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1. INTRODUCTION 

Let 
\<xx <x2 <"<xr <n (1.1) 

be an r combination from n, Moser and Abramson [17] used the terms differences for the quanti-
ties dj = xJ+l -Xj, j = 1, 2,..., r -1, span for d = xr-xl, and cospan for n -d. It is clear that 
dj-l is, for j - 1,2, . . . , r - l , the number of integers, from {1,2,...,«}, which lie "between" Xj 
and xJ+l. Similarly, (n-d)-l is the number of integers from xr clockwise to xY. 

To the r-combination (1.1) there corresponds a unique place-indicator vector (sl9 e2,..., sn) 
defined by 

(1 if/ = *!,...,*,., 
[0 otherwise. 

Assume that ei9 i = 1,2,..., n are generated by a random process in which the outcome of the t^ 
trial depends on the outcomes of the previous trials in a first-order Markovian fashion. Moreover, 
let 

pj(l) = P(sl = Jl 7 = 0,1, (1.2) 

denote the initial probabilities and 

Pv(t) = P(£t=j\et-l=i\ /,7 G{0,1}, / = 2,...,/i, (1.3) 

denote the first-order transition probabilities of the process. By the term random combination we 
shall refer to the combination associated with (el9e29...9sr)9 i.e., integer j (\<j<n) will be 
selected if and only if Sj = 1. 

Let 4i(A, k'\ /, /') denote the event that the random combination associated with the 
sequence (ex, e2,..., £n) satisfies the conditions 

k<dj<k\ j = 1,2,...,r-I and I <n-d<I', 

where k, k\ I, V are pre-specified integers (\<k<k\ !< /< / ' ) and r is the number of nonzero 
entities in (ex, s2*-~>€n)-

The probability of the event ^{k, k!; I, lf) is, in certain special cases, very closely related to 
some problems of interest in combinatorial analysis, statistical theory of runs and reliability theory. 
Thus, for the symmetric i.i.d. case, viz., 
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PjQ) = P„(t) = \ , ije{0,\},t = 2,...,n, 

the quantity 

2"P[4,(*, *';/,/')] 

enumerates the (nonrandom) combinations from n whose differences and cospan satisfy the 
conditions k <dud2, ...,dr_l<kf and l<n-d<V. More specifically, if Cw r(&,£';/,/') is the 
number of r-combinations (1.1) with k<dj<k', j = l ,2 , . . . , r - l , and l<n-d<V (see [17]), 
then 

r=0 

Now let us consider the first-order Markov dependence model and assume that /' is sufficiently 
large so that n-d<V poses no restriction on the cospan. Then, P[4*(l? *'; \ '')] turns out to be 
the probability that the longest run1 of 0fs, in n Markov dependent trials eu e2,...,en does not 
exceed k'-l; for related problems, see [1], [2], [8], [16], and the references therein. Similarly, 
P[A„(l9 kr; 1, k')] turns out to be the corresponding probability for the longest circular run, i.e., 
when the trials £l,e2,...,£n are arranged in a circular fashion so that sx becomes adjacent to sn 

(see [13], [21]). In the i.i.d. case, 

A)0) = Ptoif) = q, A(l) = pn(t) = />, i e {0,1}, / = 2,..., w, (1.4) 

the probabilities mentioned above are closely related to the reliability of a linear/circular consecu-
tive-^ -out-of-#:F reliability system with component failure probabilities q; for a review on this 
topic, one may refer to Chao et al.. [3]. 

Finally, let us assume that both k! and /' are sufficiently large so that dj <kf and n- d < V are 
practically no restrictions. Then, the occurrence of the event ^(&, k'; 1, /') implies that the length 
of the shortest run of 0's in the sequence sl,s2,...,£n is at least k -1 or, equivalently, there exists 
no pair of l's separated by k -2 or less 0's. A related waiting time problem was recently studied 
by Koutras [10]. In the i.i.d. case, Pl^k, k'; 1, /')] coincides with the reliability of a 2-within-
consecutive-&-out-of-j?:F system with component failure probabilities/? (see [3], [19], and [20]); 
it is also related to sliding window probabilities [18] and scan statistics [5]. 

