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1. INTRODUCTION 

For an irrational real number a, the Lagrange (often called the Markoff) constant for a, 
ju(a), is defined by 

ju(a) = limm£ q\\aq\\, 
q-*co 

where || || denotes the distance to the nearest integer function (see [3], although there the 
Lagrange constant is defined to be //(a)"1). Thus, for any c, 0 < c<ju{a\ it follows that there 
are only finitely many positive integer solutions q to the inequality 

q\\aq\\<c. (1.1) 

We define A(a) by X{a) = Mq>0q\\aq\\. 
Given a, two natural and fundamental problems are to compute X(a) and, for a given c, 

A (a) < c < //(#), t 0 explicitly determine the complete set of solutions to (1.1). In a series of 
three papers ([8], [9], [10]), Winley, Tognetti, and Van Ravenstein address these problems for the 
case in which a equals a generalized golden ratio <pa, that is, 

a W a 2 + 4 
a = 9a= 5 , 

where a is a positive integer. Not surprisingly, their solution involves generalized Fibonacci 
numbers. We write (§n - 9n (a) for the n^ generalized Fibonacci number. That is, 90 = 0, 9X = 1 
and, for n>\9 9^= ^n-\+^n-2- Using a well-known connection between /j(a) and the con-
tinued fraction expansion of a (see [3]), one can, for these generalized golden ratios, explicitly 
compute ju(<pa) = l/ Given this, we may state the main result of Winley et al. [10] as 

Theorem 1: For a positive integer a, X{q>a) -al (p\. Moreover, for X{<pa) <c<\l Ja2 + 4, an 
integer q > 0 is a solution to 

q\\<pa<i\\<c (i-2) 
if and only if q = S^m-i* where m is any positive integer satisfying 

l - e V a 2 + 4 < ^ - 4 m (1.3) 

The key to the proof of Theorem 1 is the observation that the numerators and denominators 
of the convergents of q>a, which are the generalized Fibonacci numbers, enjoy a simple second-
order recurrence relation. 

In this paper we extend Theorem 1 to arbitrary real quadratic irrationals. Fundamental to our 
method is an important, but not widely known, result on the arithmetical structure of the 
sequences of numerators and denominators of the convergents of quadratic irrationals. In 
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particular, each sequence may be partitioned into a finite number of simple second-order linear 
recurrence sequences all of which satisfy the same recurrence relation. We state this result 
explicitly as Theorem 3 in Section 2. A pleasant consequence of this result is a very simple 
method for computing the Lagrange constant for quadratic irrationals. This fundamental result is 
stated in Section 4 as Lemma 7. 

As our generalization of inequality (1.3) for arbitrary quadratic irrationals requires the coeffi-
cients occurring in the recurrence relations given in Theorem 3, we postpone stating our main 
results, Theorems 5 and 6, until Section 3. However, below we illustrate our results with a simple 
extension of Theorem 1. We recall that the continued fraction expansion for <pa is [a,a,a,...] = 
[a]. Thus, it is natural to next examine quadratic irrationals having a purely periodic continued 
fraction expansion of period length 2. In particular, we consider 

, ,v ab + ̂ a2b2+4ab r—n a(a, b) = — [a, b\ 

It follows by either a direct calculation or an application of Lemma 7, that 
mm{a,b} ju(a(a, b)) = b(a(a,b)-a(a,b))' 

where a(a, b) denotes the algebraic conjugate of a (a, b). If we let pn lqn be the rfi" convergent 
of a(a, b), then the following is a special case of Theorem 5. 

Theorem 2: For positive integers a and b, let a = a(a9 b). Then 1(a) = min{i2a +Z>, ju(a)}-
Moreover, for X(a) <c<//(a), an integer q> 0 is a solution to #||ar#|| < c if and only if q-
q2n+i, where n > 0 is any integer satisfying 

((ab + 2)(1 + ba) - If < ((ab + 2)(1 + ba) -1)(1 - c(a - a)). 

Acknowledgment: The authors wish to thank Professor T. W. Cusick for his useful comments 
regarding this work. 

