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The generalized Fibonacci sequence {Hn}, where Hn = Hn_l+Hn_2= Hn(a,h), Hx=a, 
H2=b, a and b integers, has been studied in the classic paper by Horadam [8], and by Hoggatt 
[7], and Brousseau [1], [2], among others. In this paper we approach the problem of representing 
a positive integer N as a term in one of these generalized sequences so that, for N = HR(A, B), 
the subscript R is as large as possible. 

Cohn [5] has solved a similar problem, but part of his theorem statement was omitted. 
Cohn's problem was: given a large positive integer N, find positive integers A, B such that the 
sequence {wn} defined by wx = A, w2=B, and wn+2 - wn+l +wn, n>\, contains N, and A + B is 
minimal. 

Cohn's Theorem (Restated): Let tn = (-IfiNF^-tFJ, where tk = A + 5 , tk+l = B, tk+2 = A. 
Then either t- [N/a] or t = [N/a] + l, where [x] is the greatest integer in x and a = (l + V5)/2, 
gives the smallest value for tk = A + B, depending upon n even or n odd. 

Our problem has a different approach and allows computation of subscripts. The number 
i^ax of this paper is related to a conjecture made by Hoggatt and proved by Klarner [9] that, for 
"n sufficiently large," R(Hn -1) = R(Hn+l -1), where R(N) is the number of representations of N 
as the sum of distinct Fibonacci numbers; Rm3iX gives the value for n to be "sufficiently large" [3]. 

1. INTRODUCTION 

In order to discuss maximal subscripts, we need a careful analysis of where we want the 
sequences {Hn(A, B)} to begin. The Lucas sequence has LQ = 2, with terms to the right strictly 
increasing, while L_x = -l is the first negative term in an alternating sequence to the left of LQ. A 
generalized Fibonacci sequence in which Hn+l = Hn + Hn_x, Hx=a>l, H2=h>l, has H0 = b-a, 
where we list terms to the right and the left of HQ as 

...,2b-3a, 2a-b, HQ=b-a, a, 6, a + b, a + 2b,.... 

If we want H_X<Q as the first negative term, we need b>2a; then (2a-b)<0 as well as 
(b-a)>a and b > a. Then, Hx = a is the smallest positive term in the generalized sequence and 
the terms to the right of H0 are strictly increasing. The Fibonacci sequence, however, has F0 - 0 
with strictly increasing terms to the right of Fx = 1, and the sequences {aFn} are the only sequen-
ces {Hn} which contain Hk = 0. We write H_x = 0, H0 = a > 1, Hx = a9 H2 -b-2a\ 

...,-3a, 2a, -a, a, 0, H0 = a, a, 2a, 3a, 5a,.... 

Notice that the sequence Hn = aFn+l has the same characteristics as the Lucas-like sequence 
Hx=a>l, H2>2a: H_x - 0 is the first nonpositive term in an alternating sequence moving left 
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of H0 = a, while terms to the right of H0 are strictly increasing. Hx-HQ = a are the smallest 
positive terms. 

Thus, we define the standardized generalized Fibonacci (S.G.F.) sequence {Hn{a, B)} by 

H^^H'n+H^ Ht = A>l, H2 = B>2A. 

We note that H0 = B-A>.A, and Hl = Ais the smallest term in the sequence. We will find that 
HQ will determine maximal subscripts for the sequence. If B - 2A, we will have a Fibonacci-like 
sequence in which Hn = AFn+l. Also, Fibonacci and Lucas numbers are numbered to be 
consistent with usage in this journal. 

