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1. SEQUENCES OF CUMULATIVE CONNECTION CONSTANTS 

Let us briefly introduce the notion of cumulative connection constants. For more details and 
related topics, the reader is referred to [2], [4], and [5]. 

Suppose two sequences {rn}n>l and {sn}n>l of complex numbers are given. Then one can 
introduce two associated sequences of polynomials {qn(x)}n>0 and {/?„(*) }„>o as follows. 

9 <!o(x) = PoOO = 1, and 
• for any n > 1: 

ft,(*) = &-i(*)-(*-0> 
A(*) = /Vi(*) •(*"*,,) • 

For any n > 0, the connection constants (or generalized Lah numbers) relating the (root) 
sequence {rn}n^ to {sn}„^ (or, equivalently, relating {q„(x)}„>0 to {pn(x)}„>0) are the complex 
numbers Zw k uniquely defined via the relationship 

n 

k=0 

where we limit the sum to n since, clearly, L k = 0 for any k>n. It is also easy to verify that 
Lnn = \ for any n > 0, our polynomials being monic. Moreover, we stipulate that Ln k-0 for 
negative values ofk. 

For any n>0, the /1th cumulative connection constant (ccc, for short) is defined as 
n 

%i = X4,*-
k=0 

We say that {<€„ }n>l is the sequence of ccc's relating { r j ,^ to {sn}n>l. Notice that we stipu-
late not to start the sequence of ccc's with %0 which always equals 1, as one may easily see. 

The following examples provide very well-known sequences of ccc's. For the sake of com-
pleteness, in the tables at the end of the paper we sketch the number sequences involved in these 
examples,, 
(i) Let {rn)n>_x = 0, 0,0,..., and {sn)n>_x = - 1 , - 1 , - 1 , . . . . Here we have 

(x+D- = S(j)v 
which clearly yields %n - 2n (see Table 1). 
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(ii) Let {!•„}„« = .0,1,2,.... and {*„}„>, - 0,0,0,.... Here we have 

k=0 

where (x)0 = 1, (x)k - Il^~o(x-i) for k>\, are the falling (or lower) factorials, and 5(w> A:) are 
the Stirling numbers of the second kind. Then %n is the ft* Bell number 2&w (see Table 2). 
(iii) Conversely, let {/;}„>! = 0,0,0,..., and {sn}n>l = 0,1,2,.... Here we have 

n 

fc=0 

where s(«, £) are the Stirling numbers of the first kind. Then % = 1 and <€„ = 0 for each n > 2 
(see Table 3). 
(iv) Let {/•„}„>, = 0, 0,0,..., and {*„}„>, = 0,-1,-2, . . . . Here we have 

k=0 

where (x)0 = 1, <x)w = H"Io(x+i) for ft > 1, are the rising (or *//?per) factorials, and c(ft, &) = 
(-1)""* • s(n, k) are the signless Stirling numbers of the first kind. Then %n = ft! (see Table 4). 
(v) Let {rw}w>! = 1, q, q2,..., and { s j , ^ = 0,0,0,.... Here we have 

where g0(x) = 1> £*(*) = n f ^ x - ^ ' ) for A: > 1, are the Gaussian polynomials, and (JJ) are the 
Gaussian binomial coefficients. In this case, <€„ is the ft* Galois number relative to q, namely, 
*%n,q* which is known to count the number of subspaces of an ft-dimensional vector space over 
GF(<7) (see, e.g., [1], Ch. II, Sec. 4). This example for q = 2 is sketched in Table 5. 

These and other relevant examples may be found, e.g., in [1], [3], and [6]. In the sequel, we 
give instances of the notion of ccc that involve Fibonacci, Lucas, and other more general 
sequences. 

2. CCC VERSUS FIBONACCI 

We are now going to show that Fibonacci numbers can be seen as the sequence of ccc's 
relating two specific integer sequences. A generalization of this statement is then provided in 
Proposition 2.3. 

To prove our results, we need the following recurrence on the connection constants Lnk 
relating {rn}n^ to {sn}n^. 

Theorem 2.1 [5, Prop. 2J: For any ft, k, 

Ai, k ~ Az-1, k-\ + (rk+l ~ Sn) ' Ai-1, k- 0) 

This theorem allows us to obtain a nice recurrence relation for the sequence {^n}n>i of ccc's 
relating {rn}n^ to {sn}„>i-
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Proposition 2.1: For any n > 1, 

^ = ( l ^ ) ' t i + E 4 - u ' ^ i . (2) 
it=0 

Proof: Just put "ZjjLo" on both sides of recurrence (1) in Theorem 2.1. Then the claimed 
result follows by easy computation. D 

We can now state our first result. 

