FIBONACCI AND LUCAS NUMBERS AS CUMULATIVE CONNECTION CONSTANTS¹

Luca Colucci, Ottavio D'Antona, and Carlo Mereghetti²

Dipartimento di Scienze dell'Informazione Università degli Studi di Milano, via Comelico 39, 20135 Milano, Italy {dantona, mereghc}@dsi.unimi.it (Submitted May 1998-Final Revision February 1999)

1. SEQUENCES OF CUMULATIVE CONNECTION CONSTANTS

Let us briefly introduce the notion of *cumulative connection constants*. For more details and related topics, the reader is referred to [2], [4], and [5].

Suppose two sequences $\{r_n\}_{n\geq 1}$ and $\{s_n\}_{n\geq 1}$ of complex numbers are given. Then one can introduce two associated sequences of polynomials $\{q_n(x)\}_{n\geq 0}$ and $\{p_n(x)\}_{n\geq 0}$ as follows:

- $q_0(x) = p_0(x) = 1$, and
- for any $n \ge 1$:

$$q_n(x) = q_{n-1}(x) \cdot (x - r_n),$$

 $p_n(x) = p_{n-1}(x) \cdot (x - s_n).$

For any $n \ge 0$, the connection constants (or generalized Lah numbers) relating the (root) sequence $\{r_n\}_{n\ge 1}$ to $\{s_n\}_{n\ge 1}$ (or, equivalently, relating $\{q_n(x)\}_{n\ge 0}$ to $\{p_n(x)\}_{n\ge 0}$) are the complex numbers $L_{n,k}$ uniquely defined via the relationship

$$p_n(x) = \sum_{k=0}^n L_{n,k} \cdot q_k(x),$$

where we limit the sum to n since, clearly, $L_{n,k} = 0$ for any k > n. It is also easy to verify that $L_{n,n} = 1$ for any $n \ge 0$, our polynomials being monic. Moreover, we stipulate that $L_{n,k} = 0$ for negative values of k.

For any $n \ge 0$, the n^{th} cumulative connection constant (ccc, for short) is defined as

$$\mathscr{C}_n = \sum_{k=0}^n L_{n,k} .$$

We say that $\{\mathscr{C}_n\}_{n\geq 1}$ is the sequence of ccc 's relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$. Notice that we stipulate not to start the sequence of ccc 's with \mathscr{C}_0 which always equals 1, as one may easily see.

The following examples provide very well-known sequences of ccc's. For the sake of completeness, in the tables at the end of the paper we sketch the number sequences involved in these examples.

(i) Let
$$\{r_n\}_{n\geq 1} = 0, 0, 0, ..., \text{ and } \{s_n\}_{n\geq 1} = -1, -1, -1, ...$$
 Here we have

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

which clearly yields $\mathscr{C}_n = 2^n$ (see Table 1).

¹Partially supported by MURST, under the project "Modelli di calcolo innovativi: metodi sintattici e combinatori."
²Corresponding author.

(ii) Let $\{r_n\}_{n\geq 1} = 0, 1, 2, ..., \text{ and } \{s_n\}_{n\geq 1} = 0, 0, 0,$ Here we have

$$x^n = \sum_{k=0}^n S(n,k) \cdot (x)_k,$$

where $(x)_0 \equiv 1$, $(x)_k = \prod_{i=0}^{k-1} (x-i)$ for $k \ge 1$, are the *falling* (or *lower*) factorials, and S(n, k) are the *Stirling numbers of the second kind*. Then \mathcal{C}_n is the n^{th} Bell number \mathcal{B}_n (see Table 2).

(iii) Conversely, let $\{r_n\}_{n\geq 1} = 0, 0, 0, ..., \text{ and } \{s_n\}_{n\geq 1} = 0, 1, 2,$ Here we have

$$(x)_n = \sum_{k=0}^n s(n,k) \cdot x^k,$$

where s(n, k) are the Stirling numbers of the first kind. Then $\mathcal{C}_1 = 1$ and $\mathcal{C}_n = 0$ for each $n \ge 2$ (see Table 3).