We need this careful definition of the beginning terms so that we can identify Hl = A and 
H2=B given any two adjacent terms somewhere in the sequence. For example, 13 and 17 are 
adjacent in each of {13,17,30,47,...}, {4,13,17,30,...}, and {9,4,13,17, 30,...}. Note that the 
S.G.F. sequence will have A = 4, B = 13. We do not start with A = 9, B = 4, or with A = 13, 
5 = 17, since a S.G.F. sequence must have B > 2A. While N = Hx in an infinite number of such 
sequences, N = Hn9 n > 2, can appear only within a S.G.F. sequence for which 1 < Hn_l <N-\. 
When N = H2, take 1 <El < [ ( # - l ) / 2 ] , while N = Hn, w>3, has [N/2] + \<Hn_l<N-I. 
Thus, the maximal subscript for N can be found by listing possibilities. If N = 7 = H„, examine 
sequences for which 4 < Hn_x < 6, giving 1, 3,4, 7,11,...; 2,5, 7,12,...; and 1, 6, 7,13,.... The first 
sequence has 7 = H4, and 4 is the maximal subscript for 7. If N = 6 = Hn, examine 4 < Hn_l < 5: 
2,4, 6,10,..., and 1,5, 6,11,.... Both sequences have 6 = H3, but the first sequence has B - 2A 
so that H3 = 2F4; we take the larger subscript, and 4 is the maximal subscript for 6. 

Lemnna 1.1 gives a second way to compute maximal subscripts. 

Lemma 1.1: If Hn = Hn_2 +Hn_v Hx=a, H2=h,tbo equation 

N=Hn(a,b) = aFn_2+bF^1 (1.1) 
has a solution for any integer N. If (a0, b0) is a solution for (1.1), then a = a0- tFn_ly b = hQ + tFn_2 

is also a solution for (1.1) for any integer t. 
Proof: Equation (1.1), which can be proved by mathematical induction, always has solutions 

[10] for integers a, b as above since (Fn_2, Fn_{) = 1. D 

For our purposes in using (1.1), {Hn(a, b)} must be a S.G.F. sequence. Note that 

{i^(l,2)} = {Fw+1} and {H„(lv 3)} = {L„} 

are S.G.F. sequences since B > 2A, but while {H„(l, 1} = {FJ, this is not a S.G.F. sequence. If 
Fn_t <N <Fn, then (n - 2) is the largest possible subscript for N in a S.G.F. sequence by examin-
ing (1.1). If # = 31, since F8<31<F9, solve 31 = H7 = AF5 + BF6. We find 31 = H7 (3,2) but 
B < 2A, so we solve 31 = AF4 + BF5 = H6(2,5), where B>2A, obtaining 6 as the maximal sub-
script for 31. We now have two methods to compute a table of maximal subscripts. 

We will say that a natural number N reaches maximum expansion at R} denoted by 
p(N) = R, if R is the largest subscript possible for N as a member of a S.G.F. sequence or for N 
as a member of a Fibonacci-like sequence. Let R be the largest subscript such that 

N = HR(A,B) = AFR_2+BFR_l 
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for \<A and 2A<B. Then, if 2A<B, p(N) = R; if 2A = B, p(N) = R + l. We will find 
p(FR) = R = p(LR) for R > 3. For the reader's convenience, we list maximal subscripts p(N) in 
Table 1. 

TABLE 1. N = HR(A, B) with Maximal R = p(N) 
N 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

