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For an integer n > 2, let Tn be the unique set of positive integers such that: 
0) lern ; 
(2) if t > 1, then t e Tn iff exactly one of f -1 , t-n is in Tn. 

Condition (2) can be rephrased as 

The Triple Criterion: If t* 1, then | {* - w, f - 1 , f} n 2; | e {0,2}. 

If n = 2, then the set j£ is closely related to the Fibonacci sequence; specifically, t GT2 iff the 
7th term of the Fibonacci sequence is odd. 

We ask, for each w, which numbers are uniquely expressible as the sum of two distinct ele-
ments of Tn. In general, for any given w, one can determine exactly which numbers are uniquely 
expressible. If w = 2, it is easy to see that there are five such numbers: 3 = 1 + 2, 5 = 1 + 4, 
7 = 2 + 5, 8 = 1 + 7, and 10 = 2 + 8. If w = 3, then there are exactly eight uniquely expressible 
numbers: 3 = 1 + 2, 4 = 1 + 3, 5 = 2 + 3, 6 = 1 + 5, 7 = 2 + 5, 8 = 3 + 5, 9 = 1 + 8, and 16 = 1 + 15. If 
w = 4, then there are exactly five uniquely expressible numbers: 3 = 1 + 2, 4 = 1 + 3, 6 = 2 + 4, 
8 = 2 + 6, and 16 = 4 + 12. If w>3, then 1,2,3 e Tn, so that 3 and 4 are uniquely expressible. 

The principal theorem of this note answers this question for all other situations. Let U„ be 
the set of all integers which are uniquely expressible as the sum of two distinct elements of Tn. 
Thus, we have just observed that 

U2 = {3,5,7,8,10}, U3 = {3,4,5,6,7,8,9,16}, and U4 = {3,4,6,8,16}. 

The following principal theorem characterizes Un for n > 5. 

Theorem: Let n > 5. Then U„ = {3,4, n2 - n + 3, In1 - In + 4} if n = 2k +1 for some 1, and Un = 
{3,4} otherwise. 

The remainder of this paper consists of two sections. The first contains a discussion of the 
motivation for the principal theorem, and the second contains its proof. The second section can 
be read independently of the first. 

h MOTIVATION 
For an integer n > 2, let fl9 f2, f 3 , . . . be the sequence defined by the initial conditions 

and the recurrence relation 
Jn+j ~ Jj "^Jn+j-l 

for j>\. If, in particular, » = 2, then the Fibonacci sequence has just been defined, and, as 
another example, if n = 5, then we get the sequence 

1,1,1,1,1,2,3,4,5,6,8,11,15,20,26,34,45,60,80,106,.... 
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From this sequence, we define another sequence tht2>t3>--, which we will call the nth parity 
sequence: we set tt = j iff the Ith odd term in the sequence fhf2,f3,... is / / . For example, the 
5th parity sequence is 

1,2,3,4,5,7,9,12,13,17,22,23,24,.... 
Then £ = &,*,, * , , . . .} . 

The principal theorem extends the result of [4] but in a somewhat disguised form. What is 
essentially proved in [4] is this theorem weakened by requiring that n be an even number, thereby 
eliminating any exceptional cases. 

We next discuss some background for the result of [4] and, consequently, of the above 
theorem. For positive integers u < v, the J-additive sequence based on u, v is the sequence 
sn si> •%>•••> where sx=u, ^ = v, and sn+2 is the least a> sn+l for which there is a unique pair of 
integers ij such that 1 < i < j < n +1 and a = sf + Sj. For example, the 1-additive sequence based 
on 1,2 is the sequence 

1,2, 3,4, 6,8,11,13,16,18,26,28,..., 
which was introduced by Ulam [5]. This sequence is still not well understood, but it appears to 
have a quite erratic behavior. Other 1-additive sequences, such as the one based on 2,3 also 
exhibit a similar erratic behavior. In contrast to this, the 1-additive sequence based on 2, v, where 
v > 5 is an odd number, has a much more predictable behavior. 

