MAXIMAL SUBSCRIPTS WITHIN GENERALIZED FIBONACCI SEQUENCES

David A. Englund
9808 Wilcox Drive, Belvidere, IL 61008

Marjorie Bicknell-Johnson

665 Fairlane Avenue, Santa Clara, CA 95051
(Submitted April 1997)
The generalized Fibonacci sequence $\left\{H_{n}\right\}$, where $H_{n}=H_{n-1}+H_{n-2}=H_{n}(a, b), H_{1}=a$, $H_{2}=b, a$ and b integers, has been studied in the classic paper by Horadam [8], and by Hoggatt [7], and Brousseau [1], [2], among others. In this paper we approach the problem of representing a positive integer N as a term in one of these generalized sequences so that, for $N=H_{R}(A, B)$, the subscript R is as large as possible.

Cohn [5] has solved a similar problem, but part of his theorem statement was omitted. Cohn's problem was: given a large positive integer N, find positive integers A, B such that the sequence $\left\{w_{n}\right\}$ defined by $w_{1}=A, w_{2}=B$, and $w_{n+2}=w_{n+1}+w_{n}, n \geq 1$, contains N, and $A+B$ is minimal.

Cohn's Theorem (Restated): Let $t_{n}=(-1)^{n}\left(N F_{n-1}-t F_{n}\right)$, where $t_{k}=A+B, t_{k+1}=B, t_{k+2}=A$. Then either $t=[N / \alpha]$ or $t=[N / \alpha]+1$, where $[x]$ is the greatest integer in x and $\alpha=(1+\sqrt{5}) / 2$, gives the smallest value for $t_{k}=A+B$, depending upon n even or n odd.

Our problem has a different approach and allows computation of subscripts. The number $R_{\max }$ of this paper is related to a conjecture made by Hoggatt and proved by Klarner [9] that, for " n sufficiently large," $R\left(H_{n}-1\right)=R\left(H_{n+1}-1\right)$, where $R(N)$ is the number of representations of N as the sum of distinct Fibonacci numbers; $R_{\max }$ gives the value for n to be "sufficiently large" [3].

1. INTRODUCTION

In order to discuss maximal subscripts, we need a careful analysis of where we want the sequences $\left\{H_{n}(A, B)\right\}$ to begin. The Lucas sequence has $L_{0}=2$, with terms to the right strictly increasing, while $L_{-1}=-1$ is the first negative term in an alternating sequence to the left of L_{0}. A generalized Fibonacci sequence in which $H_{n+1}=H_{n}+H_{n-1}, H_{1}=a \geq 1, H_{2}=b \geq 1$, has $H_{0}=b-a$, where we list terms to the right and the left of H_{0} as

$$
\ldots, 2 b-3 a, 2 a-b, H_{0}=b-a, a, b, a+b, a+2 b, \ldots
$$

If we want $H_{-1}<0$ as the first negative term, we need $b>2 a$; then $(2 a-b)<0$ as well as $(b-a)>a$ and $b>a$. Then, $H_{1}=a$ is the smallest positive term in the generalized sequence and the terms to the right of H_{0} are strictly increasing. The Fibonacci sequence, however, has $F_{0}=0$ with strictly increasing terms to the right of $F_{1}=1$, and the sequences $\left\{a F_{n}\right\}$ are the only sequences $\left\{H_{n}\right\}$ which contain $H_{k}=0$. We write $H_{-1}=0, H_{0}=a \geq 1, H_{1}=a, H_{2}=b=2 a$:

$$
\ldots,-3 a, 2 a,-a, a, 0, H_{0}=a, a, 2 a, 3 a, 5 a, \ldots
$$

Notice that the sequence $H_{n}=a F_{n+1}$ has the same characteristics as the Lucas-like sequence $H_{1}=a \geq 1, H_{2}>2 a: H_{-1}=0$ is the first nonpositive term in an alternating sequence moving left
of $H_{0}=a$, while terms to the right of H_{0} are strictly increasing. $H_{1}=H_{0}=a$ are the smallest positive terms.

Thus, we define the standardized generalized Fibonacci (S.G.F.) sequence $\left\{H_{n}(a, B)\right\}$ by

$$
H_{n+1}=H_{n}+H_{n-1}, H_{1}=A \geq 1, H_{2}=B \geq 2 A
$$

We note that $H_{0}=B-A \geq A$, and $H_{1}=A$ is the smallest term in the sequence. We will find that H_{0} will determine maximal subscripts for the sequence. If $B=2 A$, we will have a Fibonacci-like sequence in which $H_{n}=A F_{n+1}$. Also, Fibonacci and Lucas numbers are numbered to be consistent with usage in this journal.

We need this careful definition of the beginning terms so that we can identify $H_{1}=A$ and $H_{2}=B$ given any two adjacent terms somewhere in the sequence. For example, 13 and 17 are adjacent in each of $\{13,17,30,47, \ldots\},\{4,13,17,30, \ldots\}$, and $\{9,4,13,17,30, \ldots\}$. Note that the S.G.F. sequence will have $A=4, B=13$. We do not start with $A=9, B=4$, or with $A=13$, $B=17$, since a S.G.F. sequence must have $B \geq 2 A$. While $N=H_{1}$ in an infinite number of such sequences, $N=H_{n}, n \geq 2$, can appear only within a S.G.F. sequence for which $1 \leq H_{n-1} \leq N-1$. When $N=H_{2}$, take $1 \leq H_{1} \leq[(N-1) / 2]$, while $N=H_{n}, n \geq 3$, has $[N / 2]+1 \leq H_{n-1} \leq N-1$. Thus, the maximal subscript for N can be found by listing possibilities. If $N=7=H_{n}$, examine sequences for which $4 \leq H_{n-1} \leq 6$, giving $1,3,4,7,11, \ldots ; 2,5,7,12, \ldots ;$ and $1,6,7,13, \ldots$ The first sequence has $7=H_{4}$, and 4 is the maximal subscript for 7 . If $N=6=H_{n}$, examine $4 \leq H_{n-1} \leq 5$: $2,4,6,10, \ldots$, and $1,5,6,11, \ldots$. Both sequences have $6=H_{3}$, but the first sequence has $B=2 A$ so that $H_{3}=2 F_{4}$; we take the larger subscript, and 4 is the maximal subscript for 6 .

