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The generalized Fibonacci sequence {H,}, where H,=H, ,+H, ,=H,/(a,b), H =a,
H, =b, a and b integers, has been studied in the classic paper by Horadam [8], and by Hoggatt
[7], and Brousseau [1], [2], among others. In this paper we approach the problem of representing
a positive integer N as a term in one of these generalized sequences so that, for N = Hp(4, B),
the subscript R is as large as possible.

Cohn [5] has solved a similar problem, but part of his theorem statement was omitted.
Cohn’s problem was: given a large positive integer N, find positive integers 4, B such that the
sequence {w,} defined by w, =4, w, =B, and w,,, =w,,, +w,, n>1, contains N, and A+ B is
minimal.

Cohn’s Theorem (Restated): Let t, =(-1)"(NF,_,—1F,), where t, = A+B, t,,,=B, t,,,=A4.
Then either £ =[N/a] or t =[N/a]+1, where [x] is the greatest integer in x and & = (1++/5)/2,
gives the smallest value for 7, = A + B, depending upon n even or n odd.

Our problem has a different approach and allows computation of subscripts. The number
R, of this paper is related to a conjecture made by Hoggatt and proved by Klarner [9] that, for
“n sufficiently large,” R(H,—-1) = R(H,,, —1), where R(N) is the number of representations of N
as the sum of distinct Fibonacci numbers; R,,,, gives the value for n to be “sufficiently large” [3].

1. INTRODUCTION

In order to discuss maximal subscripts, we need a careful analysis of where we want the
sequences {H,(A, B)} to begin. The Lucas sequence has L, =2, with terms to the right strictly
increasing, while Z_, = -1 is the first negative term in an alternating sequence to the left of Z;,. A
generalized Fibonacci sequence in which H,,,= H,+ H,_,, H =a>1, H,=b>1,has Hy=b-a,
where we list terms to the right and the left of H, as

w,2b=3a,2a-b, Hy=b-a, a, b, a+b, a+2b,....

If we want H_, <0 as the first negative term, we need b>2a; then (2a—-5) <0 as well as
(b—a)>a and b>a. Then, H, =a is the smallest positive term in the generalized sequence and
the terms to the right of H,, are strictly increasing. The Fibonacci sequence, however, has F, =0
with strictly increasing terms to the right of 7 =1, and the sequences {aF,} are the only sequen-
ces {H,} which contain H, =0. We write H_, =0, Hy=a>1, H =a, H,=b=2a:

..,—3a,2a, —a, a,0, Hy=a, a, 2a, 3a, 5a,....

Notice that the sequence H, =aF,,, has the same characteristics as the Lucas-like sequence
H,=a>1, H,>2a: H_ =0 is the first nonpositive term in an alternating sequence moving left
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of Hy=a, while terms to the right of H, are strictly increasing. H, = H,=a are the smallest
positive terms.

Thus, we define the standardized generalized Fibonacci (S.G.F,) sequence {H (a, B)} by
Hn+1 :Hn+Hn—-1, Hl = AZI, Hz =B2.2A

We note that Hy=B - A> A4, and H, = 4 is the smallest term in the sequence. We will find that
H, will determine maximal subscripts for the sequence. If B =24, we will have a Fibonacci-like
sequence in which H, = AF,,,. Also, Fibonacci and Lucas numbers are numbered to be
consistent with usage in this journal.

We need this careful definition of the beginning terms so that we can identify H, = 4 and
H, = B given any two adjacent terms somewhere in the sequence. For example, 13 and 17 are
adjacent in each of {13,17,30,47,...}, {4,13,17,30, ...}, and {9,4,13,17,30,...}. Note that the
S.GF. sequence will have A=4, B=13. We do not start with 4=9, B=4, or with 4=13,
B =17, since a S.G.F. sequence must have B>24. While N = H, in an infinite number of such
sequences, N = H,, n>2, can appear only within a S.G.F. sequence for which 1<H,_ <N -1.
When N =H,, take 1< H <[(N-1)/2], while N=H,, n>3, has [N/2]+1<H,,<N-1
Thus, the maximal subscript for N can be found by listing possibilities. If N =7 = H,, examine
sequences for which 4 < H,_, <6, giving 1,3,4,7,11,...; 2,5,7,12,..; and ,6,7,13,.... The first
sequence has 7= H,, and 4 is the maximal subscript for 7. If N=6=H,, examine 4< H, , <5:
2,4,6,10,..., and 1,5,6,11,.... Both sequences have 6 = H,, but the first sequence has B=24
so that H; = 2F}; we take the larger subscript, and 4 is the maximal subscript for 6.