Proposition 2.2: Let {rn)n>l be the sequence 0,0,1,0,1,0,1,..., i.e., ^ - 0 and, for any k>\, 
r2-k - 0 and r2.k+l = 1. Moreover, let {sn}n>{ be the null sequence 0,0, 0,.... Then the sequence 
{̂ «}«>i of cce's relating {rw}w>j to {sjn>l is the Fibonacci sequence. 

Proof: By applying recurrence (1) to the connection constants relating our two sequences, 
we easily obtain Ll0 = L2^0 = L2j = 0. By recalling that Ln^n - 1 for any n > 0, and by the defini-
tion of ccc, we get 

Wo — ^1 0 2 1 2 2 — 

Let us compute %n for w > 3. Since {$„}„>! is the null sequence, recurrence (2) becomes 
n-\ 

k=0 

where we can expand Ln_lk according to recurrence (1), and get 
n- l 

^ n =<^w-l+2-» ( 4 - 2 , *-l + rk+\ ' 4 - 2 , k) ' rk+\ • P ) 

Now, note that our sequence {rn}n>x satisfies r„2 = rn for any n > 1. We can use this fact in (3) 
to obtain 

n-l n-\ 

^n =C^n-l+Z^^n-2,k-l'rk+l + Zw A i - 2 , k ' rk+V ( V 
k=0 k=Q 

The first sum in (4) gives 4-2, t + 4-2,3 + 4-2,5 + • • • + 4-2, «-2' rn> w h i l e t h e second expands 
to 4,-2,2 + Ln-2,4 + 4-2,6 +"" * + 4-2, n-2' Vi • Moreover, Ln_x 0 = 0, as one may easily verify by 
using recurrence (1). Therefore, (4) becomes 

n-2 

^n -^n-\ + i A i - 2 , k -^n-\ +<^>n-2 > 
k=0 

and our claim follows. D 

Indeed, this proposition (as well as the others we shall prove) can also be seen in terms of 
sequences of polynomials. As stated in Section 1, the two root sequences {rn}n>l and {srj}n>l 

in Proposition 2.2 originate two sequences of polynomials. The former gives {$n(x)}n>0 with 
0o(x) = l, fa(x) = x, and ^(x) = ^_1(x).x(w+1)mod2.(x-l)wmod2 for n>2. The latter yields 
{xn}n>0. Thus, for any n > 1, we have 
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*" = 1LLn.k'h(x) and ^ = ZAa> 
k=0 k=0 

where cF„ is the 72th Fibonacci number. 
In Table 6 we summarize the sequences we have just coped with in Proposition 2.2. The 

result in Proposition 2.2 can be generalized as follows. 

Proposition 2.3: For fixed integers d>\ and m> 1, let {rw}w>! be the sequence 

0 ^ ^ , 1 , ^ 0 ^ , 1 , 0 0 ^ 0 , 1 , . . . , 
d-\ m-\ m-\ 

i.e., rn = 1 whenever n=d+hm for h>0, and r„ = 0 otherwise. Moreover, let {s„}„>i be the 
null sequence. Then the sequence { ^ H } ^ of ccc's relating {rn}n>l to {»?„}„>! is 

(a) %=%2 = ...=%d_l = ly 

(b) %+i = 2 + i for0<i<m-l, 
(c) <€„ =<€„_!+<€„_„, for n>d + m. 

Proof: For (a), it is enough to verify via recurrence (1) that, for 0 < k < n < d - 1 , we have 
Ai,k ~ $n,k (Kronecker's symbol). For (b), again recurrence (1) says that, for 0 < i < rn-1, we get 
Ld+ik=6 for0<k<d-2, while Ld+Uk = 1 for d-l< k <d + i. 