R 
2 
3 
4 
3 
5 
4 
4 
6 
4 
5 
5 
4 
7 
5 
5 
6 
5 
6 
5 
5 
8 
5 
6 
6 
5 

TV 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

R 
1 
5 
6 
7 
5 
6 
6 
6 
9 
5 
6 
7 
6 
7 
6 
6 
8 
6 
6 
7 
6 
8 
6 
6 
7 

TV 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

R 
6 
7 
7 
6 
10 
6 
6 
7 
6 
8 
7 
6 
8 
6 
7 
7 
6 
9 
7 
6 
7 
6 
8 
7 
6 

N 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

R 
9 
1 
1 
1 
6 
8 
7 
6 
8 
7 
8 
7 
6 
11 
7 
7 
7 
7 
8 
7 
6 
9 
7 
8 
7 

2. p(TV) FOR SOME SPECIAL INTEGERS TV 

We write p{N) for some specialized integers TV and consider how many integers TV have 
R = p(N) for a given subscript R. If p(TV) = R in exactly one sequence, TV is called a single; if in 
exactly two sequences, TV is called a double; if in exactly three sequences, TV is called a frvp/e. The 
smallest double occurs when R = 3, for TV = 4 = i/3(l, 3) = 2i^, while the smallest triple occurs 
when i? = 5, for JV = 35 = 7 ^ = ̂ ( 4 , 9 ) = ̂ ,(1,11). 

Theorem 2.1: For the Fibonacci sequence, p{AFR)-R when l < ^ < i ^ + 1 , R>2. Further, 
p(AFR) > R when A > FR+l. 

Proof: p(F2) = 2; p(F3) = 3. By Lemma 1.1, 

AFR = AFR_2 + AFR.X = HR(A + FR_h A - FR_2), 

where A + FR_2 >2(A-FR_l) when A<FR+l and p(AFR)>R. Further, AFR = 0FR_X + AFR = 
HR+I(FR,A-FR), but a S.G.F. sequence requires that B>2A, and A-FR_l>2FR only when 
A>FR+l. Thus, p(^4i^)<i? + l, making p(AFR) = R when ^4<i^+1, and p(AFR)>R when 
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Corollary 2.1.1: Let N = AFR, and p(N) = R, R>3. Then N is a single when A <FR_l9 is a 
double when FR_X < A < 2FR_X; and is a triple when 2FR_X < A < FR+l. For each value of R9 
p(N) - R in at most three sequences. 

Proof: If 1 < A < FR+l9 p(AFR) = Rby Theorem 2.1. By Lemma 1.1, any other solutions for 
p(N) = R. are found from N = HR(A - tFR_l9 A + tFR_2). If t < 0, {HR} is not a S.G.F. sequence. 
If t = 1, then S.G.F. sequence requirements dictate A - FR_X > 1, making N a single when 1 < A < 
FR_l9 and at least a double if A > FR_X. If t - 2, we must have A - 2FR_X > 1, so that N is a double 
when i^_! <^<2i^_ l 3 and a triple when 2FR_X <A<FR+1. If f >3, then A>l + tFR_x >l + FR+l, 
mdp(N)>R. D 

Corollary 2.1.2: For R > 2, p( /$) = i? and p(FR+lFR) = R +1; further, p(F^2 -1) = /? +1, R even, 
andp(F^2 + l) = i? + l, Rodd. 

/*w/ - Apply Theorem 2.1 to FR_XFR+X = Fg + (-1)*. • 

Corollary 2.1.3: p(FRLR_x) = R, R > 2; p(FRLR) = 2R9 R > 1. 

Proof: Since Z^_t = i^ +Z^_2 <i^+i? Theorem 2.1 gives p(FRLR_l) = R and p(FRLR) = 
p(F2R) = 2R. D 

Corollary 2.1.4: p{Ln+lFn) = n + 2, w > 3; and p{Ln+kFk) = n + k, k>2, n>l. 

Proof: Let N = Ln+xFn = (F„_2)Fn + (2FJFn+l = Hn^^ as B > 2 4 , p W > « + 2. 
Since # = Hn+3(F„+l9 Fn_2) has no other positive solutions and {^+3(^+1, ^V-2)} *s n o t a S.G.F. 
sequence, we have p(N) < n + 3, making p(7V) < ^ + 2. Next, let TV = Ln+kFk. One can derive 

# = Ln+kFk = (Fk)Fn+k-2 +QFk)Fn+k_l = Hn+k(Fk, 3Fk)9 

where B > 2a andp(N) > n + k. Also, since TV = Hn+k+x(2Fk9 Fk) has no other positive solutions 
for A and 5, and this solution cannot be used because A> B, we have p(7V) < w + k +1; thus, 
P(Ln+kFk) = n + k. D 

Corollary2.1.5: p(Fn+p + Fn_p) = n = p(Fn+p-Fn_p)9 p>29 n>2 + p 

Proof: Hoggatt (see [7], p. 59] gives 
Fn+p + Fn_p = FnLp9 p even; Fn+p + Fn_p = LnFp, p odd. 