(iv) Let $\{r_n\}_{n\geq 1} = 0, 0, 0, ..., \text{ and } \{s_n\}_{n\geq 1} = 0, -1, -2,$ Here we have

$$\langle x \rangle_n = \sum_{k=0}^n c(n,k) \cdot x^k$$
,

where $\langle x \rangle_0 \equiv 1$, $\langle x \rangle_n = \prod_{i=0}^{n-1} (x+i)$ for $n \ge 1$, are the rising (or upper) factorials, and $c(n, k) = (-1)^{n-k} \cdot s(n, k)$ are the signless Stirling numbers of the first kind. Then $\mathcal{C}_n = n!$ (see Table 4).

(v) Let $\{r_n\}_{n\geq 1} = 1, q, q^2, ..., \text{ and } \{s_n\}_{n\geq 1} = 0, 0, 0, ...$ Here we have

$$x^n = \sum_{k=0}^n \binom{n}{k}_q \cdot g_k(x),$$

where $g_0(x) \equiv 1$, $g_k(x) = \prod_{i=0}^{k-1} (x-q^i)$ for $k \ge 1$, are the Gaussian polynomials, and $\binom{n}{k}_q$ are the Gaussian binomial coefficients. In this case, \mathscr{C}_n is the n^{th} Galois number relative to q, namely, $\mathscr{G}_{n,q}$, which is known to count the number of subspaces of an n-dimensional vector space over GF(q) (see, e.g., [1], Ch. II, Sec. 4). This example for q=2 is sketched in Table 5.

These and other relevant examples may be found, e.g., in [1], [3], and [6]. In the sequel, we give instances of the notion of **ccc** that involve Fibonacci, Lucas, and other more general sequences.

2. CCC VERSUS FIBONACCI

We are now going to show that Fibonacci numbers can be seen as the sequence of ccc's relating two specific integer sequences. A generalization of this statement is then provided in Proposition 2.3.

To prove our results, we need the following recurrence on the connection constants $L_{n,k}$ relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$.

Theorem 2.1 [5, Prop. 2]: For any n, k,

$$L_{n,k} = L_{n-1,k-1} + (r_{k+1} - s_n) \cdot L_{n-1,k}. \tag{1}$$

This theorem allows us to obtain a nice recurrence relation for the sequence $\{\mathscr{C}_n\}_{n\geq 1}$ of ccc's relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$.

Proposition 2.1: For any $n \ge 1$,

$$\mathcal{C}_n = (1 - s_n) \cdot \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} L_{n-1, k} \cdot r_{k+1}. \tag{2}$$

Proof: Just put " $\sum_{k=0}^{n}$ " on both sides of recurrence (1) in Theorem 2.1. Then the claimed result follows by easy computation. \Box

We can now state our first result.

Proposition 2.2: Let $\{r_n\}_{n\geq 1}$ be the sequence $0, 0, 1, 0, 1, 0, 1, \dots$, i.e., $r_1 - 0$ and, for any $k \geq 1$, $r_{2\cdot k} = 0$ and $r_{2\cdot k+1} = 1$. Moreover, let $\{s_n\}_{n\geq 1}$ be the null sequence $0, 0, 0, \dots$ Then the sequence $\{\mathscr{C}_n\}_{n\geq 1}$ of ccc's relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$ is the *Fibonacci sequence*.

Proof: By applying recurrence (1) to the connection constants relating our two sequences, we easily obtain $L_{1,0} = L_{2,0} = L_{2,1} = 0$. By recalling that $L_{n,n} = 1$ for any $n \ge 0$, and by the definition of **ccc**, we get

$$\mathcal{C}_1 = L_{1, 0} + L_{1, 1} = 1,$$

$$\mathcal{C}_2 = L_{2, 0} + L_{2, 1} + L_{2, 2} = 1.$$

Let us compute \mathcal{C}_n for $n \ge 3$. Since $\{s_n\}_{n\ge 1}$ is the null sequence, recurrence (2) becomes

$$\mathcal{C}_n = \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} L_{n-1, k} \cdot r_{k+1},$$

where we can expand $L_{n-1, k}$ according to recurrence (1), and get

$$\mathcal{C}_{n} = \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} (L_{n-2, k-1} + r_{k+1} \cdot L_{n-2, k}) \cdot r_{k+1}. \tag{3}$$