The purpose of the present paper is to conduct a detailed study of the probability of the event 
A„{k, k'; k, /') when k' and /' are sufficiently large. In this case, we shall use the notation ^(k) 
for the event. It is clear that the occurrence of ^(k) implies that the length of the shortest 
circular run of 0fs in the sequence el9 £2,..., sn is at least k-l. 

In Section 2, we introduce the necessary notations and develop formulas for the evaluation of 
Pl^k)] in the general case of Markov dependent trials. In Section 3, we restrict ourselves to a 
homogeneous Markov-dependence model and derive the generating function of the sequence 
{P[,4W(&)]}„>£. In addition, a set of recurrence relations is established which offers a computa-
tionally efficient scheme for the calculation of P[An{k)]. In Section 4, we focus our attention on 
the circular 2-withm-consecutive-£-out-of-«:F system. Finally, in Section 5, we express P[An(k)] 
in terms of appropriate generalizations of Lucas polynomials and numbers. 

1 Here, by the term "run of 0's" we mean a string of consecutive 0's preceded and followed by l 's. 
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2* GENERAL MODEL 

Let % e29..., £n be a finite sequence of Markov dependent random variables with initial dis-
tribution. (1.2) and first-order transition probabilities (1.3). By R„(k), or simply J^, if no 
confusion is likely to arise, we shall denote the probability that the differences and cospan of the 
associated random r-combinations (r = 0,1,..., n) are at least k, i.e., d} > k7 j = 1,2,..., r - 1, and 
n~d>k. By convention, for r = 0, we assume that there is only one r-combination satisfying the 
aforementioned conditions (the one that corresponds to the place indicator (0, 0,..., 0)). On the 
other hand, for r = l, we treat all 1-combinations (i.e., the ones associated with the place 
indicators (1,0,..., 0), (0,1,..., 0),..., (0,0,..., 1)) as valid choices for A„(k). It is worth stressing 
that this setup is slightly different from the one used by Moser and Abramson [17], who assumed 
that the 1-combinations are acceptable choices for n > k and nonacceptable for n < k. 

Employing the notation of the last section, we may write 
R„ = R„{k) = P[A„(k)] = P[A„(k, /; *, /')] 

with /, /' being sufficiently large. 
In order to evaluate i^, we will employ a Markov chain approach similar to the one used by 

Koutras [10] for the study of several reliability systems; see also [4] and [12] for additional appli-
cations of the same method to success runs enumeration problems. 

Observe first that, for n< k, we have 
^ = 1 for « = 0,1, 
/<l = l-fl(l)fl1(2) forW = 2, 

K = /%0)Z Poo® + flO)flo(2)Z Ao(0 + to(ti£ ft A)o(0 
t=2 

xPoi^PioQ + ̂  + Poi1)] 

t=3 
n-\ 
OAOCO 
7=2 

i=2 |_f=2, t*i, i+l 

p0l(n) for 3 < n < k. 

(2.1) 

The first two expressions are obvious. For the third one, it is enough to observe that the occur-
rence of A„(k)9 3<n<k, secures that at most one trial among el9e2,..-9en resulted in 1. The 
required formula is then easily gained by conditioning on the position where 1 should be placed. 

Next, assume that n>k. By introducing the events 
B0 : sx = e2 = - • - - £k - 0, 
£,:**-,+i = l and Sj = 0, j e{l,2, . . . ,*}\{*-/ + l} 

fori = 1,2,..., k9 we may write 

I '=0 

where /?, = P(Bt) are given by 

(A>(l)n?=2A,o(0 for/ = 0, 
\po(V[nUp0o(0]Poi(k) for/ = l, 

Pi = | Pb0)[nf=2^*-/+Ur#t-/+2 fto(0] 
xp0l(k-i + l)pl0(k-i + 2) for2<i<k-l, 

fl(l)flo(2)nf=3Ao(0 fori = *. 