If/? is even, Corollary 2.1.3 gives p(FnLp) = n; ifp is odd, Corollary 2.1.4 gives p{LnFp)-n. 
Similarly, Fn+p -Fn_p = FnLp9p odd, and Fn+p - Fn_p = LnFp9p even, yield p(Fn+p -Fn_p) = n. D 

Corollary 2. 1. 6: p(F2k -1) = p(F2k +1) = k +1, * > 2. 

If* is even, k > 4, p(F2,+1 +1) = p(F2, +1) = * +1; 
p ( ^ + 1 - l ) = p ( / ^ - l ) + l = * + 2. 

If/c is odd, k > 3, p(F2jt+1 -1) = p(F2^ -1) = k +1; 
p(F2ik+1 + l)=p(Fa b+!) + ! = *+2. 
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Proof: When k is odd, k > 1: 
F2k+l = Fk+lLk-h 

F2k+l~^ = Fk+l^k-

kis even, k>2: 
F2k+l = Fk-lLk+l> 

F2k+l ~^~ Fk^k+l-

F2k 1 - Fk-lLk+i> 
F2k+l + l:=FkLk+l-

F2k-l = Fk+\Lk-\> 
F2k+\^^-Fk+\Lk-

Each pair of identities, when summed vertically, gives F2k+2 = Fk+xLk+x, and each can be proved 
by mathematical induction. Then apply Corollaries 2.1.3 and 2.1.4, which give p(N) when 
N = FkLm. D 

Next, we investigate integers N, where p(N) - R and N is not a multiple of FR. The smallest 
such double is N = 83 = H6(\16) = H6(6913). 

Theorem 2.2: Let N = i ^ ( ^ , 5), where 5 > 2^ and p(JV) = R, R > 3. Then # i s a single when 
l< A <FR_X and B<A + FR. N is a double when FR_X < A < FR - 2 and 2A <B <2FR - 3 . 

Proof: Select the smallest integer ^ for which the hypothesis is met. Then 1 < A ^FR_X. 
Otherwise, from Lemma 1.1, N = HR(A-FR_X, B + FR_2), contrary to choice of A as smallest. 
{HR(A + FR_U B-FR_2)} is not a S.G.F. sequence when B<A + FR because then A+FR_X> 
B-FR_2; thus, the conditions A<FR_X and B<A + FR guarantee a single. When A>1 + FR_X 

and B < A + FR, {HR(A-FR_X, B + FR_2)} is a S.G.F. sequence. Since 2A < B, rewrite require-
ments for B as 2A + l£B<FR + A + l9 leading to a double when FR_x + \< A<FR-2 and 
2A + l<B<FR + A + l<2FR-3. • 

To illustrate Theorem 2.2, consider H6(l, 16) = H6(6,13) = 83. The smallest solution has 
A = 1, where 1 < A < F6_x, but B. = 16 > F6 + A = 9, allowing a double. Taking A = 6, F5 < 6 < 
F6-2 mdB = \3<2F6-3. 

Corollary 2.2.1: Let N = HR(A,B), where B>2A. If \<A<FR-2 and B<A + FR9 then 
p(N) = R, R>3. 

Proof: By hypothesis, p(N) > R. 