Let us now turn to (c). For n>d + m, recurrence (2) is easily seen to be equivalent to 

/j=0 

By considering the structure of {/;}„>!, and by repeatedly applying recurrence (1), we can 
write Ln_hd+h.m_x in (5) as 

m 

^n-\, d+hm-l ~~ 2~i n-m, d+h-m-j • 
7=1 

We use this in (5) to obtain 

^n -^n-l + /I X Ln-m, d+hm-j • ( 6 ) 
/i=0 y=l 

It is easy to see that the double sum in (6) actually is T^-m Ln-m,k- Furthermore, by recall-
ing that d> 1, m>\, and that we are considering the case n>d+m, it is also easy to see that 
Ln-m, £ = 0for£<<i- /w- l . In conclusion, we can write (6) as 

n-m 

A:=0 

whence the result. D 
Needless to remark, Proposition 2.2 is just a special case of Proposition 2.3, up to setting 

d = 3 and w = 2. More interesting is the case d = m=l, which yields the constant sequence 
W«>i = 1,1,1, — By Proposition 2.3, the sequence {%,}„>! of ccc's relating such {rn}n>l to the 
null sequence is c€1 = 2, C€„ = 2C€„_1, i.e., %n = 2n. This is in perfect accordance with the well-
known identity 
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(x-lf 

As a further example, in Table 7 we display the case d = rn = 3. 

3* CCC VERSUS LUCAS 

In this section we provide a further interesting generalization of the result in Proposition 2.2. 
As a simple consequence, we obtain two specific integer sequences whose associated sequence of 
ccc!s is exactly the Lucas sequence. 

Proposition 3.1: Given two complex numbers a and b, let {rn}n>l be the sequence defined as 
rl=a,r2=b, and rn = l- tf_x for any n > 3. Moreover, let {sjn>{ be the null sequence. Then the 
sequence {<&„}„& of ccc's relating {rj^ to {s„}n^ is 

[\ + a ifw = l, 
%n = \\ + a + a2+b if « = 2, 

[^_1+^_2 if it ^3 . 

Proof: The first two values of {%,}„>>! are derived at once by definition of ccc. Let us 
compute %n for n > 3. Since {s„}n>x is the null sequence, recurrence (2) reads 

k=0 

Now, we use recurrence (1) to expand Ln_lik. We obtain 
n-\ 

^>n =<^>n-l + 2^ \Ln-2, k-\' rk+l + Ai-2, k ' rk+\) > 
k=0 

which, via the relation rn = 1 - rjj_l9 changes to 
n-l n-\ n-\ 

^>n -^n-l + Z^ ^ w - 2 , k-\' rk+l + 2 ^ A i - 2 , k~Z^ ^n-2, k ' rk+2 • 
k=0 k=Q k=Q 

All terms of the first and the third sum cancel out, except the two terms ^_2,-r^i and 
Ln_2 „_!'/;+1 that both equal 0, as noticed in Section 1. Since the second sum coincides with 
c€„_2, our claim follows. D 

It is easy to observe that Proposition 3.1 has Proposition 2.2 as a simple consequence, up to 
setting a = b = 0. Furthermore, it enables us to immediately get our claim on Lucas numbers as a 
sequence of ccc's. 

Corollary 3 J: Let {rn}n>i be the sequence defined as in Proposition 3.1, up to setting a = 0 and 
b-2. Moreover, let {sn}n^x be the null sequence. Then the sequence {^n}n>i of ccc's relating 
{rn)n>\ t 0 isn)n>\ °ls ̂ e Lucas sequence. 

In Table 8 we outline the sequences singled out in this corollary. 
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4. A FINAL REMARK 

For the sake of precision, it is worth noticing that all sequences of ccc's are meant to be 
determined up to translation of the related root sequences. More precisely: if ^>n}n>i relates 
{rn)n>\ t 0 {sn)n>\> ^en {%,}„>! also relates the translated sequences {rn + %}n>i and {s„ + £}„>i for 
any complex number £. In fact, from Theorem 2.1, it is easy to verify that the connection 
constants relating {rn}n>l to {s„}„^ll are the same that relate {rn + £}„>! and {sn + £}„>!• 

TABLE 1. Number of Subsets as Sequences of ccc's Arising from 
Binomial Coefficients (j) (Ex. (i)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
0 
0 
0 
0 
0 
0 

$, 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

k=0 1 
1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 

2 

1 
3 
6 

10 
15 
21 

CD 
3 

1 
4 

10 
20 
35 

4 5 6 7 

1 
5 1 

15 6 1 
35 21 7 1 

%, = 2" 

2 
4 
8 

16 
32 
64 

128 

TABLE 2. Bell Numbers 9iw as Sequences of cccfs Arising from 
Stirling Numbers of the Second Kind S(n, k) (Ex. (ii)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
1 
2 
3 
4 
5 
6 

