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PROBLEMS PROPOSED IN THIS ISSUE 

H-561 Proposed by TV. Gauthier, Dept of Physics, Royal Military College of Canada 
Let n be an integer and set 

sn+l = an + an~lp + • • • + apn~l + p\ 

where a + fi = a, ap-b, with a * 0, b ̂  0 two arbitrary parameters. Then prove that: 

C) ^Lp+qSqr+n ~ 2-r I / P *P SP+qS( X2p+q)£-pr+n> 

where r > 0, n, p(^ 0), and q(± 0, ±p) are arbitrary integers. 

H-562 Proposed by H.-J. Seiffert, Berlin, Germany 
Show that, for all nonnegative integers n, 

\»=r\ 

k=0 V / 

where [ ] denotes the greatest integer function. 
H-563 Proposed by N. Gauthier, Dept of Physics, Royal Military College of Canada 

Let m>0, n>0, p^O, q^ -/?, 0, and s be integers and, for 1 < k <n, let (n)k :=n(n-1) 
... (n - k +1) and S^ be a Stirling number of the second kind. 

Prove the following identity for Fibonacci numbers: 

r=0 V s 
m 

= (-iy[F91 Fp+J X i-iy^W^ [Fp I FqfF(p+q)k_np+s. 
k=\ 
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SOLUTIONS 

An Odd Problem 

H-545 Proposed by Paul S. Bruckman, Berkeley, CA 
(Vol 369 no. 5, November 1998) 

Prove that, for all odd primes/?, 

(a) ^ . r ^ - f ^ - l ) (mod/?); 
k=l P 

0>) (ZFk-k-l = 0(modp). 

Solution by the proposer 
We first observe that L =\ (mod/?) for all primes/?; thus, all the expressions indicated in (a) 

and (b) are well-defined integers (mod/?). Now 
P-\ 

' = 0-/^ = £$)<rtf = 1-^ + £f (*-l)(-̂ * 
Hence, 

Now 

Thus, 

>,-i)=iKr!>-^ 

IK*-1^0-1^1 (modp) 

p^p 

Similarly, it is also true that 

k=\ 

Adding and subtracting the last two congruences yields (a) and (b), respectively. 

Note: From (a) and (b), it follows that a necessary and sufficient condition for p2 | (Lp -1) is that 
p-\ 
X^k+n -k l = 0 (mod/?), for all integers n. 
k=l 

Equivalently, 
P-\ 
]T Lk+n • k~l = 0 (mod /?), for all n. 
k=\ 

Other equivalent forms of such conditions are: 

YFk-k-l^fFM-k-l^O(modp) 
k=l k=l 

or 
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PfLk-k-l^Lk+1-k-^0(modp). 
k=\ k=\ 

In turn, these conditions are equivalent to the condition that Z(p2) = Z(p), where Z(m) is the 
"Fibonacci entry-point" of m (i.e., the smallest positive integer n such that m \ Fn ). 

Also solved by H.-J. Seiffert 
A Strange Triangle 

H-546 Proposed by Andre-Jeannin, Longwy, France 
(Vol 36, no, 5, November, 1998) 

Find the triangular Mersenne numbers. (The sequence of Mersenne numbers is defined by 
M„ = 2" - l . ) 

Solution by the proposer 
We shall prove that the only Mersenne triangular numbers are M0, Ml9 M29M4, and M12. In 

fact, the equation 

M = 2 W - 1 = * ( * + 1) 

2 
is clearly equivalent to the equation 

x2 = 2"+3-7, (1) 
where x = 2k + l. 

It is known [1] that (1) admits the only positive solutions (n-0,x=V), (n = l,x = 3), (n = 2, 
x = 5), (n = 4, x = 11), and (n = 12, x = 181). The result follows. 

Reference 
1. Th. Skolem, P. Chowla, & D. J. Lewis. "The Diophantine Equation 2n+2 -7 = x2 and Related 

Problems." Proa Amer. Math Soc. 10 (1959):663-69. 
Also solved by P. Bruckman andH.-J. Seiffert 

A Prime Problem 

H-547 Proposed by T. V* Padmakumar, Thycaud, India 
(Vol 37, no. 1, February 1999) 

Ifp is a prime number, then 
12 r j i i i 

0 (mod/?). 
1 

£ ( 2 / 1 - 0 
1 

ti(2n-lf 

Solution by L* A. G. Dresel, Reading, England 

Note: The result is clearly true for p = 2. However, when p is an odd prime, each summation 
contains the undefined term p~l (mod p). Therefore, we shall assume that these terms are to be 
omitted (or, possibly, consider then as formally canceling each other). The result is then true for 
p > 5 but false for p = 3. 