N = AFR_2+BFR_X = (B-A)FR_X + AFR=HR+X(B-A,A), 

but {HR+l(B-A, A)} is not a S.G.F. sequence when B>2A, and neither are the other solutions 
from Lemma 1.1, N-HR+l(B- A + FR, A-FR_X) and N = HR+l(B- A-FR, A + FR_X). Thus, 
p(N)<R + l and p(N) = R. D 

Corollary 2.2.2: p(N) = R for ( F | + F^_3) /2 integers N, R > 3. 
JY00/; When 5 > 2A, Corollary 2.2.1 gives (FR -2 ) choices for A. Since 24 +1 < B < 

FR + A + l<2FR-3, when A = FR-2, there is one choice fori?; for A = FR - 3 , two choices; ..., 
£or A = FR-l-k, kchoices. So p(N) = R for 

( ^ - 2 ) 0 + 2 + 3+. >.+(FR-2)) = (FR-2)(FR-l)/2 

integers N which are not divisible by FR. If JV = AFR, Theorem 2.1 gives p(N) = R for 1 < A < 
FRU -1, so there are (FR+l -1) such integers N. Adding and simplifying, 
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(FR-2)(FR-l)/2 + (FR+l-l) = (FR
2+FR_3)/2 

as required. • 

Theorem 13: For the Lucas sequence, p(LR) = R, R>3. 

Proof: piL,) = 2 and p(L2) = 4. For R > 3, LR = HR(1,3) = IFR_2 + 3FR_l9 so p(LR) > R. 
The only positive solution for LR - HR+l(A, B) = AF^ + BFj^ is A = 2 and B = 1, but this solu-
tion cannot be used since A > B, so p(LR) <R + l, making p(LR) = R. Compare with Corollary 
2.1.4 for it = 2. D 

Corollary 2.3.1: The smallest integer such that p(N) = R is FR. The smallest integer not divis-
ible by FR such that p(N) = R\s LR. 

Theorem 14: The largest integer N for which p(N) = R is N = (FR+1 -l)FR, R>2. Also, 
N = (FR+l - T)FR, R > 5, is a triple, with the other two occurrences given by 

N = HR(FR-1),2FR-1) = HR(FR_2-\,2FR+FR_2-1). 

Proof: For R = 2, N = (F3 - \)F2 = 1. If HR = AFR_2 +BFR_U where B > 2A, then HR < 
BFR_2 + BF^ = BFR, R>3. p(BFR) = R when 1 <B<FR + l-1 by Theorem 2.1. By Corollary 
2.1.1, N - (i^+1 - l)i^ is a triple that can be calculated using Lemma 1.1. • 

Theorem 2.5: If F2k_2 < N < F2k, k > 2, then k < p(N) < 2k -1. 

Proof: By Theorem 2.1, the largest possible value for p(N) in the interval is p(F2k_^) = 
2k-I. We show that the smallest value is p(N) = k by applying Theorem 2.4. Now, take 
N = (Fk+i ~ Wk; *en N < (Fk+l + Fk_{)Fk = LkFk = F2k, while 

N = (Fk + {Fk_, - \))Fk > (Fk + F^F^ = Lk_,Fk_, = F2k_2 

for k > 4. Then, by examining k = 2 and k = 3, and putting this together, 

F2k_2 <N = (Fk+l-\)Fk <F2k, k>2, (2.5.1) 

where p(N) = k and#is the largest integer such that p(N) = k. Notice that taking R = k-l in 
Theorem 2.4, (Fk - l)Fk_l < F2{k_V) from (2.5.1), so that the largest integer N having p(N) -k-l 
is not in the interval of Theorem 2.5. D 

Theorem 2.6: In the interval Fm<N<Fm+l, [(m + 2)/2] <p(N) <m-1, m> 4; and p(Fm +1) < 
[(m + 2) / 2] +1, where [x] is the greatest integer in x. 

Proof: Since Fm is not in the interval, p(N) <m-l. If m is odd, take m = 2k-l; if m is 
even, m = 2k-2. Either F2k_2 <N<F^^ or i^^.j <N<F2k, so that p(7V) > k from Theorem 
2.5. Since either [(wf + 2)/2] = (2*- l + 2)/2] = * or [(m + 2)/2] = {2k-2 + 2)12} = k, p(N)> 
[0» + 2)/2]. 