Lemma 1.1 gives a second way to compute maximal subscripts.
Lemmal.1: fH, =H, ,+H,_,, H =a, H,=>b, the equation
N=H,(a,b)=al;,_,+bF, (1.1
has a solution for any integer N. If (ay, b,) is a solution for (1.1), then a=a, ~1F,_,,b=by+1F,_,
is also a solution for (1.1) for any integer 7.

Proaof: Equation (1.1), which can be proved by mathematical induction, always has solutions
[10] for integers a, b as above since (F,_,, F,_;)=1. O

For our purposes in using (1.1), {#,(a, b)} must be a S.G.F. sequence. Note that
H,(,2)} ={F,) and {H,(1,3)}={L}

are S.G.F. sequences since B>24, but while {H, (1, 1} = {F,}, this is not a S.G.F. sequence. If
E,_, <N <F,, then (n—2) is the largest possible subscript for Nin a S.G.F. sequence by examin-
ing (1.1). If N =31, since F; <31<Fy, solve 31=H, = AF;+ BF,. We find 31=H,(3,2) but
B <2A, so we solve 31= AF, + BF; = H((2,5), where B>2A4, obtaining 6 as the maximal sub-
script for 31. We now have two methods to compute a table of maximal subscripts.

We will say that a natural number N reaches maximum expansion at R, denoted by
p(N}= R, if R is the largest subscript possible for N as a member of a S.G.F. sequence or for N
as a member of a Fibonacci-like sequence. Let R be the largest subscript such that

N = Hp(A, B)= AFp_, + BFy
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for 1< A4 and 2A<B. Then, if 24<B, p(N)=R; if 24=B, p(N)=R+1. We will find
p(FRr)=R=p(Lg) for R>3. For the reader’s convenience, we list maximal subscripts p(N) in
Table 1.

TABLE 1. N = H(A, B) with Maximal R = p(N)

N R N R N R N R
1 2 26 7 51 6 76 9
2 3 27 5 52 7 77 17
3 4 28 6 53 7 78 7
4 3 29 7 54 6 79 7
55 30 5 55 10 80 6
6 4 31 6 56 6 81 8
7 4 32 6 57 6 82 17
8 6 33 6 58 7 83 6
9 4 34 9 59 6 84 8

10 5 35 5 60 8 8 7

11 5 36 6 61 17 86 8

12 4 37 17 62 6 87 7

13 7 38 6 63 8 88 6

14 5 39 7 64 6 89 11

15 5 40 6 65 7 9% 7

16 6 41 6 66 7 91 7

17 5 42 8 67 6 92 17

18 6 43 6 68 9 93 7

19 5 44 6 69 17 94 8

20 5 45 17 70 6 95 7

21 8 46 6 71 7 9% 6

22 5 47 8 72 6 97 9

23 6 48 6 73 8 98 7

24 6 49 6 74 17 9 8

25 5 50 7 75 6 100 7

2. p(N) FOR SOME SPECIAL INTEGERS N

We write p(N) for some specialized integers N and consider how many integers N have
R = p(N) for a given subscript R. If p(N)= R in exactly one sequence, N is called a single; if in
exactly two sequences, N is called a double; if in exactly three sequences, N is called a #riple. The
smallest double occurs when R =3, for N =4 = H,(1,3) =2F;, while the smallest triple occurs
when R =5, for N =35="1F, = Hy(4,9) = Hy(1,11).

Theorem 2.1: For the Fibonacci sequence, p(AF;)=R when 1< A4 < Fp,,, R>2. Further,
p(AFR)> R when A > Fy,,.