Now, note that our sequence $\{r_n\}_{n\geq 1}$ satisfies $r_n^2=r_n$ for any $n\geq 1$. We can use this fact in (3) to obtain

$$\mathcal{C}_{n} = \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} L_{n-2, k-1} \cdot r_{k+1} + \sum_{k=0}^{n-1} L_{n-2, k} \cdot r_{k+1}. \tag{4}$$

The first sum in (4) gives $L_{n-2,1} + L_{n-2,3} + L_{n-2,5} + \cdots + L_{n-2,n-2} \cdot r_n$, while the second expands to $L_{n-2,2} + L_{n-2,4} + L_{n-2,6} + \cdots + L_{n-2,n-2} \cdot r_{n-1}$. Moreover, $L_{n-2,0} = 0$, as one may easily verify by using recurrence (1). Therefore, (4) becomes

$$\mathscr{C}_{n} = \mathscr{C}_{n-1} + \sum_{k=0}^{n-2} L_{n-2, k} = \mathscr{C}_{n-1} + \mathscr{C}_{n-2},$$

and our claim follows. \Box

Indeed, this proposition (as well as the others we shall prove) can also be seen in terms of sequences of polynomials. As stated in Section 1, the two root sequences $\{r_n\}_{n\geq 1}$ and $\{s_n\}_{n\geq 1}$ in Proposition 2.2 originate two sequences of polynomials. The former gives $\{\phi_n(x)\}_{n\geq 0}$ with $\phi_0(x)\equiv 1$, $\phi_1(x)\equiv x$, and $\phi_n(x)=\phi_{n-1}(x)\cdot x^{(n+1)\bmod 2}\cdot (x-1)^{n\bmod 2}$ for $n\geq 2$. The latter yields $\{x^n\}_{n\geq 0}$. Thus, for any $n\geq 1$, we have

2000]

$$x^{n} = \sum_{k=0}^{n} L_{n,k} \cdot \phi_{k}(x)$$
 and $\mathcal{F}_{n} = \sum_{k=0}^{n} L_{n,k}$,

where \mathcal{F}_n is the n^{th} Fibonacci number.

In Table 6 we summarize the sequences we have just coped with in Proposition 2.2. The result in Proposition 2.2 can be generalized as follows.

Proposition 2.3: For fixed integers $d \ge 1$ and $m \ge 1$, let $\{r_n\}_{n\ge 1}$ be the sequence

$$\underbrace{0,0,...,0}_{d-1},1,\underbrace{0,0,...,0}_{m-1},1,\underbrace{0,0,...,0}_{m-1},1,...,$$

i.e., $r_n = 1$ whenever $n = d + h \cdot m$ for $h \ge 0$, and $r_n = 0$ otherwise. Moreover, let $\{s_n\}_{n \ge 1}$ be the null sequence. Then the sequence $\{\mathscr{C}_n\}_{n\geq 1}$ of ccc's relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$ is

- (a) $\mathscr{C}_1 = \mathscr{C}_2 = \cdots = \mathscr{C}_{d-1} = 1$,
- (b) $\mathcal{C}_{d+i} = 2 + i$ for $0 \le i \le m 1$, (c) $\mathcal{C}_n = \mathcal{C}_{n-1} + \mathcal{C}_{n-m}$ for $n \ge d + m$.

Proof: For (a), it is enough to verify via recurrence (1) that, for $0 \le k \le n \le d-1$, we have $L_{n,k} = \delta_{n,k}$ (Kronecker's symbol). For (b), again recurrence (1) says that, for $0 \le i \le m-1$, we get $L_{d+i, k} = 0$ for $0 \le k \le d-2$, while $L_{d+i, k} = 1$ for $d-1 \le k \le d+i$.