Finch made the definition in [2] that the (increasing) sequence sh.% s3,... is regular if there 
are positive integers m9 p, and d such that whenever i >m, then si+p = st+d. (He refers to the 
least such/? as the period of the sequence and to the least such d as the fundamental difference.) 
He observed in [2] that a 1-additive sequence having only finitely many even terms is regular. He 
then went on to make the conjecture, based on extensive numerical evidence, that for relatively 
prime u< v, the 1-additive sequence based on w, v has only finitely many even terms iff one of the 
following holds: 

(i) i/ = 2 and v > 5 is odd; 
(ii) u - 4 and v > 5 is odd; 
(iii) u = 5 and v = 6; 
(iv) u > 6 is even; 
(v) M > 7 is odd and v is even. 

For each of the cases (i)-(v), he made a conjecture as to what the finite sets are. For example, in 
(i) the set of even terms is {2,2v + 2}, and in (ii) the set is {4,2v + 4,4v + 4} provided that 
v ^ 2 m - l for any m>3. The conjecture for (i) was proved correct in [4], and for (ii) it was 
proved correct in [1] in the case v = 1 (mod 4). For (iii) the set is 

{6,16,26,36,80,124,144,172,184,196,238,416,448}, 

and in this case the truth of the conjecture can be verified by direct computation. 
Now suppose that D = {dhd2,...,dk} is a finite set of integers, where dl<d2<°-<djc. Let 

us say for now that the sequence th t2> l3,... is the 1-incremental sequence based on D if tx = 1 
and tn+l is the least a>tn for which there is a unique pair of integers i9j such that 1 <i <n, 
l<j<k, and a = tt +dj. For example, the 1-incremental sequence based on {1,5} is 

1,2,3,4,5,7, 9,12,13,17,22,23,24,.... 
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Notice that this sequence is identical to the 5th parity sequence. In general, the 71th parity 
sequence is identical to the 1-incremental sequence based on {1, n}. 

The connection between 1-incremental sequences and the regularity of 1-additive sequences, 
elaborating on Finch's observation [2], will be discussed next. 

Consider the 1-additive sequence sx, $2, $3,... based on u, v, where u = 2dl is even and v is 
odd. Suppose that 2dh 2d2,..., 2dk are all the even terms that are no greater than 2(dk_l +dk) 
occurring in the 1-additive sequence, where dl<d2<-><dk. Let tl9 t2y t3,... be the 1-incremental 
sequence based on D = {dx, d2, ...,dk} and let T= {th t2> t3,...}. It is easy to check that 

{sh$2,s3,...} = {2t + v-2:te7r}^j{2dli2d2,...,2dk}. 

Now consider 1-additive sequences based on 2, v, where v > 5 is an odd integer. The result of [4] 
is thus seen to be equivalent to the principal theorem restricted to even n > 6. This leads naturally 
to the question that this theorem answers. 

Every w* parity sequence is regular. (In fact, it is obvious that every 1-incremental sequence 
is regular.) However, even a little more is true for these sequences (and for all 1-incremental 
sequences based on 2-element sets, as well). Let P(n) be the period of the rfi1 parity sequence 
h> h? h-> •••> an£^ ^et D(n) be the fundamental difference. Then, it follows from the Triple Criterion 
that, for each i > 1, ti+P^ = /,- +D(ri). Also D(n) is the least d>\ for which none of d, d-l, 
d-2, ..., d-n + 2 is in Tn. Tabulation of 2D(n) and P(n) for many even n > 6 can be found in 
[3]. 

2. THE PROOF 

We will need an analysis of the (2*+l)lh parity sequence. An analysis of the (2*)* parity 
sequence was given in [4]. As a comparison, we summarize that analysis here. 