Proof: p(F,)=2; p(F3)=3. ByLemma 1.1,
AFp = AFp o + AFp_ = Hp(A+ Fr_y, A- Fp,),

where A+ Fg_; >2(A—Fi_|) when A< Fg,, and p(AFz)>R. Further, AFy =0F,_+AF; =
Hgp(Fr, A- Fg), but a S.GF. sequence requires that B>2A4, and A- Fy_, >2F; only when
A> Fg,,. Thus, p(AF;)<R+1, making p(AF;)=R when A< Fg,,, and p(AF;)> R when
A> Fg,;. O
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Corollary 2.1.1: Let N = AFg, and p(N)=R, R>3. Then N is a single when 4 <Fp_;; is a
double when Fp_; < A<2F_;; and is a triple when 2F;_; < A < Fg,,;. For each value of R,
P(N) =R in at most three sequences.

Proof: 1f 1< A < Fpyy, p(AFz) = R by Theorem 2.1. By Lemma 1.1, any other solutions for
P(N) =R are found from N = Hp(A—tFy_,, A+1Fp_,). If t <0, {H} is not a S.G.F. sequence.
If £ =1, then S.G.F. sequence requirements dictate 4— F;_, >1, making N a single when 1< 4 <
Fp_y, and at least a double if 4> Fp_;. If =2, we must have 4—2F,_, >1, so that N is a double
when Fp_; < A<2Fy_,, and a triple when 2F,_; < A < Fp,,. If >3, then A >1+tFz_, > 1+ Fg,,,
and p(N)>R. O

Corollary 2.1.2: For R>2, p(F2) =R and p(Fp,,Fr) = R+1; further, p(F3 —1)= R+1, R even,
and p(F2+1)=R+1, R odd.
Proof: Apply Theorem 2.1 to Fp_Fg,, = FZ+(-D)R. O

Corollary 2.1.3: p(FrLp_1))=R, R>2; p(FrLg)=2R, R>1.

Proof: Since Lp_; = Fr+Fy_ < Fg,y, Theorem 2.1 gives p(Frlg_;) =R and p(Frlg) =
pFRr)=2R. O
Corollary 2.1.4: p(L,F,)=n+2,n>3;and p(L,, F)=n+k, k=2 n>1.

Proof: Let N = L, F, = (F,5)F, + 2F)F, = H, o (F, oy, 2F,); as B>24, p(N)zn+2.
Since N = H,,5(F, 1, F,—) has no other positive solutions and {H,,;(F,.;, F,_,)} is not a S.G.F.
sequence, we have p(N) <n+3, making p(N) <n+2. Next,let N=L,,F,. One can derive

N = Ly = () F—z + GE)Fieot = Hypie (B, 3F),

where B >2a and p(N)>n+k. Also, since N = H,,,,,(2F,, F,) has no other positive solutions
for A and B, and this solution cannot be used because 4> B, we have p(N) <n+k +1; thus,

P(Lypfr)=n+k. O
Corollary 2.1.5: p(F,,,+F, ))=n=p(F,,—F._,), p=22,n>2+p

n+p n—p

Proof: Hoggatt (see [7], p. 59] gives

F;1+p +F;1—p = F;sz) p even; F;1+p +‘F;1—p = Lan’p Odd
If p is even, Corollary 2.1.3 gives p(F,L,)=n; if p is odd, Corollary 2.1.4 gives p(L,F,)=n.
Similarly, F,,,— F,_,=F,L,,podd, and F,, ,— F,_,=L,F,, peven,yield p(F,,,—F,_,)=n 0O

Corollary 2.1.6: p(Fp, —10)=p(Fy +1)=k+1, k22

Ifkiseven, k>4, p(Fy,+)=p(Fy+)=k+]
P(Fery =D = p(Fyy =) +1 =k +2.

Ifkisodd, k23, p(F,,-D=pF,-D)=k+],
PP+t D =p(Fy +)+1=k+2.
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Proof: Whenkisodd, £>1:

Py +1=F Ly Fy-1=F_ L
Fyn—1=Fuly. Fypn+1=F L,
When kiseven, k£ >2:
Fy+1=F _ L By —1=FaLy;
Fan-1=FL,. Fpn+1=Fal,.