188 [MAY 



ADVANCED PROBLEMS AND SOLUTIONS 

Proof for p>5: For 1 < n < p, the sequence of odd numbers In -1 (mod p) reproduces the 
residues 0, 1, 2, ..., / ? - l in a different order. Omitting the residue 0, as explained above, consider 
the summations over 1 < s < /? - 1 , A = Xs~\ and B = Es~2 (modp). 

Now consider the reciprocals modulo/? of two residues s and t. Then it is easily shown that 
s~l = t~l (mod/?) if and only if s = t (mod/?). Hence, all the terms in the summation A are distinct 
(mod/?), so that we have A = I > and, similarly, we obtain B = J^s2 (mod/?). 

Finally consider the equation xp~l - 1 = 0 (mod /?). By Fermat's theorem, this is satisfied for 
x = 1,2,...,/?-!, so we can write x p _ 1 - l = (x-l)(x-2). . . (x-/? + l) (mod/?). If /?>2, it fol-
lows that the sum of the roots is zero, and if /? > 3, we also have the sum of the products of the 
roots taken two at a time is zero (mod /?). Hence, we have A = 0, and also A2 - B = 0 (mod /?) 
for/?>5. 

Also solved by P. Bruckman, H. Kwong, and the proposer. 

Pell-Mcll 

H-548 Proposed by if.-J. Seiffert, Berlin, Germany 
(Vol 37, no. 1, February 1999) 

Define the sequence of Pell numbers by P0 - 0, Px = 1, and Pn+2 = 2i^+1 + Ĵ  for n > 0. Show 
that, if q is a prime such that q = 1 (mod 8), then 

q\Piq-l)/4 ifandonlyif 2(^-1)/4 = (-l)(^1)/8 (mod q). 

Solution by the proposer 
Consider the Lucas polynomials defined by LQ(x) = 2, Ll(x) = x, and Ln+2{x) = xLn+l(x) + 

L„(x) for n > 0. It is well known that 

Ln(*) = 
V 

th 

, w>0. (1) 

Let Qn = L„(2)9 n>0, denote the rr Pell-Lucas number. 
Proposition: For all n > 0, it holds that 

Jin 
k=0 

4%n+2k+2 

where [ ] denotes the greatest integer function. 
Proof: If / * 1 is any complex number, then by (1), 

Z"(2 /T^)=(ir7r( ( 1 + V 7 ) 2"+ ( 1-V F ) 2")' 
where i = ^(-1). Applying the binomial theorem gives 

k 
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Now we take / = -;'. Since (1-/)/(l+/') = -/, l/(/ + l) = ( l - 0 / 2 , -/' = Hi, and L„{2) = Q„, we 
find 

4=0 V J 

Using / = e"'2 and 1 - i = -fie-**1* yields 

a=2»^l(2»)exp(/(»-2*)f). 
Equating the real parts gives 

k=0 V / 

where ^ : = COS(JTT 14), j e Z. An elementary calculation shows that 

f(»1)[(y+i)/4]2iy/2W/2 if7- # 2 (mod 4), 
y ~ | 0 if7 = 2 (mod4). 

The stated identity easily follows. Q.E.D. 
The next result is known. 

Lemma: If q is a prime, then 

( ^ 1 ) s ( - l ) * ( n » o d 9 ) f o r * = l , . . . ^ - l 

Proof: Since g is a prime, 9 divides (f) for & = 1,..., q -1. Hence, the equation 

(!MM-(i:{) 
implies that 

[qkiy-{q
klfj(^dq){ork = l,...,q-l, 

so that the desired congruence can be proved by a simple induction argument. Q.E.D. 

If q is a prime such that q = 1 (mod 8), then q = Sj + l for some positive integer j . Using the 
identity of the proposition with n = (q-l)/2 and applying the Lemma, modulo q we find that 

2(*-5)/4GU/2 - ic- iy^-^^xc-iy-^c- iy (mod?) 
£=0 r=0 

&even 
or 

^ - ^ ^ - ^ - ( - ^ - ^ ( m o d ? ) . (2) 

The well-known identity 8P„2 = Q2n - 2(-l)" with w = (q -1) / 4 and (2) imply that 
2 ( , + 7 ) / 4 / , 2 _ i ) / 4 s ( _ 1 ) ( 9 -1) /S _ 2(9- l ) /4 ( m o d < ? ) 

This proves the desired criterion. 
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Remark; The two smallest such primes are q = 41 and q = 113. In fact, we have PlQ = 2378 = 
41-58 and P2S = 18457556052 = 113-163341204. 