Lemma 1.1 gives a second way to compute maximal subscripts.
Lemma 1.1: If $H_{n}=H_{n-2}+H_{n-1}, H_{1}=a, H_{2}=b$, the equation

$$
\begin{equation*}
N=H_{n}(a, b)=a F_{n-2}+b F_{n-1} \tag{1.1}
\end{equation*}
$$

has a solution for any integer N. If $\left(a_{0}, b_{0}\right)$ is a solution for (1.1), then $a=a_{0}-t F_{n-1}, b=b_{0}+t F_{n-2}$ is also a solution for (1.1) for any integer t.

Proof: Equation (1.1), which can be proved by mathematical induction, always has solutions [10] for integers a, b as above since $\left(F_{n-2}, F_{n-1}\right)=1$.

For our purposes in using (1.1), $\left\{H_{n}(a, b)\right\}$ must be a S.G.F. sequence. Note that

$$
\left\{H_{n}(1,2)\right\}=\left\{F_{n+1}\right\} \text { and }\left\{H_{n}(1,3)\right\}=\left\{L_{n}\right\}
$$

are S.G.F. sequences since $B \geq 2 A$, but while $\left\{H_{n}(1,1\}=\left\{F_{n}\right\}\right.$, this is not a S.G.F. sequence. If $F_{n-1}<N<F_{n}$, then $(n-2)$ is the largest possible subscript for N in a S.G.F. sequence by examining (1.1). If $N=31$, since $F_{8}<31<F_{9}$, solve $31=H_{7}=A F_{5}+B F_{6}$. We find $31=H_{7}(3,2)$ but $B<2 A$, so we solve $31=A F_{4}+B F_{5}=H_{6}(2,5)$, where $B>2 A$, obtaining 6 as the maximal subscript for 31. We now have two methods to compute a table of maximal subscripts.

We will say that a natural number N reaches maximum expansion at R, denoted by $\rho(N)=R$, if R is the largest subscript possible for N as a member of a S.G.F. sequence or for N as a member of a Fibonacci-like sequence. Let R be the largest subscript such that

$$
N=H_{R}(A, B)=A F_{R-2}+B F_{R-1}
$$

for $1 \leq A$ and $2 A \leq B$. Then, if $2 A<B, \rho(N)=R$; if $2 A=B, \rho(N)=R+1$. We will find $\rho\left(F_{R}\right)=R=\rho\left(L_{R}\right)$ for $R \geq 3$. For the reader's convenience, we list maximal subscripts $\rho(N)$ in Table 1.

TABLE 1. $N=H_{R}(A, B)$ with Maximal $R=\rho(N)$

N	R	N	R	N	R	N	R
1	2	26	7	51	6	76	9
2	3	27	5	52	7	77	7
3	4	28	6	53	7	78	7
4	3	29	7	54	6	79	7
5	5	30	5	55	10	80	6
6	4	31	6	56	6	81	8
7	4	32	6	57	6	82	7
8	6	33	6	58	7	83	6
9	4	34	9	59	6	84	8
10	5	35	5	60	8	85	7
11	5	36	6	61	7	86	8
12	4	37	7	62	6	87	7
13	7	38	6	63	8	88	6
14	5	39	7	64	6	89	11
15	5	40	6	65	7	90	7
16	6	41	6	66	7	91	7
17	5	42	8	67	6	92	7
18	6	43	6	68	9	93	7
19	5	44	6	69	7	94	8
20	5	45	7	70	6	95	7
21	8	46	6	71	7	96	6
22	5	47	8	72	6	97	9
23	6	48	6	73	8	98	7
24	6	49	6	74	7	99	8
25	5	50	7	75	6	100	7

2. $\rho(N)$ FOR SOME SPECIAL INTEGERS N

We write $\rho(N)$ for some specialized integers N and consider how many integers N have $R=\rho(N)$ for a given subscript R. If $\rho(N)=R$ in exactly one sequence, N is called a single; if in exactly two sequences, N is called a double; if in exactly three sequences, N is called a triple. The smallest double occurs when $R=3$, for $N=4=H_{3}(1,3)=2 F_{3}$, while the smallest triple occurs when $R=5$, for $N=35=7 F_{5}=H_{5}(4,9)=H_{5}(1,11)$.

Theorem 2.1: For the Fibonacci sequence, $\rho\left(A F_{R}\right)=R$ when $1 \leq A<F_{R+1}, R \geq 2$. Further, $\rho\left(A F_{R}\right)>R$ when $A>F_{R+1}$.