(2.2) 

(2.3) 
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For the evaluation of the conditional probabilities P[An{k)\Bi\ i = 0,1,..., £, we introduce a 
Markov chain {Yt, t = 1,2,...} defined on the finite state space O = {1,2,..., k + 2} as follows: 

}J = l if£. = Oformax(l,f--* + l ) £ / < / ; 
j ; = J if'£t-j+2 = l a n d si = 0 f o r i * r - 7 +2, max(l,t-k + \)<i<t (2<j<k +1); 
1J = k + 2 if there exist indices fl9 72 with max(l, t - A: +1) < tY ̂  £2 < t such that £, - st = 1. 

(Note that states y, 2 < j < k +1, are only reachable after time t>j-l.) Let us denote by At the 
transition probability of the aforementioned Markov chain, i.e., 

\ = (p(^=J\Yt-i=0\k+2Mk+2y 

From the description of the states, we may immediately verify that A, is given by 

A,= 

Poo(0 
0 
0 
0 

0 
0 
Poo(0 
0 

A>i 
0 
0 
0 

0 
0 
Poi 
0 

(0 

(0 

0 
flo 
0 
0 

0 
0 
0 
0 

(0 
0 
0 
Poo 
0 

0 
0 
0 
0 

(0 • 
• 

• 

•• 0 
•• 0 
•• 0 
•• 0 

•• 0 
•• 0 
•• 0 
•• 0 

0 
0 
0 
0 

Poo 
0 
0 
0 

(0 

0 
0 
0 
0 

0 
Poo(0 
0 
0 

0 
fli(0 
Poi(0 
Poi(0 

PoiiO 
Poi(0 
0 
1 

The conditional probabilities P[A(k) \ Bf], / = 0,1,..., &, can now be expressed by means of higher 
order transition probability matrices or, equivalently, products of Ar 's. Thus, denoting by e. the 
7th unit (row) vector of the space Rk+2, u = (1,1,..., 1,0) = Z)t\ cy, and uy = u - Zy=2 ey, / = 2,..., 
& + 1, we obtain 

P(A„(k)\Bi) = P(Yn*k + 2\Yk=i + \) = eJ JJAAU' 
\I=k+l 

for / = 0,1, 

P(An(k) + Bi) = P(Y„e{l,i + l,...,k + l}\Yk=i + l) = ei+1\ n A r | u ; fo r2</<* . 
(2.4) 

A combined use of formulas (2.2), (2.3), and (2.4) offer a compact computational scheme for the 
evaluation of i^. 

It is worth mentioning that, on introducing the convention u0 = ux = u, we may write a uni-
fied formula for i^, 

3, = l M + l F R K 
7=0 t=k+l 

(2.5) 

Note also that, for n < 2k - 1 , one does not have to use (2.5) for the evaluation of i^, since the 
third part of (2.1) is valid for k < n < 2k - 1 as well. 

In closing, we mention that the technique employed here for the study of the event A„(k) = 
4,(k, kf\ k, /') can be modified effortlessly to capture the probability of the more general event 
AJJi, kf; /, / '). The consideration of the special case was for typographical convenience only. 

148 [MAY 



RANDOM COMBINATIONS WITH BOUNDED DIFFERENCES AND COSPAN 

3. HOMOGENEOUS MARKOV-DEPENDENCE MODEL 

In this section, we study in some detail the special case in which sl9 sl9...9en form a homoge-
neous first-order Markov sequence, i.e., pv(t) are independent oft. Using the notation pj -pj(l), 
Ptj - Pij{f\ f = 2,3,..., w, for i, j G {0,1}, we may write (2.1) as follows: 

^ , = 1 if* = 0,1; 
K = l-PiPn if» = 2; (3.1) 

K = (Po + PiPio)Poo2 + (fl - ^)PoPoiPmPoo3 if 3 £ w< *. 
Since A, = A for all / = 2,3,..., w, we have P(A„(k) \Bf) = e/+1Aw^u;, n > k, and (2.5) leads to 
the expression 

^ = IA*V^*U/', "**, (3-2) 

with the /?,- 's given by 

r 

A 
\PoPool i£i = 0, 
\PoPw2Poi «f' = l, 
|/>o/4~VoiAo i f2</<£- l , 
lAAoPoo"2 ifi = A. 