Let us now turn to (c). For $n \ge d + m$, recurrence (2) is easily seen to be equivalent to

$$\mathcal{C}_n = \mathcal{C}_{n-1} + \sum_{h=0}^{\left\lfloor \frac{n-d}{d} \right\rfloor} L_{n-1, d+h \cdot m-1}. \tag{5}$$

By considering the structure of $\{r_n\}_{n\geq 1}$, and by repeatedly applying recurrence (1), we can write $L_{n-1, d+h\cdot m-1}$ in (5) as

$$L_{n-1, d+h\cdot m-1} = \sum_{i=1}^{m} L_{n-m, d+h\cdot m-j}$$
.

We use this in (5) to obtain

$$\mathscr{C}_{n} = \mathscr{C}_{n-1} + \sum_{h=0}^{\left\lfloor \frac{n-d}{m} \right\rfloor} \sum_{j=1}^{m} L_{n-m, d+h \cdot m-j}. \tag{6}$$

It is easy to see that the double sum in (6) actually is $\sum_{k=d-m}^{n-m} L_{n-m,k}$. Furthermore, by recalling that $d \ge 1$, $m \ge 1$, and that we are considering the case $n \ge d + m$, it is also easy to see that $L_{n-m,k} = 0$ for $k \le d-m-1$. In conclusion, we can write (6) as

$$\mathscr{C}_{n} = \mathscr{C}_{n-1} + \sum_{k=0}^{n-m} L_{n-m, k} = \mathscr{C}_{n-1} = \mathscr{C}_{n-m},$$

whence the result. \Box

Needless to remark, Proposition 2.2 is just a special case of Proposition 2.3, up to setting d=3 and m=2. More interesting is the case d=m=1, which yields the constant sequence $\{r_n\}_{n\geq 1}=1,1,1,\ldots$ By Proposition 2.3, the sequence $\{\mathscr{C}_n\}_{n\geq 1}$ of ccc's relating such $\{r_n\}_{n\geq 1}$ to the null sequence is $\mathscr{C}_1 = 2$, $\mathscr{C}_n = 2 \cdot \mathscr{C}_{n-1}$, i.e., $\mathscr{C}_n = 2^n$. This is in perfect accordance with the wellknown identity

$$x^n = \sum_{k=0}^n \binom{n}{k} \cdot (x-1)^k.$$

As a further example, in Table 7 we display the case d = m = 3.

3. CCC VERSUS LUCAS

In this section we provide a further interesting generalization of the result in Proposition 2.2. As a simple consequence, we obtain two specific integer sequences whose associated sequence of ccc's is exactly the Lucas sequence.

Proposition 3.1: Given two complex numbers a and b, let $\{r_n\}_{n\geq 1}$ be the sequence defined as $r_1=a$, $r_2=b$, and $r_n=1-r_{n-1}^2$ for any $n\geq 3$. Moreover, let $\{s_n\}_{n\geq 1}$ be the null sequence. Then the sequence $\{\mathscr{C}_n\}_{n\geq 1}$ of ccc's relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$ is

$$\mathcal{C}_n = \begin{cases} 1+a & \text{if } n=1, \\ 1+a+a^2+b & \text{if } n=2, \\ \mathcal{C}_{n-1}+\mathcal{C}_{n-2} & \text{if } n \geq 3. \end{cases}$$

Proof: The first two values of $\{\mathscr{C}_n\}_{n\geq 1}$ are derived at once by definition of ccc. Let us compute \mathscr{C}_n for $n\geq 3$. Since $\{s_n\}_{n\geq 1}$ is the null sequence, recurrence (2) reads

$$\mathcal{C}_n = \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} L_{n-1, k} \cdot r_{k+1}$$

Now, we use recurrence (1) to expand $L_{n-1,k}$. We obtain

$$\mathcal{C}_{n} = \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} (L_{n-2, k-1} \cdot r_{k+1} + L_{n-2, k} \cdot r_{k+1}^{2}),$$

which, via the relation $r_n = 1 - r_{n-1}^2$, changes to

$$\mathcal{C}_{n} = \mathcal{C}_{n-1} + \sum_{k=0}^{n-1} L_{n-2, k-1} \cdot r_{k+1} + \sum_{k=0}^{n-1} L_{n-2, k} - \sum_{k=0}^{n-1} L_{n-2, k} \cdot r_{k+2}.$$