Each pair of identities, when summed vertically, gives F, ., = F;,,L,,,, and each can be proved
by mathematical induction. Then apply Corollaries 2.1.3 and 2.1.4, which give p(N) when
N=FKL, O

Next, we investigate integers N, where p(/N) = R and N is not a multiple of Fy. The smallest
such double is N =83 = H,(1, 16) = Hy(6, 13).

Theorem 2.2: Let N = Hp(A, B), where B>24 and p(N)=R, R>3. Then N is a single when
1<A<Fy,and B<A+Fy. Nisadouble when F | <A<F,—-2 and 24 <B<2F,-3.

Proof: Select the smallest integer A for which the hypothesis is met. Then 1< A< Fy_,.
Otherwise, from Lemma 1.1, N = Hy(4-F,_,, B+ Fy_,), contrary to choice of 4 as smallest.
{Hp(A+Fy_,, B—Fz_,)} is not a S.G.F. sequence when B < A+ F, because then 4+ Fj,_, >
B - Fy_,; thus, the conditions 4 < Fp_, and B < A+ Fy guarantee a single. When A>1+Fy_,
and B< A+ Fy, {Hy(A-Fx_,, B+F,_,)} is a S.GF. sequence. Since 24 < B, rewrite require-
ments for B as 2A+1<B<F,+A+1, leading to a double when Fy_ +1<A<F,-2 and
24+1<B< IR+ A+1<L2F,-3. 0O

To illustrate Theorem 2.2, consider Hi(1,16) = H,(6,13)=83. The smallest solution has
A=1, where 1< A<F,,, but B=16>F,+ A=9, allowing a double. Taking 4=6, F; <6<
Fy—2 and B=13<2F;-3.

Corollary 2.2.1: Let N = Hp(A, B), where B>2A. If 1<A<F,-2 and B<A+Fg, then
P(N)=R, R>3.

Proof: By hypothesis, p(N)>R.
N = AFp_, +BFy  =(B- A)Fp_ + AFy = Hp,(B- 4, 4),
but {Hp,,(B— A4, A)} is not a S.G.F. sequence when B>24, and neither are the other solutions
from Lemma 1.1, N=Hp(B-A+Fz, A-Fx_,) and N=Hp (B-A-Fg, A+Fy_;). Thus,
p(N)<R+1and p(N)=R. O
Corollary 2.2.2: p(N)=R for (F? +F,_;)/2 integers N, R>3.

Proof: When B>2A, Corollary 2.2.1 gives (F;—2) choices for 4. Since 24+1<B<
Fr+ A+1<2F, -3, when 4 = F -2, there is one choice for B; for A= F, -3, two choices; ...,
for A= Fp—1-k, k choices. So p(N)=R for

(Fr=2)(142+ 3+ +(Fp ~2)) = (Fp ~2)(F ~ D /2
integers N which are not divisible by F. If N = AFy, Theorem 2.1 gives p(N)=R for 1< A<
Fg,1—1, so there are (Fg,, —1) such integers N. Adding and simplifying,
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(Fgr=2)(Fr =1/ 2+ (Fpyy = 1) = (F§ + Fr_3) /2
as required. O

Theorem 2.3: For the Lucas sequence, p(Lg) =R, R>3.

Proof: p(L))=2 and p(L,)=4. For R23, Ly = Hp(1,3) = 1Fz_, +3F_,, so p(Lg) = R.
The only positive solution for L, = Hp,,(4, B)= AF,_,+BF; is A=2 and B =1, but this solu-
tion cannot be used since 4 > B, so p(Lg) < R+1, making p(L;) = R. Compare with Corollary
214fork=2. O

Corollary 2.3.1: The smallest integer such that p(N) =R is F;. The smallest integer not divis-
ible by F such that p(N) =R is Lj.

Theorem 2.4: The largest integer N for which p(N)=R is N = (Fy,,—DF;, R=2. Also,
N = (Fg, —DFg, R25, is a triple, with the other two occurrences given by

N =Hp(Fgr—1),2F; = 1) = Hp(Fp_, -1, 2Fg + F_, - 1).