From (2), we can easily obtain an explicit expression for the generating function 

G*(*) = I ^ - (3.3) 
n=k 

Now, using (3.2) in (3.3), interchanging the order of summation and then substituting the result-
ing geometric (matrix) series, we obtain the final expression for the generating function as 

Gt(2) = 2* tM + i ( / -A2) - I u ; . 
/=0 

After somewhat lengthy but straightforward algebraic calculations on the matrix / - Az, we get 

c /,) = i(Po + PiPio)Poo2 + (* ~2)PoPoiPioPoo3}zk + PoPoiPioZ£kliPw3z" (34) 
* l-Pooz-PoiPioPoo2zk 

From (3.4), we can easily derive a recursive scheme for the evaluation of i^. Multiplying both 
sides of (3.4) by the denominator, using (3.3) on the left-hand side, and equating the coefficients 
of z" on both sides, we obtain 

Rk = PoPoo1 + Poo3lPoPoiPoo + (* - Z)PoPoiPio + AAoA)ol 
^ = AxA-i + PoPoiPioPoo3 iork + \<n<2k-\ (3.5) 

K = PQoK,-i+PoiPioPoQ2Rn-k forn>2k. 

Evaluation of i^ through (3.5) is preferable, instead of through (3.2), due to simplicity (no matrix 
multiplications are necessary) as well as accuracy (less round-off errors). It may also be noted 
that, for 2 < n < 2k -1, one can use the exact formula 
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K = PoPoo1 + Pw\PoPoiPoo + (w " 2)PoPoiPio + flAoAol 
and employ the recursive scheme in (3.5) only for n > 2£. 

4. CIRCULAR 2 - W I T H I N - C O N S E C I J T I V E - * - O U T - O F - I I : F SYSTEM 
An r-within-consecutive-£-out-of-??:F system fails if and only if there exist k consecutive 

components which include among them at least r failed ones. Applications of such structures 
have been well documented in the literature, which include applications to telecommunications, 
design of integrated circuits, quality control, and sliding window detectors (see, e.g., [5], [6], [9], 
[18], [19], [20], and [24]). 

Even for the case of linearly arranged components, the evaluation of system's reliability is a 
very difficult task, and is mainly performed through approximating formulas. A Markov chain 
approach for this problem can be found in [10] along with recurrence relations for the special case 
r = 2. 

The results of Section 2 can be used for the reliability evaluation of a circular 2-within-
consecutive-^-out-of-^F system. Let us assume that the n components of the system work inde-
pendently and denote by p = l-q their failure probabilities (i.i.d. model). It is clear, from the 
definition of the event ^(k), that in the special case px - pQl - pn = p, pQ = p00 - pl0 = q, Rn is 
exactly the same as the reliability of a circular 2-within-consecutive-£-out-of-/i:F system. Recur-
rence relations in (3.5) reduce in this case to 

Rn = qRn_l+pqn-1 ifk + l<n<2k, 4 

Rn=qRn_l+pqk-lRn_k \fn>2k, 

with initial conditions R$ = Rx = 1, Rn-qn +npqn~l, 2 < n < k. Note again that instead of the first 
recurrence relation in (4.1), one could use the exact formula Rn = qn +npqn~l for all 2<n<2k. 
Another interesting observation to be made here is that, for n>2k, the reliability of both linear 
and circular 2-within-consecutive-£-out-of-?i:i7 systems satisfy exactly the same recurrence 
relation. This is not surprising since, when the system becomes sufficiently large (n>2k), the 
transition from Rn_l to Rn is not affected by the topological arrangement (adjacent or not) of 
components 1, n. 