All terms of the first and the third sum cancel out, except the two terms $L_{n-2,-1} \cdot r_1$ and $L_{n-2,n-1} \cdot r_{n+1}$ that both equal 0, as noticed in Section 1. Since the second sum coincides with \mathscr{C}_{n-2} , our claim follows. \square

It is easy to observe that Proposition 3.1 has Proposition 2.2 as a simple consequence, up to setting a = b = 0. Furthermore, it enables us to immediately get our claim on Lucas numbers as a sequence of **ccc**'s.

Corollary 3.1: Let $\{r_n\}_{n\geq 1}$ be the sequence defined as in Proposition 3.1, up to setting a=0 and b=2. Moreover, let $\{s_n\}_{n\geq 1}$ be the null sequence. Then the sequence $\{\mathscr{C}_n\}_{n\geq 1}$ of ccc's relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$ is the Lucas sequence.

In Table 8 we outline the sequences singled out in this corollary.

2000]

4. A FINAL REMARK

For the sake of precision, it is worth noticing that all sequences of ccc 's are meant to be determined *up to translation* of the related root sequences. More precisely: if $\{\mathscr{C}_n\}_{n\geq 1}$ relates $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$, then $\{\mathscr{C}_n\}_{n\geq 1}$ also relates the translated sequences $\{r_n+\xi\}_{n\geq 1}$ and $\{s_n+\xi\}_{n\geq 1}$ for any complex number ξ . In fact, from Theorem 2.1, it is easy to verify that the connection constants relating $\{r_n\}_{n\geq 1}$ to $\{s_n\}_{n\geq 1}$ are the same that relate $\{r_n+\xi\}_{n\geq 1}$ and $\{s_n+\xi\}_{n\geq 1}$.

TABLE 1. Number of Subsets as Sequences of ccc's Arising from Binomial Coefficients $\binom{n}{k}$ (Ex. (i))

						$\binom{n}{k}$					(0 07
n	r_n	S_n	k = 0	1	2	3	4	5	6	7	$\mathscr{C}_n = 2^n$
1	0	-1	1	1							2
2	0	-1	1	2	1						4
3	0	-1	1	3	3	1					8
4	0	-1	1	4	6	4	1				16
5	0	-1	1	5	10	10	5	1			32
6	0	-l	1	6	15	20	15	6	1		64
7	0	-1	l	7	21	35	35	21	7	1	128

TABLE 2. Bell Numbers \mathfrak{B}_n as Sequences of ccc's Arising from Stirling Numbers of the Second Kind S(n, k) (Ex. (ii))

						S(n, k)					(0 0
n	r_n	S_n	k = 0	1	2	3	4	5	6	7	$\mathscr{C}_n = \mathscr{B}_n$
1	0	0	0	1							1
2	1	0	0	1	3						2
3	2	0	0	1	3	1					5
4	3	0	0	1	7	6	1				15
5	4	0	0	1	15	25	10	1			52
6	5	0	0	1	31	90	65	15	1		203
7	6	0	0	1	63	301	350	140	21	1	877

TABLE 3. The Sequence of ccc's Arising from Stirling Numbers of the First Kind s(n, k) (Ex. (iii))

						s(n, k)					co
n	r_n	Sn	k = 0	1	2	3	4	5	6	7	\mathscr{C}_n
1	0	0	0	1							1
2	0	1	0	-1	1						0
3	0	2	0	2	-3	1					0
4	0	3	0	-6	11	-6	1				0
5	0	4	0	24	-50	35	-10	1			0
6	0	5	0	-120	274	-225	85	-15	1		0
7	0	6	0	720	-1764	1624	-735	175	-21	1	0