Proof: For R=2, N=(F-1)F,=1. If Hy= AF,_, +BF;_,, where B>2A, then Hy <
BFy_,+BF,_ ,=BF,, R>3. p(BFg)=R when 1< B<Fp,, —1 by Theorem 2.1. By Corollary
2.1.1, N = (Fg,; — 1)Fy is a triple that can be calculated using Lemma 1.1. O

Theorem 2.5: If F,,_, <N <F,,, k>2,then k <p(N)<2k-1.

Proof: By Theorem 2.1, the largest possible value for p(N) in the interval is p(F;,_,) =
2k —1. We show that the smallest value is p(N)=4k by applying Theorem 2.4. Now, take
N = (Fypy ~ DF; then N < (Fypy + B )F, = LF, = Fy,, while

N=F+E-DE2(F+F)F =L F_ =F,
for k >4. Then, by examining k¥ =2 and & =3, and putting this together,
Py SN =(Fy —DF <Fy, k22, (2.5.1)

where p(N) =k and N is the largest integer such that p(N) =k . Notice that taking R=4k—1 in
Theorem 2.4, (F, —~1)F,_; < Fy_;, from (2.5.1), so that the largest integer N having p(N) =k -1
is not in the interval of Theorem 2.5. [

Theorem 2.6: Intheinterval F, <N <F, |, [(m+2)/2]<p(N)<m—-1, m=4; and p(F,+1) <
[(m+2)/2]+1, where [x] is the greatest integer in x.

Proof: Since F,, is not in the interval, p(N)<m—1. If m is odd, take m=2k -1; if m is
even, m=2k—2. Either F,, , <N <F,,_, or F,, <N <F,,, so that p(N) >k from Theorem
2.5. Since either [(m+2)/2]=2k—-1+2)/2]=k or [(m+2)/2]=2k—-2+2)/2]=k, p(N)=
[(m+2)/2].

The smallest integer in the interval is F,+1, and, by Corollary 2.1.6, either p(F,, +1)=
[(m+2)/2] or p(F,+1)=[(m+2)/2]+1. The largest value for p(N) is m—1, which occurs for
N=2F, ,and N=L, ,. O
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Corollary 2.6.1: For m>4,

p(Fm+Fm—2)zp(FmH_Fm—Z):m_l;
p(F, +F, 3)=p(F,—F, 3)=m-1

Proof: Since L, ,=F,+F, ,=F,, —F, 5, apply Theorem 2.3 in the first case. Similarly,

use Theorem 2.1 with 2F,_,=F, -F, ,=F +F, , O

m

3. THE MAXIMUM EXPANSION INDEX OF A S.G.F. SEQUENCE

In this section, we determine when p(H)=K for the S.G.F. sequence {H,(4, B)}. We
will call the integer R, the maximum expansion index of the S.G.F. sequence {H, (4, B)} if
P(Hy(A4, B)) = K whenever K = R,,,. For example, the S.G.F. sequence

(H,(1,7)}=1{1,7,8,15,23,38,61,99, ...}

which has p(Hg) = p(38) =6 has R,.,x =6; p(Hy) #K for 1<K <S5, while p(H,)=p(61) =7 as
well as p(Hy)=K forall K>6.

Theorem 3.1: If Fy_, < B— A< Fj for the S.G.F. sequence {H, (4, B)}, then p(H(4, B)) =R.
Further, R = R, and p(H;(A4,B))=K forall K>R.

Proof: Since 2A<B in a S.G.F. sequence, A<B-A<F, so 1<A<F, and B<A+Fy.
If B=2A, then N = AF, and p(N)=R by Theorem 2.1. Also, B= A+ F; gives a Fibonacci-
like case, since A =Fp—k, B=2F, —k give

N =Hp=(Fr~k)F,_,+Q2Fg —k)F,_, = (Fpyy — K)Fg, 1<k <Fp—1,

where p(N)— R by Theorem 2.1, and & = 0 gives us B =24, already discussed.