Proof: $\rho\left(F_{2}\right)=2 ; \rho\left(F_{3}\right)=3$. By Lemma 1.1,

$$
A F_{R}=A F_{R-2}+A F_{R-1}=H_{R}\left(A+F_{R-1}, A-F_{R-2}\right),
$$

where $A+F_{R-2}>2\left(A-F_{R-1}\right)$ when $A<F_{R+1}$ and $\rho\left(A F_{R}\right) \geq R$. Further, $A F_{R}=0 F_{R-1}+A F_{R}=$ $H_{R+1}\left(F_{R}, A-F_{R}\right)$, but a S.G.F. sequence requires that $B>2 A$, and $A-F_{R-1}>2 F_{R}$ only when $A>F_{R+1}$. Thus, $\rho\left(A F_{R}\right)<R+1$, making $\rho\left(A F_{R}\right)=R$ when $A<F_{R+1}$, and $\rho\left(A F_{R}\right)>R$ when $A>F_{R+1}$.

Corollary 2.1.1: Let $N=A F_{R}$, and $\rho(N)=R, R \geq 3$. Then N is a single when $A \leq F_{R-1}$; is a double when $F_{R-1}<A \leq 2 F_{R-1}$; and is a triple when $2 F_{R-1}<A<F_{R+1}$. For each value of R, $\rho(N)=R$ in at most three sequences.

Proof: If $1 \leq A<F_{R+1}, \rho\left(A F_{R}\right)=R$ by Theorem 2.1. By Lemma 1.1, any other solutions for $\rho(N)=R$ are found from $N=H_{R}\left(A-t F_{R-1}, A+t F_{R-2}\right)$. If $t \leq 0,\left\{H_{R}\right\}$ is not a S.G.F. sequence. If $t=1$, then S.G.F. sequence requirements dictate $A-F_{R-1} \geq 1$, making N a single when $1 \leq A \leq$ F_{R-1}, and at least a double if $A>F_{R-1}$. If $t=2$, we must have $A-2 F_{R-1} \geq 1$, so that N is a double when $F_{R-1}<A \leq 2 F_{R-1}$, and a triple when $2 F_{R-1}<A<F_{R+1}$. If $t \geq 3$, then $A \geq 1+t F_{R-1} \geq 1+F_{R+1}$, and $\rho(N)>R$.

Corollary 2.1.2: For $R \geq 2, \rho\left(F_{R}^{2}\right)=R$ and $\rho\left(F_{R+1} F_{R}\right)=R+1$; further, $\rho\left(F_{R}^{2}-1\right)=R+1, \mathrm{R}$ even, and $\rho\left(F_{R}^{2}+1\right)=R+1, \mathrm{R}$ odd.

Proof: Apply Theorem 2.1 to $F_{R-1} F_{R+1}=F_{R}^{2}+(-1)^{R}$.
Corollary 2.1.3: $\rho\left(F_{R} L_{R-1}\right)=R, R \geq 2 ; \rho\left(F_{R} L_{R}\right)=2 R, R \geq 1$.
Proof: Since $L_{R-1}=F_{R}+F_{R-2}<F_{R+1}$, Theorem 2.1 gives $\rho\left(F_{R} L_{R-1}\right)=R$ and $\rho\left(F_{R} L_{R}\right)=$ $\rho\left(F_{2 R}\right)=2 R$.

Corollary 2.1.4: $\rho\left(L_{n+1} F_{n}\right)=n+2, n \geq 3$; and $\rho\left(L_{n+k} F_{k}\right)=n+k, k \geq 2, n \geq 1$.
Proof: Let $N=L_{n+1} F_{n}=\left(F_{n-2}\right) F_{n}+\left(2 F_{n}\right) F_{n+1}=H_{n+2}\left(F_{n-2}, 2 F_{n}\right)$; as $B>2 A, \rho(N) \geq n+2$. Since $N=H_{n+3}\left(F_{n+1}, F_{n-2}\right)$ has no other positive solutions and $\left\{H_{n+3}\left(F_{n+1}, F_{n-2}\right)\right\}$ is not a S.G.F. sequence, we have $\rho(N)<n+3$, making $\rho(N)<n+2$. Next, let $N=L_{n+k} F_{k}$. One can derive

$$
N=L_{n+k} F_{k}=\left(F_{k}\right) F_{n+k-2}+\left(3 F_{k}\right) F_{n+k-1}=H_{n+k}\left(F_{k}, 3 F_{k}\right)
$$

where $B>2 a$ and $\rho(N) \geq n+k$. Also, since $N=H_{n+k+1}\left(2 F_{k}, F_{k}\right)$ has no other positive solutions for A and B, and this solution cannot be used because $A>B$, we have $\rho(N)<n+k+1$; thus, $\rho\left(L_{n+k} F_{k}\right)=n+k$.

Corollary 2.1.5: $\rho\left(F_{n+p}+F_{n-p}\right)=n=\rho\left(F_{n+p}-F_{n-p}\right), p \geq 2, n \geq 2+p$
Proof: Hoggatt (see [7], p. 59] gives

$$
F_{n+p}+F_{n-p}=F_{n} L_{p}, p \text { even } ; \quad F_{n+p}+F_{n-p}=L_{n} F_{p}, p \text { odd }
$$

If p is even, Corollary 2.1 .3 gives $\rho\left(F_{n} L_{p}\right)=n$; if p is odd, Corollary 2.1 .4 gives $\rho\left(L_{n} F_{p}\right)=n$. Similarly, $F_{n+p}-F_{n-p}=F_{n} L_{p}, p$ odd, and $F_{n+p}-F_{n-p}=L_{n} F_{p}, p$ even, yield $\rho\left(F_{n+p}-F_{n-p}\right)=n$.