2, RECURRENCE SEQUENCES AND QUADRATIC IRRATIONALS 

For a real number a, we denote its simple continued fraction expansion by \a^ax,...]. We 
define the sequence of convergents, pn/qn, w = l,2,..., by pnlqn =K)>ai>--->a»L where gcd 
(Pn> 9«) = 1- If we declare p_2 = 0, p_x - 1, and q_2 = 1, q_x = 0, then it follows that, for all n > 0, 
pn=anp„-i+pn-2 and qn=anqn_l+qn_2. By the well-known result of Lagrange, a G R is a 
quadratic irrational if and only if the continued fraction expansion for a is eventually periodic (see 
[4]). For the remainder of this paper, a is assumed to be a real quadratic irrational and thus we 
may denote its continued fraction as 

a = |a0, ah ...,ak_h ak, c*k+i>--'>ak+T-i\-

Hence, for each t9 0 < f < T7-1, we have 

PTn+t+k ~ at+kPTn+t+k-l + PTn+t+k-2 a n C^ ^Tn+t+k = af+fc<?7>m+&-l + ^Tn+t+k-2 

for all n - 0,1,2,.... We will require the following result which shows that the sequences {pn} 
and {qn} may be partitioned into J7 simple second-order linear recurrence sequences all satisfying 
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the same recurrence relation. Such a result was also noted by Cusick [2] and again by van der 
Poorten [7] (see the related work of Kiss [5]), and is of some independent interest (see [1]). 

TheoremS: If 
a = [a0,al,...,ak_l,ak,ak+l,...,ak+T_l] and r(a) = [ak,ak+l,...,ak+T_l]9 

then, for each t, 0 < t < T-1, 

PTn+t+k ~ Wi^PTin-iy+t+lc + ( "* ) PT(n-2)+t+k> 

%Tn+t+k ~ ® (a)^T(n-l)+t+k + (~ 1) ^T{n-2)+t+k > 

for all n = 2,3,..., where the constant co(a) = Px-i+qr-i anc* Pn IQn denotes the rfi* convergent 
of P(a). Furthermore, if rl = F(a) and r2 = P(a), then rl>\, T1T2 = (-1)T and, for each t, 
0 < t < T-1, there exist real numbers ut,vt,rt,st, with rt > 0, such that pTn+t+k = utT\ + vtr2 and 
Vitet+k = r*r" + *^2 f o r all rc = 0,1,2,.... 

As it is difficult to find a proof of Theorem 3 in the literature, we include one here. We begin 
with the following elementary but useful lemma from linear algebra. The authors wish to thank 
the referee for suggesting the following elegant proof of Lemma 4. 

Lemma 4: Let A, B, C, D be nonnegative integers satisfying AD-BC = (-l)T for some fixed 
integer T. If the sequences of integers {an}, {bn}, {cn}, {dn} are defined by 

(a„ bn\(A B)" 
U dj-{c D)> 

then each of the four sequences, {an}, {bn}, {cn}, and {dn}, satisfies the same second-order linear 
recurrence relation. In particular, 

fe: fc)-<"+K2 *)+ ( -^fe fc) (22) 
forw>2, 

Proof: If we write 

He D\ 
then we note that the characteristic polynomial associated with Mis given by 

det(M - l2x) = x2 - (A + D)x + AD - BC, 

where 12 denotes the 2 x 2 identity matrix. By the Cayley-Hamilton Theorem, a matrix is a zero 
of its associated characteristic polynomial. Specifically, we have 

M2 = (A + D)M - (AD - BQl2. 

Multiplying the previous identity by Mn~l yields 

Mn+l = (A + D)Mn - (AD - BC)Mn-1. 

In view of our assumption that AD - BC = (- l)T, the above equality becomes 
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Mn+l = (A + D)Mn + ( - l ) m M " - \ 

which completes the proof of the lemma. 

Proof of Theorem 3: It is enough to prove that the identities in (2.1) hold, as the subse-
quent assertions of the theorem follow from (2.1) and the basic theory of Enear recurrences. We 
first prove (2.1) in the case when t = 0 and then indicate how to modify the argument for t > 1. 

