g3(x)t3] 
= xr"3[G(x, 0 - gQ(x) - gl(x) t - g2(x)t2] 

+ 2r2[G(x, 0 - g0(x) - gl(x)t] - G(x, 0-
Hence, 

(1 - xt - 2*2 + t4)G(x, t) = g0(x) + {&(*) - xgQ(x)}t 

+ {&(*) - xgi(*) - 2go i*))*2 + {&(*) - *&(*) - 2Si (x)}t4-
Therefore, R(x91), the generating function for the diagonal polynomial Rn(x), is given by 

(l-xt- It2 + t4)R(x, t)=l + (x-x)t + (x2+2-x2- 2)t2 

+ (x3+4x-x3 -2x-2x>4 = l. 
Hence, 

R(xJ) = fdRi(x)ti=[l-(xt + 2t2-t4)Yl. (5.6) 
o 

Similarly, by substituting for gn(x) the diagonal polynomials r„(x), p„(x), and P„(x) in (5.5), 
we can derive the following generating functions for these polynomials: 

r(xJ) = fdri(xy=(l-t2)R(x,t); (5.7) 
o 

f*x, 0 = Z A W ' = 0+'2)*(*, 0; (5.8) 

(5.5) 
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P(x, 0 = £ P , ( X ) / ' = l + (l~t4)R(x, t). (5.9) 
0 

It is interesting to compare the generating functions (5.6), (5.7), (5.8), and (5.9) of the diagonal 
polynomials with those of the corresponding MVPs Bn(x), hn(x), cn(x), and Cn(x), namely, those 
given by (2.17), (2.18), (2.19), and (2.20). 

Using the generating function (5.6), we will now derive an interesting relation among the 
derivatives. From (5.6), 

and 

Hence, 

M&£ = t&(x,0 

0R(*,Q-,-..A...A^*l, 
a 

• {x + 4t-4ti)R1(x,t). 

(x + 4t-4^)^l = t^Jl. (5.10) 
ox ot 

Thus, from (5.6), 
x^(x) + 4^_1(x)-4^_3(x) = /i^(x). (5.11) 

However, from (5.1), we have 

RUM = x%(x) + R„(x) + 2/£_,(x) - %_3(x). (5.12) 

Substituting for xRI,(x) from (5.12) in (5.11) and rearranging the terms, we get 

(» + l)K(x) = W+1(x) - ^_,(x)} + 3{^_,(*) - R^_3(x)}. 

Using (4. i) in the above expression, we have the result 

(n + l)R„(x) = rU*) + X-iW • (5.13) 

Apart from the above result, it has not been possible to derive any other simple derivative relation 
for the rising diagonal polynomials. 

6, CONCLUDING REMARKS 

We have thus defined and obtained polynomial expressions for the four sets of diagonal 
polynomials associated with the four sets of Morgan-Voyce polynomials Bn(x), bn(x)y cn(x)P and 
Cn{x). We have also obtained a number of interesting properties of these diagonal polynomials, 
including the recurrence relations they satisfy. It appears that these diagonal polynomials have a 
number of other interesting properties. 

We would like to mention one such interesting property regarding the location of the zeros of 
these diagonal polynomials. Using the network properties of two-element-kind electrical net-
works, it is possible to show that, for n = 1,2,..., 8, the following results hold: 

(a) The zeros of i^(jc), rn(x), pn(x), and Pw(x) are all simple and lie on the imaginary axis, 
that is, all the zeros are purely imaginary. 
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(b) The zeros of i^+1(x) interlace on the imaginary axis with those of R„(x), rn(x), pn(x)7 

and P„(x). Also, the zeros of rw+1(x) interlace on the imaginary axis with those of R„(x), rn(x), 
and Pn(x), the zeros of pn+l(x) interlace on the imaginary axis with those of R„(x), r„(x), pn(x), 
and Pw(x), and those of Pw+1(x) interlace on the imaginary axis with those of R„(x), rn(x), pn(x), 
and P„(x). 

(c) Htowever, the zeros of rn+l(x) and those of p„(x) do not interlace, except for the case of 
w = l. 

We conjecture that the above results are true for any value of n. 

TABLE 1 

Rising Diagonal Polynomials for n = 0,1, 29 .*,9 8 

Ro(x) = l 
Rx{x) = x 

R2{x) = x2+2 

R3(x) = x3+4x 

RA(x) = x4 + 6x2+3 

R5(x) = x5+%x3+l0x ! 

/^(JC) = JC6 + 1 0 J C 4 + 2 1 J C 2 + 4 ' 

R1(x) = x1 +12*5 + 36x3 + 20x 

R^(x) = x8 + 14x6 + 55JC4 + 56x2 + 5 

PoW = 1 

p,(*) = * 

p2(x) = jc2+3 

p3(x) = jc3 + 5x 

p4(x) = ;x 4 +7; t 2 +5 

p5(x) = ^: 5 +9x 3 +14x 

P 6 ( X ) = X6 + 1 1 J C 4 + 2 7 J C 2 + 7 

p7(,x) = x7 + 13.x5 + 44x3 + 30x 

p 8 U) = / + 15.x6 + 65.x4 + 77x2 + 9 

r0(x) = l 
rx(x) = x 

r2(x) = x2+l 

r3(jc) = x3 + 3;t 

r4(;t) = jc4+5jc2+l 

r5(;t) = ;C 5 +7 ;C 3 +6JC 

r6(jc) = Jt6+9;t4 + 15;c2+l 

r7 (JC) = JC7 +1 IJC5 + 28x3 +10* 

r8(jc) = x8 + 13JC6 + 4 5 / + 35JC2 +1 

, P 0 W = 2 
P,(*) = * 
P2(x) = ;c2+2 

P 3 ( X ) = J C 3 + 4 X 

P4(x) = x 4 + 6 x 2 + 2 

P5(x) = x 5 + 8 x 3 + 9 x 

P 6 U ) = ;C6 + 1 0 J C 4 + 2 Q ; C 2 + 2 

P7(x) = x7 + \2x5 + 35.x3 + 16* 

P8(x) = x% + 14.x6 + 54x4 + 50x2 + 2 
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