Corollary 2.1.6: $\rho\left(F_{2 k}-1\right)=\rho\left(F_{2 k}+1\right)=k+1, k \geq 2$.
If k is even, $k \geq 4, \quad \rho\left(F_{2 k+1}+1\right)=\rho\left(F_{2 k}+1\right)=k+1$;

$$
\rho\left(F_{2 k+1}-1\right)=\rho\left(F_{2 k}-1\right)+1=k+2
$$

If k is odd, $k \geq 3, \quad \rho\left(F_{2 k+1}-1\right)=\rho\left(F_{2 k}-1\right)=k+1 ;$
$\rho\left(F_{2 k+1}+1\right)=\rho\left(F_{2 k}+1\right)+1=k+2$.

Proof: When k is odd, $k \geq 1$:

$$
\begin{aligned}
F_{2 k}+1 & =F_{k+1} L_{k-1} ; & F_{2 k}-1 & =F_{k-1} L_{k+1} \\
F_{2 k+1}-1 & =F_{k+1} L_{k} . & F_{2 k+1}+1 & =F_{k} L_{k+1}
\end{aligned}
$$

When k is even, $k \geq 2$:

$$
\begin{aligned}
F_{2 k}+1 & =F_{k-1} L_{k+1} ; & F_{2 k}-1 & =F_{k+1} L_{k-1} \\
F_{2 k+1}-1 & =F_{k} L_{k+1} . & F_{2 k+1}+1 & =F_{k+1} L_{k}
\end{aligned}
$$

Each pair of identities, when summed vertically, gives $F_{2 k+2}=F_{k+1} L_{k+1}$, and each can be proved by mathematical induction. Then apply Corollaries 2.1 .3 and 2.1 .4 , which give $\rho(N)$ when $N=F_{k} L_{m}$.

Next, we investigate integers N, where $\rho(N)=R$ and N is not a multiple of F_{R}. The smallest such double is $N=83=H_{6}(1,16)=H_{6}(6,13)$.

Theorem 2.2: Let $N=H_{R}(A, B)$, where $B>2 A$ and $\rho(N)=R, R \geq 3$. Then N is a single when $1 \leq A \leq F_{R-1}$ and $B<A+F_{R} . N$ is a double when $F_{R-1}<A \leq F_{R}-2$ and $2 A<B \leq 2 F_{R}-3$.

Proof: Select the smallest integer A for which the hypothesis is met. Then $1 \leq A \leq F_{R-1}$. Otherwise, from Lemma 1.1, $N=H_{R}\left(A-F_{R-1}, B+F_{R-2}\right)$, contrary to choice of A as smallest. $\left\{H_{R}\left(A+F_{R-1}, B-F_{R-2}\right)\right\}$ is not a S.G.F. sequence when $B<A+F_{R}$ because then $A+F_{R-1}>$ $B-F_{R-2}$; thus, the conditions $A \leq F_{R-1}$ and $B<A+F_{R}$ guarantee a single. When $A \geq 1+F_{R-1}$ and $B<A+F_{R},\left\{H_{R}\left(A-F_{R-1}, B+F_{R-2}\right)\right\}$ is a S.G.F. sequence. Since $2 A<B$, rewrite requirements for B as $2 A+1 \leq B \leq F_{R}+A+1$, leading to a double when $F_{R-1}+1 \leq A \leq F_{R}-2$ and $2 A+1 \leq B \leq F_{R}+A+1 \leq 2 F_{R}-3$.

To illustrate Theorem 2.2 , consider $H_{6}(1,16)=H_{6}(6,13)=83$. The smallest solution has $A=1$, where $1 \leq A \leq F_{6-1}$, but $B=16>F_{6}+A=9$, allowing a double. Taking $A=6, F_{5}<6 \leq$ $F_{6}-2$ and $B=13 \leq 2 F_{6}-3$.
Corollary 2.2.1: Let $N=H_{R}(A, B)$, where $B>2 A$. If $1 \leq A \leq F_{R}-2$ and $B<A+F_{R}$, then $\rho(N)=R, R \geq 3$.

Proof: By hypothesis, $\rho(N) \geq R$.

$$
N=A F_{R-2}+B F_{R-1}=(B-A) F_{R-1}+A F_{R}=H_{R+1}(B-A, A)
$$

but $\left\{H_{R+1}(B-A, A)\right\}$ is not a S.G.F. sequence when $B>2 A$, and neither are the other solutions from Lemma 1.1, $N=H_{R+1}\left(B-A+F_{R}, A-F_{R-1}\right)$ and $N=H_{R+1}\left(B-A-F_{R}, A+F_{R-1}\right)$. Thus, $\rho(N)<R+1$ and $\rho(N)=R$.

Corollary 2.2.2: $\rho(N)=R$ for $\left(F_{R}^{2}+F_{R-3}\right) / 2$ integers $N, R \geq 3$.
Proof: When $B>2 A$, Corollary 2.2 .1 gives $\left(F_{R}-2\right)$ choices for A. Since $2 A+1 \leq B \leq$ $F_{R}+A+1 \leq 2 F_{R}-3$, when $A=F_{R}-2$, there is one choice for B; for $A=F_{R}-3$, two choices; \ldots, for $A=F_{R}-1-k, k$ choices. So $\rho(N)=R$ for

$$
\left(F_{R}-2\right)\left(1+2+3+\cdots+\left(F_{R}-2\right)\right)=\left(F_{R}-2\right)\left(F_{R}-1\right) / 2
$$

integers N which are not divisible by F_{R}. If $N=A F_{R}$, Theorem 2.1 gives $\rho(N)=R$ for $1 \leq A \leq$ $F_{R+1}-1$, so there are $\left(F_{R+1}-1\right)$ such integers N. Adding and simplifying,

$$
\left(F_{R}-2\right)\left(F_{R}-1\right) / 2+\left(F_{R+1}-1\right)=\left(F_{R}^{2}+F_{R-3}\right) / 2
$$

as required.
Theorem 2.3: For the Lucas sequence, $\rho\left(L_{R}\right)=R, R \geq 3$.
Proof: $\rho\left(L_{1}\right)=2$ and $\rho\left(L_{2}\right)=4$. For $R \geq 3, L_{R}=H_{R}(1,3)=1 F_{R-2}+3 F_{R-1}$, so $\rho\left(L_{R}\right) \geq R$. The only positive solution for $L_{R}=H_{R+1}(A, B)=A F_{R-1}+B F_{R}$ is $A=2$ and $B=1$, but this solution cannot be used since $A>B$, so $\rho\left(L_{R}\right)<R+1$, making $\rho\left(L_{R}\right)=R$. Compare with Corollary 2.1.4 for $k=2$.