By a well-known correspondence between partial quotients and convergents, if pnlqn = 
[a0,al3.. , ,aj,then 

da l V * i 1 CL l\JPn Pn-l 

1 0A1 0 / {l 0) [qn qn_t 

(see, for example, [6]). Thus, given that P(a) = [%, cik+ly..., ak+T_X we have 
Ufa 

i o 1 0 
*k+T-l 

0 
A-\ PT-I PT-2 

QT-1 ^T-2 
(2.3) 

where we recall that p*/q* denotes the nth convergent of P(a). Hence, as P(a) has a purely 
periodic continued fraction expansion of period length T, we see that, for all n > 1, 

PTn-l PTYI-2 
QTn-1 ^Tn-2 

PT-I PT-2 

qT-i qT-2 

Taking determinants of both sides of (2.3), we see fT_iq^2~ PT-2(JT-I = (~~^)T- Therefore, we 
may apply Lemma 4 and deduce that, for all n > 2, 

QTn-\ ^Tn-2 

FT(n-\)-l PT(n-l)-2 

^T{n-l)-l ? r ( n - l ) - 2 
H-(-l) T+l PT{n-2)-l PT{n-2)-2 

Q T(n-2)-\ ^T{n-2)-2 

where a>(a) = p}_x + ?7_2-
Finally, turning our attention to the partial quotients of a , we note that, for all n > 1, 

(PTn+k PTn+k-l aQ 1 
1 0 

Pk-l Pk-2 
Qk-1 4k-2 

a, tft 
1 

PT-I PT-2 

\9T-I 9r-2 

f 0 a, 
1 

= f f t - 1 A-2] / ^ - l î n-2 

Thus, the pair (pTn+k,qTn+k) i s a nonsingular, linear transformation of (pTn-i> QTn-i) • Hence, 
both/?rn+it and gr„+^ each must satisfy the same second-order linear recurrence enjoyed by Pxn_x 

and q^n_.t. Specifically, for all n > 2, 

ftfc+ifc ~ ^ ( a ) P r ( « - l ) + ^ + ( - 1 ) + PT(n-2)+k> 

tJTn+k ~ ^ ( a ) ? r ( « - l ) + i t + ( ~ 1) ^T(n-2)+k > 

which proves the theorem when t = 0. 
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For t > 1, we note that 

[ PTn+t+k PTn+k+t-l J = (Pk-l Ple-2 | [ Pfn-1 PTYI-2 ] | A*-l A*-2 

Since both the first and third matrices appearing on the right-hand side of this identity are inde-
pendent of n, we see that pTn+t+k and qTn+t+k are each linear combinations of p^„_l9 p}n-2> QTn-u 
and qTn-2- Thus, pTn+t+k and qTn+t+k must satisfy the same linear recurrence as p^n-u PTn-2> 
QTn-i> anc* QTn-2' This fact establishes (2.1) for any t, 0 < t < T-1, and completes the proof. 

3. OUR MAIN RESULTS ON DIOPHANTINE APPROXIMATION 

Given a as in Theorem 3, it will be convenient to define several new but natural constants 
that will allow us explicitly to determine X{a). For each t, 0 <t< T-1, we let dt = rtvt - stut and 
define 

\\dt\(\+$), ifsf<0; 

lt(a) = <\dt |, if st > 0 and J is even; 

| 4 | ( l - - ^ ) , if st > 0 and Tis odd. 

We now state our main result in the case when the continued fraction expansion for a is purely 
periodic. 

Theorem 5: Suppose that a = \a0, al:i...,aT_A; rt and st are as in Theorem 3, and dt and Xt{a) 
are as defined above. Then A(a) = rmn{At (a) :0>t<T-l}. Moreover, for X(a) <c< ju(a), an 
integer q > 0 is a solution to 

q\\aq\\<c (3.1) 

if and only if q = qTn+t, where 0 < t < T-1, {-l)Tn$t < 0, At(a) < c, and n > 0 satisfies 

<a2\ (3.2) 

We remark that upon first inspection it may appear undesirable to have n occur in the bound 
(-l)7"^ < 0. However, as T and t are known, it is only the parity ofn that is necessary in com-
puting this inequality. Hence, given c and t, one needs to find all even integers n that satisfy the 
conditions of the theorem and then all such odd integers. That is, implicit in the inequalities of 
Theorem 5 are the cases of n even and n odd. 