Recurrence relations in (4.1) can be used in conjunction with the obvious inequality Rn_k > 
Rrl_l, k>\, in order to establish some simple lower bounds for Rn. Thus, for n>2k, we have 
Rn>(q + pqk~l)Rn_i; repeated application of this argument yields Rri>(q+pqk~l)n~2k+lR2k_l, 
n>2k, which, when used with the result that R2k_x = qlh~l + (2k - \)pq2k~2, gives a lower bound 
for Rn as 

Rn > (q + pqk-ly-2M{q2k-1 + (2k - l)pq2k-2}, n > 2k. (4.2) 

This bound is very useful when addressing the problem of specifying the (maximum) size n of the 
system warrantying a prespecified level a (0 < a < 1) of reliability. In view of (4.2), the condition 
Rn>a will be met if we force the right-hand side of (4.2) to exceed a; upon then solving for n, 
we obtain 
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It needs to be mentioned here that if R2k_l <a then appropriate values of/? should be sought with 
the aid of the exact formula Rn-qn + npqn~\ 2 < n < 2k. 

Papastavridis and Koutras [19] derived upper and lower bounds for both linear and circular r-
witWn-consecutive-&-out-of-n:F systems. In the special case in which r = 2, their lower bound 
for the circular system becomes 

Rn>(q + pqk-ly-l(qk+kpqk-1), n>2. (4.3) 

These authors also established a Weibull limit theorem for system's lifetime under quite general 
assumptions on components1 lifetime distributions. A simple adjustment to their proof yields the 
following asymptotic result: If/? depends on n in such a way that l im^^ np2 - X > 0, then 

limi^=£T(*-1)A. (4.4) 
n-»oo 

Simple algebraic calculations on the lower bounds in (4.2) and (4.3) reveal that, under the condi-
tion l im^^ np2 = X, they converge to the limiting value given in (4.4). 

In Table 1, a numerical comparison of the lower bounds in (4.2) and (4.3) is performed for 
selected values of n, k, and /?. The exact value of Rn and the limiting value e~^k~^np are also 
provided for comparison purposes. 

5. LUCAS POLYNOMIALS AND NUMBERS 

Let 0k\x)}n>o be the sequence of polynomials defined recursively as follows: 
4*>(x) = l + nx for0<n<2k, 

n W (5.1) 
Lik\x) = Lik]l(x) + xlik\(x) forn>2k. 

It may be seen readily that the degree of I$\x) for 0 < n< 2k is 1; moreover, if sk < n < (s + l)k, 
s = 2, 3,..., the degree of L{k)(x) is s. 

Next, let us denote by Z^} the integers I$\l\ n>0. Then {L(k)}„>0 will satisfy the recur-
rence relation 

L^ = Lik\ + Lik\, n>2k, (5.2) 
with initial conditions 

4*) =w + l, 0<n<2k. (5.3) 

It is clear that, for k = 2, the corresponding numbers I$2\ n>2, coincide with the well-known 
Lucas numbers Ln. Hence, an appropriate name for the numbers 1$ seems to be k-step Lucas 
numbers. Likewise, l£\x) may aptly be called k-step Lucas polynomials. 

It is worth noting that the recurrence relation in (5.2), under different initial conditions, gives 
rise to analogous generalizations of Fibonacci numbers. However, they have been studied in the 
literature under many different names. For example, Mohanty [15] termed them generalized 
Fibonacci numbers (see also Roselle [23] and Moser and Abramson [17]) and proved the exis-
tence of minimal and maximal representations of positive integers as sums of such numbers; 
Hasunuma and Shibata [7] used the name k^ interspaced Fibonacci numbers, while Koutras [11] 
employed the term k-step Fibonacci numbers. 

Hasunuma and Shibata [7] defined a Lucas number analogue as well, by considering the 
sequence lSk) satisfying the recurrence L(k) = L(k]t + L(k]k, n>2, with initial conditions I^k) = k, 
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I$P = 1, and L^ = 0 for n<0. The numbers Lf\ names as k^ interspaced Lucas numbers by 
them, arise in a very natural way in an interesting graph theoretic problem. Specifically, in [7], 
Hasunuma and Shibata proved that the number of labeled graphs which are &-placeable by a given 
permutation is a product of interspaced k^ Lucas numbers. It can be shown that the &-step Lucas 
numbers L^ (defined above) and the k^ interspaced Lucas numbers 1$ (just defined) coincide 
for^>^, that is ,Z^) = L<f>forall^ = A:^ + l,.... 