Corollary 2.3.1: The smallest integer such that $\rho(N)=R$ is F_{R}. The smallest integer not divisible by F_{R} such that $\rho(N)=R$ is L_{R}.

Theorem 2.4: The largest integer N for which $\rho(N)=R$ is $N=\left(F_{R+1}-1\right) F_{R}, R \geq 2$. Also, $N=\left(F_{R+1}-1\right) F_{R}, R \geq 5$, is a triple, with the other two occurrences given by

$$
\left.N=H_{R}\left(F_{R}-1\right), 2 F_{R}-1\right)=H_{R}\left(F_{R-2}-1,2 F_{R}+F_{R-2}-1\right)
$$

Proof: For $R=2, N=\left(F_{3}-1\right) F_{2}=1$. If $H_{R}=A F_{R-2}+B F_{R-1}$, where $B \geq 2 A$, then $H_{R} \leq$ $B F_{R-2}+B F_{R-1}=B F_{R}, R \geq 3 . \rho\left(B F_{R}\right)=R$ when $1 \leq B \leq F_{R+1}-1$ by Theorem 2.1. By Corollary 2.1.1, $N=\left(F_{R+1}-1\right) F_{R}$ is a triple that can be calculated using Lemma 1.1.

Theorem 2.5: If $F_{2 k-2} \leq N<F_{2 k}, k \geq 2$, then $k \leq \rho(N) \leq 2 k-1$.
Proof: By Theorem 2.1, the largest possible value for $\rho(N)$ in the interval is $\rho\left(F_{2 k-1}\right)=$ $2 k-1$. We show that the smallest value is $\rho(N)=k$ by applying Theorem 2.4. Now, take $N=\left(F_{k+1}-1\right) F_{k}$; then $N<\left(F_{k+1}+F_{k-1}\right) F_{k}=L_{k} F_{k}=F_{2 k}$, while

$$
N=\left(F_{k}+\left(F_{k-1}-1\right)\right) F_{k} \geq\left(F_{k}+F_{k-2}\right) F_{k-1}=L_{k-1} F_{k-1}=F_{2 k-2}
$$

for $k \geq 4$. Then, by examining $k=2$ and $k=3$, and putting this together,

$$
\begin{equation*}
F_{2 k-2} \leq N=\left(F_{k+1}-1\right) F_{k}<F_{2 k}, k \geq 2, \tag{2.5.1}
\end{equation*}
$$

where $\rho(N)=k$ and N is the largest integer such that $\rho(N)=k$. Notice that taking $R=k-1$ in Theorem 2.4, $\left(F_{k}-1\right) F_{k-1}<F_{2(k-1)}$ from (2.5.1), so that the largest integer N having $\rho(N)=k-1$ is not in the interval of Theorem 2.5.

Theorem 2.6: In the interval $F_{m}<N<F_{m+1},[(m+2) / 2] \leq \rho(N) \leq m-1, m \geq 4$; and $\rho\left(F_{m}+1\right) \leq$ $[(m+2) / 2]+1$, where $[x]$ is the greatest integer in x.

Proof: Since F_{m} is not in the interval, $\rho(N) \leq m-1$. If m is odd, take $m=2 k-1$; if m is even, $m=2 k-2$. Either $F_{2 k-2} \leq N<F_{2 k-1}$ or $F_{2 k-1} \leq N<F_{2 k}$, so that $\rho(N) \geq k$ from Theorem 2.5. Since either $[(m+2) / 2]=(2 k-1+2) / 2]=k$ or $[(m+2) / 2]=(2 k-2+2) / 2]=k, \rho(N) \geq$ $[(m+2) / 2]$.

The smallest integer in the interval is $F_{m}+1$, and, by Corollary 2.1.6, either $\rho\left(F_{m}+1\right)=$ $[(m+2) / 2]$ or $\rho\left(F_{m}+1\right)=[(m+2) / 2]+1$. The largest value for $\rho(N)$ is $m-1$, which occurs for $N=2 F_{m-1}$ and $N=L_{m-1}$.

Corollary 2.6.1: For $m \geq 4$,

$$
\begin{aligned}
& \rho\left(F_{m}+F_{m-2}\right)=\rho\left(F_{m+1}-F_{m-2}\right)=m-1 ; \\
& \rho\left(F_{m}+F_{m-3}\right)=\rho\left(F_{m+1}-F_{m-3}\right)=m-1 .
\end{aligned}
$$

Proof: Since $L_{m-1}=F_{m}+F_{m-2}=F_{m+1}-F_{m-3}$, apply Theorem 2.3 in the first case. Similarly, use Theorem 2.1 with $2 F_{m-1}=F_{m+1}-F_{m-2}=F_{m}+F_{m-3}$.