Plainly, if the continued fraction expansion for the quadratic irrational a is not purely peri-
odic, then there is no control on the size of the partial quotients occurring before the period; thus, 
one must examine each of the associated convergents individually. In particular, if 

a = ja0, <*!,...,%_!, ak, ak+l,..., ak+T_^, 

then there may be solutions to (3.1) among the first k convergents. With this unavoidable possi-
bility understood, one has 
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Theorem 6: Suppose that a = [% ah . . . , a w , ak, ak+l9 ...,ak+T_{]; P(a), r,, s, are all as in Theo-
rem 3, and dt and A,(a) are as defined above. Let Aj(a) = min{ At(a) : 0 < f < T-1}. Then 

X(a) = min {A^a), $, \\aqn\\:0<n<k}. 

Moreover, for /l*(a) <c< / / (a) , an integer q>qk is a solution to 

?HI|<<? (3.3) 
if and only if g = qTrl+t+k, where 0 < t < T-1, (-l)7w^ < 0, l f ( a ) < c> anc* n ^ ° satisfies 

JL i__£. 
' 141 

A 2« <P(a ) . 

As an illustration, we return to a = <pa= [a]. In this case, we have T=\ and may verify that 
— <P„ —0„ 

Va +4 Va +4 

M0 = afa , v0 = I?" , and thus rf0 = . ~ • 
Va +4 Va +4 Va +4 

As 50 > 0 and J is odd, it follows that 

^fa.) = ̂ ofa.) = • 1- -a + Va2 + 4 1 
P2. 

flS~l_ a 

as was stated in Theorem 1. We assume now that A(<pa) <c< fi(<pa). For qn to be a solution to 
(3.1), we must have n > 0 odd. If we write n = 2m-l, then (3.2) becomes 

^ ( l - c V a 2 + 4 ) < ^ - 2 . 

Noting that <pjpa = -1 and ^a/|$?a |= ^ , the previous inequality is seen to be equivalent to 

l-c^]a2+4<(p-4m. (3.4) 

Therefore, all the solutions to (3.1) are given by q - q2m-\, where m > 0 satisfies (3.4) which, in 
view of the fact that q2m-\ = 9W-i> yields the result of Winley, Tognetti, and Van Ravenstein. 

An Illustrative Collection of Examples: We briefly consider various numbers a equivalent to 
^ - = [1,2]. For all such numbers, it follows that fi(a) -jTf. 

1. Let a = [1^2]. It follows that X0(a) = -^ = ju{a) « .288 and Xx{a) = 4-2V3 « .535, so 
2(a) = ju(a). Hence, there are no solutions to (3.1) for any c, 0 < c < /j(a). 

2. a = [2/i} = 1 + V3. We find that A0(a) = -j= and Xx{a) = 2 - V3 « .267. Thus, there are 
no solutions to (3.1) for 0 < c < 2 - J3; and for 2 - V3 < c < ju(a) we have that q2n+l is a solution 
to (3.1) for all integers n > 0 satisfying (7 + W3)(l - c2^3) < (7 - 4V3)W. 

3. Let a = [3,3,2^1] = -^=^. For / = 1, we have (-l)7*^ = sx = 3 ° - ^ > 0. Thus, for* = 1, 
qTn+t+k is not a solution to (3.3). For / = 0, we note that AQ(a) - 91~1

4
1
9 « .557 > //(a) > c. 

Thus, there are no solutions to (3.3) in this case either. A straightforward calculation shows that 
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qQ = 1 and qx = 3 are never solutions to (3.3). Hence, for this a, there are no solutions to (3.3) 
for any c < ju(a). 

4. Let a = [3,3,1,2] = 5 - V3. As in the previous example, sx - 33-1
6

9^ » .015 > 0 so there 
are no solutions to (3.3) for t = 1. Here, Xx{a) = -^ « .577, A0(a) = 28-16^3 « .287; hence, 
/L*(a) = 28-16^/3, while A(cr) = l||al|| = 2 - V3 « .267. Therefore, after a calculation, we con-
clude that solutions to (3.3) for 28-16^3 <c<ju(a) are p2n+il^2n+2 f°r a " integers n>0 
satisfying (97 + 56V3)(l-c2V3) <(7-4V3)w. We also note that q0 = l is the only solution to 
(3.1) for 0<c<28-16V3. 