The generating function of the sequence 0k\x)}n>k given by 

G(z;x)=fd%\x)z" 

is readily determined from (5.1) to be 

„ f . zk[l + kx + xz(l + z+-'+zk~~2)] 
G(z; x) = —i —* -k ^ . 

\-z-xzr 
Comparing G(z; x) to the generating function of R^ for the i.i.d. case, we obtain the relationship 

~ n_(qzfll + kr + pz(\ + qz+-+(<iz)k-2)]_r( 

Hence, 

n=k n=k V*V 

and the reliability B^ of a 2-within-consecutive-&-out-of-w:F system can be expressed in terms of 
&-step Lucas polynomials as follows: 

R„ = q"^y n>k. 

This formula yields an interesting combinatorial interpretation for the &-step numbers 1$. More 
specifically, considering the symmetric case p = q = 1/2, we note from the above relation that 
jit) _ 2 « ^ = 2"P[An(k)], which simply proves that L{k) is the total number of "circular" combi-
nations whose differences and cospan are at least k. Moser and Abramson [17] arrived at the 
same conclusion by first computing the number Cr(k,kf;k,l') of r-combinations with differences 
and cospan at least k {k' and /' are assumed sufficiently large so that the differences and cospan are 
practically unbounded from above) and then noting that 

LV^Cr(Kk",kJ>) (5.4) 
r=0 

satisfies (5.2) and (5.3). It should be stressed that, due to the different conventions used here for 
the 1-combinations (c.f. first paragraph of Section 2), our numbers L^ coincide with the ones 
appearing in [17] only for n > k. Analogous results can be found in [22] and [25]. 

In closing, we note that the generating function of the &-step Lucas numbers l£\ n>k, is 
given by 

±^z" = G(z;l) = zk[l + k + < l + z+
k-+zk~2)]. 

n=k l-Z-Z 
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Expanding the right-hand side in a power series around 0, we easily get an explicit expression for 
4*} as 

z<*> = i + x ^ w " r ^ _ " 1
1 ) " 1 (5.5) 

This formula was also derived by Moser and Abramson [17] using direct combinatorial argu-
ments. In fact, they first proved that 

and then employed (5.4) in order to derive the explicit expression in (5.5). 

TABLE 1. Comparison of Lower Bounds of Section 4 and Exact 
and Limiting Values of Rn 

n k p 

4 2 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 
0.99 

n k p 

6 2 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 
0.99 

3 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 

Exact Value 
Rn 

0.99-96 
0.9905 
0.9639 
0.8704 
0.4375 
0.0784 
0.0199 
0.0050 
0.0002 

Exact Value 
Rn 

0.9994 
0.9858 
0.9462 
0.8110 
0.2813 
0.0190 
0.0022 
0.0003 
0.0000 

0.9988 
0.9733 
0.9054 
0.7045 
0.1563 
0.0047 
0.0003 
0.0000 

e - (*- l )np* 

0.9996 
0.9900 
0.9608 
0.8521 
0.3679 
0.0773 
0.0392 
0.0271 
0.0198 

e-(*-i)V 

0.9994 
0.9851 
0.9418 
0.7866 
0.2231 
0.0215 
0.0078 
0.0044 
0.0028 

0.9988 
0.9704 
0.8869 
0.6188 
0.0498 
0.0005 
0.0001 
0.0000 

Lower Bound 
(2) 

0.9996 
0.9903 
0.9623 
0.8602 
0.3750 
0.0374 
0.0053 
0.0007 
0.0000 

Lower Bound 
(2) 

0.9994 
0.9853 
0.9431 
0.7927 
0.2109 
0.0049 
0.0002 
0.0000 
0.0000 

0.9988 
0.9726 
0.9011 
0.6842 
0.1172 
0.0016 
0.0001 
0.0000 

Lower Bound 
(3) 

0.9996 
0.9900 
0.9606 
0.8493 
0.3164 
0.0168 
0.0013 
0.0001 
0.0000 

Lower Bound 
(3) 