3. THE MAXIMUM EXPANSION INDEX OF A S.G.F. SEQUENCE

In this section, we determine when $\rho\left(H_{K}\right)=K$ for the S.G.F. sequence $\left\{H_{n}(A, B)\right\}$. We will call the integer $R_{\max }$ the maximum expansion index of the S.G.F. sequence $\left\{H_{n}(A, B)\right\}$ if $\rho\left(H_{K}(A, B)\right)=K$ whenever $K=R_{\max }$. For example, the S.G.F. sequence

$$
\left\{H_{n}(1,7)\right\}=\{1,7,8,15,23,38,61,99, \ldots\}
$$

which has $\rho\left(H_{6}\right)=\rho(38)=6$ has $R_{\max }=6 ; \rho\left(H_{K}\right) \neq K$ for $1 \leq K \leq 5$, while $\rho\left(H_{7}\right)=\rho(61)=7$ as well as $\rho\left(H_{K}\right)=K$ for all $K \geq 6$.

Theorem 3.1: If $F_{R-1}<B-A \leq F_{R}$ for the S.G.F. sequence $\left\{H_{n}(A, B)\right\}$, then $\rho\left(H_{R}(A, B)\right)=R$. Further, $R=R_{\max }$, and $\rho\left(H_{K}(A, B)\right)=K$ for all $K \geq R$.

Proof: Since $2 A \leq B$ in a S.G.F. sequence, $A \leq B-A \leq F_{R}$ so $1 \leq A \leq F_{R}$ and $B \leq A+F_{R}$. If $B=2 A$, then $N=A F_{R}$ and $\rho(N)=R$ by Theorem 2.1. Also, $B=A+F_{R}$ gives a Fibonaccilike case, since $A=F_{R}-k, B=2 F_{R}-k$ give

$$
N=H_{R}=\left(F_{R}-k\right) F_{r-2}+\left(2 F_{R}-k\right) F_{r-1}=\left(F_{R+1}-k\right) F_{R}, 1 \leq k \leq F_{R}-1,
$$

where $\rho(N)-R$ by Theorem 2.1, and $k=0$ gives us $B=2 A$, already discussed.
If $B>2 A$, Corollary 2.2 .1 gives $\rho(N)=R$ when $1 \leq A \leq F_{R}-2, B<A+F_{R}$, leaving only the cases $A=F_{R}-1$ and $A=F_{R}$. Since cases $B=2 A$ and $B=A+F_{R}$ were discussed above, we are finished, and $\rho(N)=R$ when $F_{R-1}<B-A \leq F_{R}$.

Let $K>R$. If

$$
N=H_{K}(A, B)=A F_{K-2}+B F_{K-1} \quad \text { and } \quad B \geq 2 A,
$$

then $\rho(N) \geq K$. Thus,

$$
N=H_{K+1}(B-A, A)=(B-A) F_{K-1}+A F_{K}
$$

but this solution cannot be used since $B-A \geq A$ when $B \geq 2 A$. Since $F_{K}>F_{R},(B-A)-F_{K}<0$, and $(B-A)+F_{K}>A-F_{K-1}$ when $B \geq 2 A$, Lemma 1.1 gives no other usable solutions for $N=H_{k+1}$. Thus, $\rho(N)<K+1$ and $\rho(N)=K$. Putting these cases together, $\rho\left(H_{K}(A, B)\right)=K$ when $K \geq R$, and $R=R_{\max }$.

Corollary 3.1.1: If $F_{R-1}<2 a \leq F_{R}, a \geq 1, R \geq 3$, then $\rho\left(a L_{n}\right)=n$ for $n \geq R$. If $F_{R-1}<A<F_{R}$, then $\rho\left(A F_{n}\right)=n$ for $n \geq R, R \geq 2$.

Proof: $H_{n}=a L_{n}$ has $H_{0}=2 a$. If $F_{R-1}<B-A=2 a \leq F_{R}$, apply Theorem 3.1. If $F_{R-1}<$ $2 A-A \leq F_{R}$, then $\rho\left(H_{n-1}(A, 2 A)\right)=n-1$ for $n-1 \geq R$. Since $B=2 A$ and $A F_{n}=H_{n-1}(A, 2 A)$, $\rho\left(A F_{n}\right)=n$ for $n \geq R$. Compare with Theorem 2.1.

Theorem 3.2: For $k \geq 2, n \geq 2$,

$$
\begin{aligned}
\rho\left(F_{n+2 k}+F_{n}\right) & =\rho\left(F_{n+2 k}-F_{n}\right)=n+k ; \\
\rho\left(F_{n+2 k+1}+F_{n}\right) & =\rho\left(F_{n+2 k+1}-F_{n}\right)+1=n+k+1, k \text { even; } \\
\rho\left(F_{n+2 k+1}+F_{n}\right) & =\rho\left(F_{n+2 k+1}-F_{n}\right)-1=n+k, k \text { odd. } .
\end{aligned}
$$

Proof: $\rho\left(F_{n+2 k}+F_{n}\right)=\rho\left(F_{n+2 k}-F_{n}\right)=n+k$ by taking $n=n+k$ and $p=k$ in Corollary 2.1.5. Since $N=H_{n+k}=A F_{n+k-2}+B F_{n+k-1}$, where $\rho\left(H_{n+k}\right) \geq n+k$ if $B \geq 2 A$, we derive identities involving $F_{n+2 k+1}$ from the identity (see Eq. (8) in [11])

$$
\begin{equation*}
F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1} \tag{2.7.1}
\end{equation*}
$$

to write $N=F_{n}+F_{n+2 k+1}=A F_{n+k-1}+B F_{n+k}$. Take $m=n+k$ and $n=k+1$ for $F_{n+2 k+1}$ and $m=n+k$, and $n=(-k)$ for F_{n} in (2.7.1) to write

$$
\begin{aligned}
& F_{n+2 k+1}=F_{(n+k)+(k+1)}=F_{n+k-1} F_{k+1}+F_{n+k} F_{k+2} ; \\
& F_{n}=F_{(n+k)+(-k)}=F_{n+k-1} F_{-k}+F_{n+k} F_{1-k}=(-1)^{k+1} F_{k} F_{n+k-1}+(-1)^{k} F_{k-1} F_{n+k} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
N=F_{n+2 k+1}+F_{n} & =\left(F_{k+1}+(-1)^{k+1} F_{k}\right) F_{n+k-1}+\left(F_{k+2}+(-1)^{k} F_{k-1}\right) F_{n+k} \\
& =H_{n+k+1}(A, B) .
\end{aligned}
$$