4. THE PROOF OF THEOREMS 5 AND 6 

Before proceeding with our proof, we recall some elementary facts from the theory of con-
tinued fractions (see [4] or [6] for details). For an irrational real number a, the convergents 
Pn /(Jn

 s a t i s f y 
Pn - (-1)" a-
<ln <l„{an+fln+Cln-lY 

(4.1) 

where an = [aw, an+l,an+2,...] is the 71th complete quotient. We recall Hurwitz's celebrated result 
that /u{a) <\l4s and Legendre's theorem that any rational solution piq to 

a- 2 < 7 2 ' 
must be a convergent of a. 

We will make use of the following basic lemma which may be of some independent interest. 

Lemma 7: Suppose that a - [a0, ai> • • • > ak-i> ak> ak+\> -•> ak+T-i] and rl9 r2,ut,vt,rt, st are all as 
Theorem 3. For each 0 < t < T -1, let dt - rtvt - stut. Then a-utlrt for each t and 

fi{a)= min {\dt\}. 
0<t<T-l 

Proof: By Theorem 3 we have, for each t, 

PTn+t+k =
 UA + VA =

 Ut + Vf(̂ 2 / ̂ l)" 

In view of the fact that \r21 rx \ < 1, as n —» oo the above identity becomes a-utlrt. 
Next, we observe that 

//(a) = liminfqr||aq\\= lim qn\aqn-pj = lim qn+k\aqn+k-pn+k\. 

Finally, the first part of this lemma, together with a simple calculation, reveals 

in 

^Tn+t+k l^Tn+t+k Pln+t+k I ~ 
1 for? + ^ ) 2 -(i^r? + v,rf)(rfT? + ^ ) 

.2w (-iy-(w-w)+*2 # ) - « = 14 (- l) i w + 1-Tw+l *t L.2w 
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Since | T2 \ < 1, we have 
l i m ^Tn+t+k I ̂ Tn+t+k ~ PTn+t+k 1 = 1 4 1 ; n—>oo 

hence, 
ju{a)= min {K |} , 

0<t<T-l * 
as desired. 

Proof of Theorems 5 and 6: In view of the results of Hurwitz and Legendre, it is clear that 
any solution q to (3.3) for 0 < c < ju(a) must be a denominator of a convergent. We thus con-
sider an arbitrary convergent pmlqm and, for a fixed t, 0 < r < T - 1 , we examine all m such that 
m-k = t modT. Thatis, we write m = Tn + t + k. 

Plainly, qTn+t+k is a solution of (3.3) if and only if 

0 < a PTn+t+k 

^Tn+t+k ^Tn+t+k 

In view of Theorem 3, identity (4.1), and the fact that a = utlrt, the above is equivalent to 

0<(-l)Tn+t+kdt (-Ifw+1 - i z ? < c , 

which may be simplified to 

0 < (-l)t+k+ldt [ 1 + (-l)Tn 5- T2
2" I < c. (4.2) 

rt 

We note that the left side of the inequality (4.2) holds for all choices of n. Therefore, if we let n 
approach infinity, then as |r21 < 1, we conclude that (-l)t+k+ldt > 0. Thus, (4.2) becomes 

o<K|\i+(-ifn^-T2
2
n <c 

The right side of this inequality holds if and only if 

H ) T ^ T 2 r , c ( 4 3 ) 

Moreover, as c<fi(a), Lemma 6 reveals c< \dt\. Thus, the upper bound in (4.3) is negative. 
Since both rf1 and rt are positive, there are no solutions to (4.3) if {-X)Tns{ > 0. Thus, n is a 
solution to (4.3) if and only if {-Vfnst < 0 and n satisfies (3.2). 

Finally, we show that, for each t, 0<t<T-l, there are no solutions q>qk to (3.3) for 
c < Xt{a). As we have already seen, 

VTr,+t+k\\c«lTn+t+k\\ = K l[l + H f " | ^ " j . (4.4) 

If st < 0, then as 0 < r\ < 1, (4.4) is minimized when n = 0. If sr > 0 and T is even, the Minimum 
of (4.4), |41, is approached from above as n -> oo. Finally, if st > 0 and T is odd, it is easy to see 
that (4.4) is minimized when n = 1, thus giving a minimum value of 
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These observations yield 

At(a) = inf {qTn+t+k \\aqTn+t+k | |} . 
«>0 

Hence, it follows that X{a) = min{/t,(a),qn^aqn | |:0<n<k}, and there are no solutions to (3.3) 
for c<Xt{a) and q>qk. This observation completes the proof 
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