The smallest integer in the interval is Fm + l, and, by Corollary 2.1.6, either p{Fm + V)-
[{m + 2)/2] or p(Fm +1) = [(m + 2)/2] +1. The largest value for p(N) is m-l, which occurs for 
N = 2Fm_lmdN=Lm_v D 
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Corollary 2.6.1: For m > 4, 

P(Fm + Fm-l) = PtfWl - ^m-2) = *» " t 
PĈ m + ̂ V-s) = P(Fm+l ~ Fm-3) = »» - 1. 

Proof: Since Z,w_j = i^ + i^_2 = ̂ «+i _^V-3, apply Theorem 2.3 in the first case. Similarly, 
use Theorem 2.1 with 2Fm_l - i^+1 - Fm_2 = Fm + Fm_v U 

3. THE MAXIMUM EXPANSION INDEX OF A S.G.F. SEQUENCE 

In this section, we determine when p(HK) = K for the S.G.F. sequence {H„(A, B)}. We 
will call the integer i?max the maximum expansion index of the S.G.F. sequence {Hn(A,B)} if 
p(HK(A, B)) = K whenever K = i?max. For example, the S.G.F. sequence 

{Hn{\ 7)} = 0,7,8,15,23,38, 61, 99,...} 

which has p(H6) = p(3S) = 6 has i?max = 6; p{HK) * K for 1 < K < 5, while /?(#7) =p(61) = 7 as 
well as p(HK) = Z for all ^ > 6. 

Theorem 3.1: If FR_X<B-A< FR for the S.G.F. sequence {#„(>4,5)}, then p(HR(A, B)) = R. 
Further, i? = i?max, and p(HK(A, B)) = K for all * > R. 

Proof: Since 2 ^ < 5 in a S.G.F. sequence, ^ ( < 5 - ^ < i ^ so \<A<FR and B<A + FR.. 
If B = 2A, then JV = ^4i^ and p(N) = R by Theorem 2.1. Also, B= A + FR gives a Fibonacci-
like case, since A = FR-k, B- 2FR - k give 

N = HR = (FR-k)Fr_2+(2FR-k)Fr_l = (FR+l-k)FR, \<k<FR-\, 

where p(N) - R by Theorem 2.1, and A: = 0 gives us B = 2A, already discussed. 
If B>2A, Corollary 2.2.1 gives p(N) = i? when l < ^ < i ^ » 2 , 5 < ,4 + i^ , leaving only 

the cases A = FR-l and A = FR. Since cases B-2A and B- A + FR were discussed above, we 
are finished, and p{N) = R when FR_X <B- A<FR. 

Let K>R. If 
N = HK(A,B) = AFK_2+BFK_X and £>2,4 , 

then/?(#)>£:. Thus, 

but this solution cannot be used since B- A> A when B>2A. Since FK > FR, (B - A) - FK < 0, 
and {B- A) + FK > A-FK_X when B>2A, Lemma 1.1 gives no other usable solutions for 
N = Hk+l. Thus, p(N) < K +1 and /?(#) = K. Putting these cases together, p(HK(A, B)) = K 
when K > R, and R = i?max • 

Corollary 3.1.1: If FR_{<2a<FR, a> 1, R>3, then p(aLn) = n for n>R. If FR_X<A<FR, 
then p(AFn) = n for n>R, R>2. 

Proof: Hn=aLn has HQ = 2a. If FR_x<B-A = 2a<FR, apply Theorem 3.1. If i ^ < 
2A-A<FR, then /i(fir

ll.1(i4,2i4)) = / f - l for n-\>R. Since £ = 2,4 and AFn = Hn_x{A,2A), 
p{AFn) -n for n>R. Compare with Theorem 2.1. D 
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Theorem3.2: For k>2, n>2, 

P(Fn+ik + Fn) = P(F„+2k -Fn) = n + t, 
P(Fr,+2k+l + Fn) = P(Fn+2k+l ~ Fn) + 1 = ft + k + 1, U tVt% 
P(Fn+2k+i + Fn) = p(Fn+2k+l -Fn)-l = n + k,k odd. 