TABLE 4. Factorial Numbers as Sequences of ccc's Arising from Signless Stirling Numbers of the First Kind $c(n, k) = (-1)^{n-k} \cdot s(n, k)$ (Ex. (iv))

				c(n,k)												
n	r_n	Sn	k = 0	1	2	3	4	5	6	7	$\mathscr{C}_n = n!$					
1	0	0	0	1							1					
2	0	-1	0	1	1						2					
3	0	-2	0	2	3	1					6					
4	0	-3	0	6	11	6	1				24					
5	0	-4	0	24	50	35	10	1			120					
6	0	-5	0	120	274	225	85	15	1		720					
7	0	-6	0	720	1764	1624	735	175	21	1	5040					

TABLE 5. Galois Numbers $\mathcal{G}_{n,2}$ as Sequences of ccc's Arising from Gaussian Binomial Coefficients $\binom{n}{k}_2$ (Ex. (v))

						$\binom{n}{k}_2$					
n	r_n	Sn	k = 0	1	2	3	4	5	6	7	$\mathcal{C}_n = \mathcal{G}_{n,2}$
1	1	0	1	1							2
2	2	0	1	3	1						5
3	4	0	1	7	7	1					16
4	8	0	1	15	35	15	1				67
5	16	0	1	31	155	155	31	1			374
6	32	0	1	63	651	1395	651	63	1		2825
7	64	0	1	127	2667	11811	11811	2667	127	l	29212

TABLE 6. Fibonacci Numbers \mathcal{F}_n as Sequences of ccc's (Prop. 2.2)

						$L_{n,k}$					(n or
n	rn	S_n	k = 0	1	2	3	4	5	6	7	$\mathscr{C}_n = \mathscr{F}_n$
1	0	0	0	1							1
2	0	0	0	0	1						1
3	1	0	0	0	1	1					2
4	0	0	0	0	1	1	1				3
5	1	0	0	0	1	1	2	1			5
6	0	0	0	0	1	1	3	2	1		8
7	1	0	0	0	1	1	4	3	3	1	13

TABLE 7. The Sequence of ccc's Arising from Prop. 2.3, for d = m = 3

						$L_{n,k}$					(0)
n	r_n	S_n	k = 0	1	2	3	4	5	6	7	\mathscr{C}_n
1	0	0	0	1							1
2	0	0	0	0	1						1
3	1	0	0	0	1	1					2
4	0	0	0	0	1	1	1				3
5	0	0	0	0	1	1	1	1			4
6	1	0	0	0	1	1	1	2	1		6
7	0	0	0	0	1	1	1	3	2	1	9

TABLE 8. Lucas Numbers \mathcal{L}_n as Sequences of ccc's (Cor. 3.1)

				-			$L_{n,k}$				(0 (0
n	r_n	Sn	k = 0	1	2	3	4	5	6	7	$\mathscr{C}_n = \mathscr{L}_n$
1	0	0	0	1							1
2	2	0	0	2	1						3
3	-3	0	0	4	-1	1					4
4	-8	0	0	8	7	-9	1				7
5	-63	0	0	16	-13	79	-72	1			11
6	-3968	0	0	32	55	-645	4615	-4040	1		18
7	-15745023	0	0	64	-133	5215	-291390	16035335	-15749063	1	29

ACKNOWLEDGMENTS

The authors wish to thank the anonymous referee for kind and helpful comments.

REFERENCES

- 1. M. Aigner. Combinatorial Theory. New York: Springer-Verlag, 1979.
- 2. L. Colucci. "Sequenze equicostanti di polinomi." Thesis, Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Italy, 1995 (in Italian).
- 3. L. Comtet. Advanced Combinatorics. Dordrecht: Reidel, 1974.
- 4. E. Damiani, O. D'Antona, & G. Naldi. "On the Connection Constants." Studies in Applied Math. 85 (1991):289-302.
- 5. E. Damiani, O. D'Antona, G. Naldi, & L. Pavarino. "Tiling Bricks with Bricks." Studies in Applied Math. 83 (1990):91-110.
- 6. R. L. Graham, D. E. Knuth, & O. Patashnik. *Concrete Mathematics*. New York: Addison Wesley, 1994.

AMS Classification Numbers: 11B37, 11B39, 11B83