Also solved by P. Bruckman 

Resurrection 

H-549 Proposed by Paul SL Bruckman, Berkeley, CA 
(Vol 37, no. 1, February 1999) 

Evaluate the expression: H^-lf'1 tan-1(l / F2n). (1) 
Note: A number of readers have pointed out that this problem appeared in the Quarterly (Vol. 1, 
no. 4, 1963) on page 71 as Theorem 5. 
Solution by Charles K Cook, University of South Carolina Sumter, Sumter, SC 

Note first that this problem was presented as a theorem by Hoggatt and Ruggles in [2]. 

Lemma 1: tan" -ii K 
n+l 

•tan -11 rn+l 

n+2 J 
- tan' - i 

(( X\n-W (-1) 
, F 
V rn+2 J 

Proof: Using (I10), F2n = F„2
+1 - i £ „ and (I13), F^F^ - F„2 = (-1)", see Hoggatt [1], 

(-1)""' = (-1)""' = (-1)"'' = (-1)""' 
^ " ^ /*/- . IM i _ i ' ( r t + n_ i Ai+2 ~ -*w V/ i+2 ~ ^n/X^n+l ' **n) 1 (w+l)+l J (n+l)-

17 77 — 77^ 
rnrn+2 rn+l 

F„ n+l 

±n±\_£n±2 — 
1 n _ J n+l 

AH-1 Ai+2 
Fn+\(Fn+l+Fn) \ + J L U( Fn )( K 

K n+2 

1 n+l 

^n+l J \^n+2 

--M^Hfe 
The lemma follows by taking inverse tangents. 

»-U F 
Lemma 2: Y (-1)"1"1 tan"1 [ - j - ) = tan" 

n+l 

Proof: Using Lemma 1, it is seen that the series telescopes: 

X(-ir_1tan-
m=\ \F2m 

1 1 * -1 1 • -
- tan — - tan 

-p- + tan"1 - 1 - - tan"1 -±- +•••+(-l)""1 tan"1 - | -
^ 4 F6 FS F2m 

- tan —r - tan L + tan"15- - t an" 1 4 + tan" 1 4 - tan"' K -1 ^ 1 _ + o „ - l ^ . j . t o r , - l i ] 2 _ t c , „ - l i l J . * c r . - l i j _ _ t o „ - l i j _ 

F, F4 F, 
17 J7 F 

+ tan-1 - ^ - tan-1 - f + • • • + tan-1 ̂ ^ — tan-1 -a=L 
F5 

tan'1 - 5 - - tan"1 § = tan'1 - ^ 

4 

_, F^ 
'n+l 

**n+l 

This completes the proof of Lemma 2. 
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Note that the arctangent function is continuous and increasing on the interval (0, 1), so 

tan-U-Wf 
\r2n+2 J \r2n 

and that the series 

is alternating with l i m ^ ^ l / F2n) = 0, and thus converges to some value A, say. Therefore, 

m=l \r2mJ m=\ \r2m+2, 

for /i an odd integer. So, by Lemma 2, 

t a n - M ^ - U y l ^ t a n - 1 ' - ^ 
A?+2 y V A?+i 

Taking limits and using the well-known result that limri^O0(Frl I Fn+l) - ± = (V5 -1) / 2, the golden 
number (see Hoggatt, [3]), it follows that 

lim t a n - l l ^ U ^ lim t a n ~ i ^ W tan _ 1 -< ^ < tan"1- . 

Thus, 
*-*«> \Fn+2) «->«> v w j a a 

A similar argument works for the case in which n is an even integer. In either case, the value 
of the given expression is 

Z ( - l ) ^ t a n - f ^ l = tan-

References 
1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-Mifflin, 1969; rpt. 

Santa Clara, CA: The Fibonacci Association, 1979. 
2. V. E. Hoggatt, Jr., & I. D. Ruggles. "A Primer for the Fibonacci Numbers-Part IV." The 

Fibonacci Quarterly 1.4 (1963):65-71. 
3. V. E. Hoggatt, Jr., & I. D. Ruggles. "A Primer for the Fibonacci Numbers-Part V." The 

Fibonacci Quarterly 2.1(1964): 61. 
Also solved by P. Bruckman9 L. A, G. Dresel, H. Kwong9 H.-J. Seiffert, and I. Strazdims. 
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