If B>2A, Corollary 2.2.1 gives p(N)=R when 1< A< F, -2, B< A+ Fy, leaving only
the cases A= F;—1and A =F;. Since cases B=24 and B = A+ F; were discussed above, we
are finished, and p(N) =R when F,_, <B- A< F;.

Let K>R. If

N =H,(A,B)=AF,_,+BF,_, and B>2A,
then p(N)> K. Thus,
N=Hp (B-A4,A)=(B-A)Fyx_ + AFy
but this solution cannot be used since B— A4 > A4 when B>24. Since Fy > Fy, (B—A)—F; <0,
and (B—A)+Fy>A—Fy,_, when B>24, Lemma 1.1 gives no other usable solutions for

N =H,,,. Thus, p(N)<K+1 and p(N)=K. Putting these cases together, p(Hy(4, B))=K
when K>R,and R=R_,,. O

Corollary 3.1.1: If F,_<2a<F,, a>1, R>3, then p(aL,)=n for n>R. If Fy_ <A< F,
then p(AF,)=nforn=R, R>2.

Proof: H,=al, has Hy=2a. If F;_, <B-A=2a<Fy, apply Theorem 3.1. If Fy_ <
24- A< Fg, then p(H,_(A,24))=n-1for n—1>R. Since B=24 and AF,=H, (4,24),
pP(AF,) =n for n> R. Compare with Theorem 2.1. O
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Theorem 3.2: Forkz=2 n=2,
P+ ) =p(Fr —E)=n+k;
,0( +2k+l+F) p( n+2k+1 F)+1_n+k+lkeven;
P+ F) =p(Fgpn —F)—1=n+k, k odd

Proof: p(Fon +F)=pF,—F)=n+k by taking n=n+k and p=k in Corollary
2.1.5. Since N=H,,, = AF, ., +BF,,,_,, where p(H,,,)>n+k if B>2A, we derive identi-
ties involving F,_ 5, . from the identity (see Eq. (8) in [11])

F,.,=F, F.+FF

mn n+l

(2.7.1)

to write N=F +F, . ., =AF,, ., +BF, . Take m=n+k and n=k+1 for F,,,,, and
m=n+k,and n=(-k) for F,in (2.7.1) to write

Fokn = Fin+k)+(k+l) = FppprFpnn + Fr Frans
k+1 k
F, = Foviyrey = FrviE o B P = (51 B E gD R F .

Thus,

N = F+2k+1+F ( Ac+1+(—1)k+lEc) n+k—1 l'(Ec+2+( l)k k— 1) n+k
n+k+l(A’B)-
Ifkiseven, A=F_,,—-F,=F,_,, and B=F_,+F,_ =2F,,, where B>2A4. Since B—4=
F.p, Rpax=k+2, where n+k+12k+2; p(N)=n+k+1 by Theorem 3.1. If k is odd, then

A=F +F,=F,,and B=F,_,-F,_,=2F, has A> B with no other positive solution, but we
find that N=H,, (QF,,4F, +F,_,), where F,,, <B—-A<F,,, so that R, =k+2, and again

p(Ny=n+k,n>2.
Subtracting the quantities above, N =F,_,,,,—F, becomes H,  (2F,, 4F, +F,_,), giving

p(N)=n+k for k even; for k odd, N = F,,,,,, — F, becomes H, . ,(F._;,2F,,,), giving p(N) =
n+k+1. O

4. SOLVING N =H (A, B) FORR, A, AND B

Given N, we find 4, B, and R so that N = Hp(A4, B), where R= p(N). Our solution depends
upon a greatest integer identity for the S.G.F. sequence {H (4, B)} which allows us to find H,_,
when we are given H,.

Lemma 4.1: Let {H,(A, B)} be a S.GF. sequence, where F,_ <B—-A<F,. For n<k, the
term preceding H,(4, B) is [H,/a] or [H,/a]+1, where [x] is the greatest integer in x, and
a=(1+5)/2.