If k is even, $A=F_{k+1}-F_{k}=F_{k-1}$, and $B=F_{k+2}+F_{k-1}=2 F_{k+1}$, where $B>2 A$. Since $B-A=$ $F_{k+2}, R_{\max }=k+2$, where $n+k+1 \geq k+2 ; \rho(N)=n+k+1$ by Theorem 3.1. If k is odd, then $A=F_{k+1}+F_{k}=F_{k+2}$ and $B=F_{k+2}-F_{k-1}=2 F_{k}$ has $A>B$ with no other positive solution, but we find that $N=H_{n+k}\left(2 F_{k}, 4 F_{k}+F_{k-1}\right)$, where $F_{k+1}<B-A \leq F_{k+2}$ so that $R_{\max }=k+2$, and again $\rho(N)=n+k, n \geq 2$.

Subtracting the quantities above, $N=F_{n+2 k+1}-F_{n}$ becomes $H_{n+k}\left(2 F_{k}, 4 F_{k}+F_{k-1}\right)$, giving $\rho(N)=n+k$ for k even; for k odd, $N=F_{n+2 k+1}-F_{n}$ becomes $H_{n+k+1}\left(F_{k-1}, 2 F_{k+1}\right)$, giving $\rho(N)=$ $n+k+1$.

4. SOLVING $N=H_{R}(A, B)$ FOR R, A, AND B

Given N, we find A, B, and R so that $N=H_{R}(A, B)$, where $R=\rho(N)$. Our solution depends upon a greatest integer identity for the S.G.F. sequence $\left\{H_{n}(A, B)\right\}$ which allows us to find H_{n-1} when we are given H_{n}.

Lemma 4.1: Let $\left\{H_{n}(A, B)\right\}$ be a S.G.F. sequence, where $F_{k-1}<B-A \leq F_{k}$. For $n \leq k$, the term preceding $H_{n}(A, B)$ is $\left[H_{n} / \alpha\right]$ or $\left[H_{n} / \alpha\right]+1$, where $[x]$ is the greatest integer in x, and $\alpha=(1+\sqrt{5}) / 2$.

Proof: From [4], use Theorem 3.3 when $B>2 A$ and Theorem 2.3 when $B=2 A$.
Lemma 4.2: For the S.G.F. sequence $\left\{H_{n}(A, B)\right\}$, if $D=B^{2}-A B-A^{2}$:
(i) $F_{n-1}<H_{n} / \sqrt{D} \leq F_{n+1}$;
(ii) $H_{n}^{2}-H_{n} H_{n-1}-H_{n-1}^{2}=(-1)^{n} D$;
(iii) $\left|H_{n}^{2}-H_{n} H_{n-1}-H_{n-1}^{2}\right|=K^{2}$ iff $H_{n}=K F_{n+1}, n \geq 1$.

Proof: (1) Since $B \geq 2 A, D>0$; in fact, $D \geq B^{2} / 4$, and $\sqrt{D} \geq B / 2$. Thus,

$$
H_{n}=A F_{n-2}+B F_{n-1} \leq(B / 2) F_{n-2}+B F_{n-1}=(B / 2) F_{n+1} .
$$

Dividing by $\sqrt{D}, H_{n} / \sqrt{D} \leq(B / 2) F_{n+1} / \sqrt{D} \leq F_{n+1}$, while

$$
F_{n+1} \geq H_{n} / \sqrt{D}=\left(A F_{n-2}+B F_{n-1}\right) / \sqrt{D}>A F_{n-2} / \sqrt{D}+F_{n-1}>F_{n-1} .
$$

For (ii), see [1], [7], and [8]. Lastly, in 1876, Lucas proved that $m^{2}-m n-n^{2}= \pm 1$ is satisfied by consecutive Fibonacci numbers, and in 1902, Wasteels proved that there are no other solutions (see [6], p. 405). Since $\left(F_{n}, F_{n+1}\right)=1$, (iii) follows. Note that (iii) is a test for a Fibonacci sequence.

Lemma 4.3: Let $N=H_{n}(A, B)$, where n is to be maximized. There are two cases:
(i) $H_{n-1}=\left[H_{n} / \alpha\right], n=n_{1}$;
(ii) $H_{n-1}=\left[H_{n} / \alpha\right]+1, n=n_{2}$.

The maximal subscript value for $N=H_{R}$ occurs for $R=\max \left(n_{1}, n_{2}\right)$.
Proof: Lemma 4.3 actually is a blueprint for solving for R. By Lemma 4.1, cases (i) and (ii) give the only two possible choices for H_{n-1}. Take case (i). Compute $H_{n}^{2}-H_{n} H_{n-1}-H_{n-1}^{2}=(-1)^{n} D$ from Lemma 4.2 recalling that $D>0$. Compute H_{n} / \sqrt{D} and select n by $F_{n-1}<H_{n} / \sqrt{D} \leq F_{n+1}$. There are two possibilities for n : if $(-1)^{n} D>0$, then n is the even possibility, while n is odd if $(-1)^{n} D<0$. Then $n=n_{1}$ is the solution from case (i). Now take case (ii). Make the same calculations with $H_{n-1}=\left[H_{n} / \alpha\right]+1$ to find $n=n_{2}$. Then choose $n=R=\max \left(n_{1}, n_{2}\right)$.