Proof: p(Fn+2k + Fn) = p{Fn+2k -Fn) = n + k by taking n = n + k and p = k in Corollary 
2.1.5. Since JV = //„+* = AFn+k_2 + BFn+k_x, where p(Hn+k)>n + k if B>2A, we derive identi-
ties involving iv^+i fr°m the identity (see Eq. (8) in [11]) 

^+« = Fm_xFn + FmFn+l (2.7.1) 

to write N = Fn+Fn+2k+l = AF^^+BF^. Take m = n + k and n = k + l for F„+u+1 and 
m-n + k, and w = (-&) for Fn in (2.7.1) to write 

Fn+2k+i - F(n+k)+(k+\) ~ Fn+k-\Fk+i +Fn+kFk+2; 
Fn = F{n+k)+ir.k) = Fn+k_xF_k +Fn+kFl_k = (-l)k+lFkFn+k_l^(--l)kFk,lFn+k. 

Thus, 

N = F ^ + 1 + F„ = ( J w + (-l)*+1/i)FB+ik.1 +(F,+2 + ( - l )*F w ) /W 
= Hn+k+l(A, B). 

If A is even, A = J^+1 - i^ = J ^ , and B - Fk+2 + Fk_t = 2Fk+l, where B > 2 A. Since 5 - A = 
Fk+2, Rm&x = k + 2, where n + k + l>k + 2; p(N) = n + k + l by Theorem 3.1. If k is odd, then 
A = Fk+l + Fk= Fk+2 and B = i^+2 - i^„1 = 2i^ has A > B with no other positive solution, but we 
find that N = Hn+k(2Fk,4Fk+Fk_l), where Fk+l<B- A<Fk+2 so that Rmax-k + 2, and again 
p(N) = n + k,n>2.. 

Subtracting the quantities above, N = Fn+2k+l-Fn becomes Hn+k(2Fk, 4Fk +Fk_l), giving 
p(N) = m + k fork even; for k odd, N = Fn+2k+l - Fn becomes Hn+k+l{Fk_l92Fk+l), giving p(N) = 
n + k + l. D 

4„ SOLVING N = J^C A B) FOR i?5 A AND B 

Given JV, we find A, B, and i? so that N - HR(A9 B), where R = p(N). Our solution depends 
upon a greatest integer identity for the S.G.F. sequence {Hn(A, B)} which allows us to find Hn_l 

when we are given Hn. 

Lemma 4.1: Let {Hn(A9 B)} be a S.G.F. sequence, where -j^-i < B - A <Fk. For n<k, the 
term preceding H„(A,B) is [Hn/a] or [Hn/a] + l, where [x] is the greatest integer in x, and 
a = (l + V5)/2. 

Proof: From [4], use Theorem 3.3 when B>2A and Theorem 2.3 when 5 = 2^4. D 

Lemma 42: For the S.G.F. sequence {H„(A, B)} ,if D = B2 - AB-A2: 
(i) F^KHJJDZF^ 

(ii) Hl-H^-Hl^i-lfD; 
fd9 Wl-H^^-Hl^K^iWH^KF^n^l 
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Proof: (1) Since B>2A, D>0;'mfoct, D>B2 /4, and 4D>BI2. Thus, 
Hn = AF„_2 +BFn_x <(B/2)F„_2+BF„_l = (B/2)Fn+v 

Dividing by jD,Hn/jD<(B/ 2)Fn+l 14D < Fn+l, while 

Fn+l>Hn/jD = (AFn_2+BF„_l)/jD>AF„_2/jD+Fn_l>F„_l. 