Proof: From [4], use Theorem 3.3 when B>24 and Theorem 2.3 when B=24. [

Lemma 4.2: For the S.G.F. sequence {H (4, B)}, if D= B*— AB- A*:
() F_ <H, /f<F+1,

() H-HH,_,-H =()"D,

@) |H*-HH _,-H: | |=K*iff H =KF,,,, n>1.
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Proof: (1) Since B=2A, D> 0; in fact, D>B?/4,and VD > B/2. Thus,
H, = AF, , +BF,  <(BI2)F, ,+BF,, = (B/2)F,,,.

n

Dividing by /D, H,/~D <(B/2)F,,,/JD < F,,,, while
Fop2H,/\D=(AF, ,+BF,_)/ND> AF, ,/ND+F, > F,,.

For (ii), see [1], [71], and [8]. Lastly, in 1876, Lucas proved that m* —mn—n? = £1 is satis-
fied by consecutive Fibonacci numbers, and in 1902, Wasteels proved that there are no other
solutions (see [6], p. 405). Since (F,, F,,,) =1, (iii) follows. Note that (iii) is a test for a Fibo-
nacci sequence. [

Lemma 4.3: Let N = H (A, B), where n is to be maximized. There are two cases:
G H,_ =[H,/a], n=n;

(i) H,,=[H,/al+], n=n,.

The maximal subscript value for N = Hy occurs for R = max(n, n,).

Proof: Lemma 4.3 actually is a blueprint for solving for R. By Lemma 4.1, cases (i) and (ii)
give the only two possible choices for H,_,. Take case (i). Compute H> - H H,_,— H> , =(-1)"D
from Lemma 4.2 recalling that D>0. Compute H,/~/D and select nby F, | <H /JD<F,,,.
There are two possibilities for n: if (~1)"D > 0, then » is the even possibility, while n is odd if
(-1)"D <0. Then n = n, is the solution from case (i). Now take case (ii). Make the same calcula-

tions with H,_, =[H,/al+1 to find n=mn,. Then choose n= R =max(n,n,). O

Lemma 4.4: If N = H (A, B), then
A=H, \F, - NF,_,| and B=|H_\F,_,—-NF, ;|

Proof: Refer to (1.1) and solve the equations H, = AF,_,+BF,_, and H,_ ,= AF, ;+BF,_,
simultaneously for 4 and B. [

Now we can use the four lemmas above to find the S.GF. sequence {H,(4, B)} with
N = Hp(A, B) such that R=p(N), given any positive integer N. It is important to note that, if
B=2A4, {H,} is a Fibonacci-like sequence and the maximal subscript R will increase by 1, since
H,=AF,,,. Lemma 4.2 gives a test for a Fibonacci-like sequence, and a shortened solution
since, if |(~1)"D|= K2, then H, = KF,

ntl:

Example 1: Let N=2001=H, Compute case (i): [2001/a]=1236=H,_,, and (-1)"D =
3069 >0, so n is even; next, Fy <2001/+/3069 ~361< F, so i, =10. Compute case (ii) using
[2001/a]+1=1237=H, , and (-1)"D=-1405<0, so n, is odd; with Fy<2001/+/1405 ~
5338 < Fy, m, =9. Take R=max(10,9)=10=n, and use H,_, = 1236 from case (i) to compute

a=1|1236F, —2001F;| =3, b = |1236F, —2001F,| = 57. Since b>2a, take N = H,((3,57).

Example 2: Let N=357T=H, [357/a]=220=H,, and (-1)"D=509>0, so » is even.
Then F, <357/~/509 ~ 158 < F;, so n, = 8. Compute case (ii) for H,_, =221, obtaining (-1)"D =
289 <0, so n, is odd; F, <357//289 =21< K, so n,=7. We choose n=n,=8 and use
H,_, =220 to compute a = [220F, —357F;| =4 and b = |220F; ~357F| = 25. Therefore, R =8,
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A=4, and B=25 yields N = Hy(4,25). Note that |(~1)"D|289 =17* in case (ii) indicates a
Fibonacci-like sequence, m, +1=8=R, giving a double, and H,_, =221 for n,=7 yields a=
|221F -357FK|=17= A and b= |221F;~357F;|=34=B, or N = H,(17,34)=17F;.
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