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In a recent paper [1], Filipponi presented, without proof, a formula for odd-subscripted 
Lucas numbers which can be equivalently rewritten as 

0<y'<f \ J J n J 

This form is better suited for our treatment, and we can observe that, for even n, the summand for 
7 = f is (-l)w/2, explaining the extra term in [1]. The aim of this note is to give two distinct 
proofs of (1). 
First proof of (1). We use the standard forms 

G„00= i f V V - (2) 
0<k<nV / 

They are studied very well in [2], and we have, for n > 0, 

X ( - i y ( " - ^ 3 " - ' - ^ ^ = 3''G„(-i)+r-1G„_1(-i). 
0<;<f \ J J n J 

In Exercise 7.34 of [2] we find also the generating function 

„>0 i-Z-WZ 

Hence, 
X(3»GnB) + 3»->G„_1(-l)k 
«>o 

= lG„B)(3z)"+zXG„(- i ) (3zr 

Since a trivial computation gives 

n>0 

1-fz 
1-3Z4-Z2 ' 

2-» ^2n+V 
n>0 

n>0 

l + 'Z 
z" = -1 - 3 Z 4 - Z 2 ' 

the proof is finished. D 
We can even get a general formula for Lsn+t with nonnegative integers 0 < t < s; for that, we 

set up generating functions: 
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(3) 

(4) 

i7M(z)=Z4n+^=«'Z(«^)"+/ffrZ^)n = « ,
T Z^-+^— l -

n>0 n>0 n>0 I (X Z 1 p . 

= at(\-p*z) + PX\-a'z) = a'+fi'-g-iya-' + (-l)'/3s-')z 
{\-asz)(\-psz) ~ \-{as+ps)z+{-\Yz2 

= L,-(-l)%_,z 
\-Lsz+(-\yz2-

By using (2), (3) can be written as 

FSJ{z) = (Lt - (-l)%_,z)G (LSZ, t ^ 1 

and, therefore, we get the formula: 

0<k<nV ' 

-(-D'4-f I ( " - ^ W - ' ^ r 1 

We do not know whether this formula is new, but it is easy to prove and generates infinitely 
many "Filipponi formulas." 

Second proof of (1). For the second (mechanical) proof ("ZeilbergerV algorithm"), we note the 
following (see [3] and [2] for the underlying theory): Set 

/(/a):=(-i)*(V)3"_1~2*^rf and m-=Yf(n,k). 
Furthermore, set 

, j , 9k(n-k)(4n-5k + 5) ,, y. 
^ k) '= -{n-2k + 2){n-2k + l){An-5k)f{n' *>' 

then 
f(n + 2,k)-3f(n + l,k) + f(n,k) = g(n,k + l)-g(n,k) 

(check!!), thus we get, on summing over k, F(n + 2)-3F(n + l) + F(ri) = 0. Since the odd-
subscripted Lucas numbers also satisfy the recursion L2n+5 - 3L2n+3 + L2n+l = 0 and two initial 
values match as well, the proof is finished. D 
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