For (ii), see [1], [7], and [8]. Lastly, in 1876, Lucas proved that rn2 -mn-n2 = ±1 is satis-
fied by consecutive Fibonacci numbers, and in 1902, Wasteels proved that there are no other 
solutions (see [6], p. 405). Since (Fn, Fn+l) = 1, (iii) follows. Note that (iii) is a test for a Fibo-
nacci sequence. • 

Lemma 43: Let N = Hn(A, B), where n is to be maximized. There are two cases: 
(i) Hn_x = [HJal n = nly 

(ii) Hn_l = [HJa] + l,n = n2. 

The maximal subscript value for N= HR occurs for R = max(/?1? r^). 

Proof: Lemma 4.3 actually is a blueprint for solving for R. By Lemma 4.1, cases (i) and (ii) 
give the only two possible choices for Hn_l. Take case (i). Compute H2 - HnHn_l - H2_x = {-VfD 
from Lemma 4.2 recalling that D > 0. Compute Hn I *JD and select n by Fn_l <Hnl 4D < Fn+l. 
There are two possibilities for n. if (-X)nD> 0, then n is the even possibility, while n is odd if 
(-l)nD < 0. Then n = nx is the solution from case (i). Now take case (ii). Make the same calcula-
tions with Hn_l = [Hn I a] +1 to find n-r^. Then choose n-R- max(% r^). D 

Lemma 4.4: If N = H„(A,B), then 

A^H^F^-NF^l and B=\Hn_xFn_2-NFn_,\. 

Proof: Refer to (1.1) and solve the equations H„ - AFn_2 +BFn_x and Hn_x = AFn_3 + BFn_2 

simultaneously for A and B. D 

Now we can use the four lemmas above to find the S.G.F. sequence {Hn(A, B)} with 
N - HR(A, B) such that R = p(N), given any positive integer N. It is important to note that, if 
B = 2A, {Hn} is a Fibonacci-like sequence and the maximal subscript R will increase by 1, since 
Hn = AFn+l. Lemma 4.2 gives a test for a Fibonacci-like sequence, and a shortened solution 
since, if \(-l)nD\= K2, then Hn = KFn n+l' 

Example 1: Let N = 200l = Hn. Compute case (i): [2001 / a ] = l236 = Hn_l9 and (-!)"/) = 
3069>0, so nl is even; next, F9 <2001/V3069 »36.1<F10? so nx = 10. Compute case (ii) using 
[2001/a] + l = 1237 = Hn_l and (-l)nD = -1405 <0, so ^ is odd; with F9 < 2001/Vl 405 * 
53.38 < F10, r^ = 9. Take R = max(10,9) = 10 = w, and use / / ^ = 1236 from case (i) to compute 
a = |1236F9 -2001F8| = 3 ,6= |1236F8 -2001F71 = 57. Since b > 2a, take tf = Hl0(3,57). 

Example 2: Let N = 357 = Hn. [357/a] = 220 = Hn_l and (-1)*D = 509> 0, so ^ is even. 
Then F7 < 357/ V509 « 15.8 <F8, so ^ = 8. Compute case (ii) for H^ = 221, obtaining (-1)"D = 
-289 <0, so r^ is odd; F7 < 357/7289 =21 <F8, so ^ = 7. We choose ^ = ̂  = 8 and use 
i4_! = 220 to compute a = |220F7 - 357F61 = 4 and h = |220F6 - 357F51 = 25. Therefore, R = 8, 
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A = 4, and B = 25 yields N = HS(4,25). Note that |(-1)"D|289 = 172 in case (ii) indicates a 
Fibonacci-like sequence, ^ + l = 8 = i?? giving a double, and Hn_x-22\ for r^-1 yields a = 
|221F6 -357F5\=17 = A and * = |221F5 - 357F41= 34 = B, or N = H7(17,34) = 17F8. 
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