Lemma 4.4: If $N=H_{n}(A, B)$, then

$$
A=\left|H_{n-1} F_{n-1}-N F_{n-2}\right| \quad \text { and } \quad B=\left|H_{n-1} F_{n-2}-N F_{n-3}\right| .
$$

Proof: Refer to (1.1) and solve the equations $H_{n}=A F_{n-2}+B F_{n-1}$ and $H_{n-1}=A F_{n-3}+B F_{n-2}$ simultaneously for A and B.

Now we can use the four lemmas above to find the S.G.F. sequence $\left\{H_{n}(A, B)\right\}$ with $N=H_{R}(A, B)$ such that $R=\rho(N)$, given any positive integer N. It is important to note that, if $B=2 A,\left\{H_{n}\right\}$ is a Fibonacci-like sequence and the maximal subscript R will increase by 1 , since $H_{n}=A F_{n+1}$. Lemma 4.2 gives a test for a Fibonacci-like sequence, and a shortened solution since, if $\left|(-1)^{n} D\right|=K^{2}$, then $H_{n}=K F_{n+1}$.

Example 1: Let $N=2001=H_{n}$. Compute case (i): $[2001 / \alpha]=1236=H_{n-1}$, and $(-1)^{n} D=$ $3069>0$, so n_{1} is even; next, $F_{9}<2001 / \sqrt{3069} \approx 36.1 \leq F_{10}$, so $n_{1}=10$. Compute case (ii) using $[2001 / \alpha]+1=1237=H_{n-1}$ and $(-1)^{n} D=-1405<0$, so n_{2} is odd; with $F_{9}<2001 / \sqrt{1405} \approx$ $53.38 \leq F_{10}, n_{2}=9$. Take $R=\max (10,9)=10=n$, and use $H_{n-1}=1236$ from case (i) to compute $a=\left|1236 F_{9}-2001 F_{8}\right|=3, b=\left|1236 F_{8}-2001 F_{7}\right|=57$. Since $b>2 a$, take $N=H_{10}(3,57)$.

Example 2: Let $N=357=H_{n} . \quad[357 / \alpha]=220=H_{n-1}$ and $(-1)^{n} D=509>0$, so n_{1} is even. Then $F_{7}<357 / \sqrt{509} \approx 15.8 \leq F_{8}$, so $n_{1}=8$. Compute case (ii) for $H_{n-1}=221$, obtaining $(-1)^{n} D=$ $-289<0$, so n_{2} is odd; $F_{7}<357 / \sqrt{289}=21 \leq F_{8}$, so $n_{2}=7$. We choose $n=n_{1}=8$ and use $H_{n-1}=220$ to compute $a=\left|220 F_{7}-357 F_{6}\right|=4$ and $b=\left|220 F_{6}-357 F_{5}\right|=25$. Therefore, $R=8$,
$A=4$, and $B=25$ yields $N=H_{8}(4,25)$. Note that $\left|(-1)^{n} D\right| 289=17^{2}$ in case (ii) indicates a Fibonacci-like sequence, $n_{2}+1=8=R$, giving a double, and $H_{n-1}=221$ for $n_{2}=7$ yields $a=$ $\left|221 F_{6}-357 F_{5}\right|=17=A$ and $b=\left|221 F_{5}-357 F_{4}\right|=34=B$, or $N=H_{7}(17,34)=17 F_{8}$.

ACKNOWLEDGMENT

We thank the referee, who spent many hours reading this paper, for a careful and complete critique that resulted in a much stronger paper.

REFERENCES

1. Brother Alfred Brousseau. Introduction to Fibonacci Discovery. Santa Clara, CA: The Fibonacci Association, 1965.
2. Brother U. Alfred (Brousseau). "On the Ordering of Fibonacci Sequences." The Fibonacci Quarterly 1.4 (1963):43-46.
3. Marjorie Bicknell-Johnson. "A Note on a Representation Conjecture by Hoggatt." In Appli-cations of Fibonacci Numbers 7:39-42. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1998.
4. Marjorie Bicknell-Johnson \& David A. Englund. "Greatest Integer Identities for Generalized Fibonacci Sequences $\left\{H_{n}\right\}$, Where $H_{n}=H_{n-1}+H_{n-2}$." The Fibonacci Quarterly 33.1 (1995): 50-58.
5. John H. E. Cohn. "Recurrent Sequences Including N." The Fibonacci Quarterly 29.1 (1991): 30-36.
6. L. E. Dickson. History of the Theory of Numbers. Vol. I. New York: Chelsea, 1971.
7. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, CA: The Fibonacci Association, 1979.
8. A. F. Horadam. "A Generalized Fibonacci Sequence." Amer. Math. Monthly 68.5 (1961): 455-59.
9. David A. Klarner. "Representations of N as a Sum of Distinct Elements from Special Sequen-ces." The Fibonacci Quarterly 4.4 (1966):289-306.
10. William J. LeVeque. Elementary Theory of Numbers, p. 32. London: Addison-Wesley, 1962.
11. S. Vajda. Fibonacci \& Lucas Numbers, and the Golden Section. Chichester, England: Ellis Horwood, 1989.

AMS Classification Numbers: 11B39, 11B37, 11 Y55