*n 

0 
0 
0 
0 
0 
0 
0 

S(n9 k) 
k=0 1 2 3 4 5 6 7 

0 1 
0 1 3 
0 1 3 1 
0 1 7 6 1 
0 1 15 25 10 1 
0 1 31 90 65 15 1 
0 1 63 301 350 140 21 1 

^n=% 

1 
2 
5 

15 
52 

203 
877 

TABLE 3. The Sequence of ccc's Arising from Stirling Numbers 
of the First Kind s(#t, k) (Ex. (Hi)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
0 
0 
0 
0 
0 
0 

Sn 

0 
1 
2 
3 
4 
5 
6 

fc = 0 
0 
0 
0 
0 
0 
0 
0 

1 
1 

- 1 
2 

- 6 
24 

-120 
720 

2 

1 
- 3 
11 

-50 
274 

-1764 

s(n, k) 
3 

1 
- 6 
35 

-225 
1624 

4 

1 
-10 

85 
-735 

5 

1 
-15 
175 

6 7 

1 
-21 1 

<€» 
1 
0 
0 
0 
0 
0 
0 
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TABLE 4. Factorial Numbers as Sequences of cccfs Arising from Signless Stirling 
Numbers of the First Kind c(n9 k) = {-t)n~k - s(«, k) (Ex. (iv)) 

n 

1 
2 
3 
4 
5 
6 
7 

?n 

0 
0 
0 
0 
0 
0 
0 

Sn 

0 
-1 
-2 
-3 
-4 
-5 
-6 

c(ny k) 
k=0 1 2 3 4 5 6 7 

0 1 
0 1 1 
0 2 3 1 
0 6 11 6 1 
0 24 50 35 10 1 
0 120 274 225 85 15 1 
0 720 1764 1624 735 175 21 1 

%n = n\ 

1 
2 
6 

24 
120 
720 

5040 

TABLE 5. Galois Numbers ^ 2 as Sequences of ccc's Arising from 
Gaussian Binomial Coefficients (j) (Ex. (v)) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

1 
2 
4 
8 

16 
32 
64 

5, 
0 
0 
0 
0 
0 
0 
0 

k = 0 1 
1 1 
1 3 
1 7 
1 15 
1 31 
1 63 
1 127 

2 

1 
7 

35 
155 
651 

2667 

(!), 
3 

1 
15 

155 
1395 

11811 

4 5 6 7 

1 
31 1 

651 63 1 
11811 2667 127 1 

%=%,2 
2 
5 

16 
67 

374 
2825 

29212 

TABLE 6. Fibonacci Numbers 9n as Sequences of ccc's (Prop. 2.2) 

n 

1 
2 
3 
4 
5 
6 
7 

rn 

0 
0 
1 
0 
1 
0 
1 

Sn 

0 
0 
0 
0 
0 
0 
0 

Kk 
k=Q 1 2 3 4 5 6 7 

0 1 
0 0 1 
0 0 1 1 
0 0 1 1 1 
0 0 1 1 2 1 
0 0 1 1 3 2 1 
0 0 1 1 4 3 3 1 

%=%, 
1 
1 
2 
3 
5 
8 

13 

TABLE 7. The Sequence of cccfs Arising from Prop. 2.39 for d = m = 3 

n 

1 
2 
3 
4 
5 
6 
7 

r« 

0 
0 
1 
0 
0 
1 
0 

Sn 

0 
0 
0 
0 
0 
0 
0 

4a 
£ = 0 1 2 3 4 5 6 7 

0 1 
0 0 1 
0 0 1 1 
0 0 1 1 1 
0 0 1 1 1 1 
0 0 1 1 1 2 1 
0 0 1 1 1 3 2 1 

<«„ 
1 
1 
2 
3 
4 
6 
9 
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TABLE 8. Lucas Numbers %n as Sequences of ccc's (Cor. 3.1) 

n 
1 
2 
3 
4 
5 
6 
7 

Vn 

0 
2 
-3 
-8 
-63 

-3968 

-15745023 

*n 

0 
0 
0 
0 
0 
0 
0 

k = o 
0 
0 
0 
0 
0 
0 
0 

1 
1 
2 
4 
8 
16 
32 
64 

2 

1 
-1 
7 

-13 
55 

-133 

3 

1 
-9 
79 

-645 

5215 

Kk 
4 

1 
-72 
4615 

-291390 

5 

1 
-4040 

16035335 

6 7 

1 
-15749063 1 

10,2 — o£„ 

1 
3 
4 
7 
11 
18 
29 
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