0.9994 
0.9851 
0.9415 
0.7828 
0.1780 
0.0022 
0.0000 
0.0000 
0.0000 

0.9987 
0.9688 
0.8831 
0.6167 
0.0477 
0.0001 
0.0000 
0.0000 
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TABLE 1 (continued) 

n k p 

10 2 0.01 

n 

100 

0.05 
0.10 
0.20 
0.50 
0.80 
0.90 

3 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 

5 0.01 
0.05 
0.10 
0.20 
0.50 
0.80 

k p 

2 0.001 
0.002 
0.005 
0.009 
0.010 
0.050 
0.100 
0.200 
0.500 

10 0.001 
0.002 
0.005 
0.009 
0.010 
0.050 
0.100 
0.200 
0.500 

Exact Value 
Rn 

0.9990 
0.9764 
0.9120 
0.7053 
0.1201 
0.0013 
0.0000 

0.9981 
0.9562 
0.8485 
0.5604 
0.0449 
0.0001 
0.0000 

0.9962 
0.9222 
0.7576 
0.4094 
0.0156 
0.0000 

Exact Value 
Rn 

0.9999 
0.9996 
0.9975 
0.9920 
0.9901 
0.7875 
0.3981 
0.0304 
0.0000 

0.9991 
0.9965 
0.9791 
0.9366 
0.9232 
0.2400 
0.0128 
0.0000 
0.0000 

e - ( * - W 

0.9990 
0.9753 
0.9048 
0.6703 
0.0821 
0.0017 
0.0003 

0.9980 
0.9512 
0.8187 
0.4493 
0.0067 
0.0000 
0.0000 

0.9960 
0.9048 
0.6703 
0.2019 
0.0000 
0.0000 

e - ( * - l ) n p 2 

0.9999 
0.9996 
0.9975 
0.9919 
0.9900 
0.7788 
0.3679 
0.0183 
0.0000 

0.9991 
0.9964 
0.9778 
0.9297 
0.9139 
0.1054 
0.0001 
0.0000 
0.0000 

Lower Bound 
(2) 

0.9990 
0.9755 
0.9060 
0.6733 
0.0667 
0.0001 
0.0000 

0.9980 
0.9538 
0.8345 
0.5074 
0.0179 
0.0000 
0.0000 

0.9962 
0.9202 
0.7482 
0.3847 
0.0104 
0.0000 

Lower Bound 
(2) 

0.9999 
0.9996 
0.9975 
0.9919 
0.9901 
0.7787 
0.3667 
0.0171 
0.0000 

0.9991 
0.9964 
0.9783 
0.9328 
0.9181 
0.1665 
0.0025 
0.0000 
0.0000 

Lower Bound 
(3) 

0.9990 
0.9753 
0.9044 
0.6648 
0.0563 
0.0000 
0.0000 

0.9979 
0.9500 
0.8179 
0.4573 
0.0073 
0.0000 
0.0000 

0.9955 
0.8988 
0.6704 
0.2380 
0.0006 
0.0000 

Lower Bound 
(3) 

0.9999 
0.9996 
0.9975 
0.9919 
0.9901 
0.7786 
0.3660 
0.0169 
0.0000 

0.9991 
0.9963 
0.9773 
0.9295 
0.9140 
0.1441 
0.0014 
0.0000 
0.0000 

154 [MAY 



RANDOM COMBINATIONS WITH BOUNDED DIFFERENCES AND COSPAN 

TABLE 1 (continued) 

n k 

100 20 

P 

0.001 
0.002 
0.005 
0.009 
0.010 
0.050 
0.100 
0.200 
0.500 

Exact Value 
Rn 

0.9982 
0.9928 
0.9591 
0.8833 
0.8607 
0.1139 
0.0025 
0.0000 
0.0000 

e - (&-l )np 2 

0.9981 
0.9924 
0.9536 
0.8574 
0.8270 
0.0087 
0.0000 
0.0000 
0.0000 

Lower Bound 
(2) 

0.9981 
0.9927 
0.9567 
0.8728 
0.8471 
0.0600 
0.0004 
0.0000 
0.0000 

Lower Bon 
(3) 

0.9980 
0.9919 
0.9517 
0.8567 
0.8276 
0.0321 
0.0001 
0.0000 
0.0000 
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