Proposition 1 ([4]): Let k>\ and let n-2k. Let 1 </ <An2 and suppose that t = 2in + j , where 
0<i<2n mdl<j<2n. Then: 

(1) if 1 <n andj <n, then t eT2n iffin+j e Tn\ 
(2) if 1 <nmdj>n, then t e T2n iffin + j-n e Tn\ 
(3) if i>nmdj<n, then / e T2n iff(i-n)n+j e Tn andj <n; 
(4) if 1 > n andy > w, then / G T2n iff j = 2n. D 

The following notation from Section 1 will be used. Recall from Section 1 that, for each 
n > 2, there is d > 1 such that, for any t>l, t eTnifft+d sTn. We let D(ri) be the least such d. 
Clearly, D(n) is the least d> 1 such that rf + 1, <i + 2, rf + 3, ..., rf+w e 2 ,̂ and also it is the least 
d>l such that d, d-l, d~2, ..., d-(n-2) £Tn. 

Using Proposition 1, we can easily prove by induction that, if n - 2k, then the following hold: 
if \<i<n, then in G Tn; if l<j<n, then (n-T)j e Tn; if i<nmdn-i<j<n, then in + j <£ Tn. 
From this it follows that n2-1 is the least rf>l such that {rf,rf-l,rf~2,...,£/-w + 2}n2^ = 0. 
Thus, D{n) = 4k-l = n2-l. It can also be shown that P(w) = 3* - 1 . 

There is another way to characterize the elements of T2k. We introduce some notation. For 
nonnegative integers t and 1, we let bf(t) be the Ith digit in the binary expansion of t. For example, 
since 37 = 1 + 4 + 32, we get that £,(37) = 1 if i = 0,2,5 and 6,(37) = 0 for all other nonnegative 
integers 1. 
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Proposition 2: Suppose * > 1 and n = 2k, and let 1 < t < n2 = 22fc. Then t e Tn Iff whenever 
0 < r < k, then *r(0 * **+r (0 = ° • 

Proof: Let us first consider the special case of the proposition when bk_x(t) = 1, b2k_t(t) = 0, 
and 6r(r) = 0 for all r < A - l . Clearly, ftr(0A+r(0 = ° for al1 r < * - It is easily checked by 
induction on k that Proposition 1 implies that all such / are in Tn. 

We now turn to the proof of the proposition in general. The proof is by induction on k. For 
k = 1, it is easily checked. Let n = 2k; we will prove it for the case In - 2k+l. Let 1 < t < 4«2, 
and (as In Proposition 1) let t = 2in + j , where 0 < i < 2n and \<]<2n. The proof splits natur-
ally into the same four cases as does Proposition 1. Since each one Is routine, we will do just case 
(1), where i <n andj < n. Notice that these restrictions on / and 7 are equivalent to the condition 
that bk(t - 1) = b2k+l(t -1) = 0, and this condition splits Into two subcases. 

Subcase 1: bk(t) = b2k+l(t) = 0 and br(t) = 1 for some r < k. Since bk(t) = 0, we need only 
be concerned with 6r(0'*(*+i)+r(0 ^m r<^- For such r, br(t) = br(in + j) and b(k+l)+r(t) = 
bk+r(in+j), so the result easily follows from the Inductive hypothesis. 

Subcase 2: bk(t) = 1, b2k+l(t) = 0, and br(t) = 0 for all r < k. But this is just the special case 
that was noted at the beginning of the proof. D 

In ways analogous to those in Propositions 1 and 2, the sets T2k+l can be analyzed. This Is 
done In Propositions 3 and 4, respectively. 

Proposition 3: Let k > 0 and let n = 2k. Let 1 < t < (2n +1)2 and suppose that / = i{2n +1) + 7, 
where 0<i <2n and 1 < j < 2n +1. Then: 

(1) i£i<nmdj<n + l, then / e T2n+l Iff i(n + l) + j G Tn+l; 
(2) If i <n and 7 > « + l, then / G Z^+l iff i(w + l) + j - « G 7 +̂1 and / * « ; 
(J) I f i>wandj<« + 1, then t e ZJW+1 iff (/- w)(w +1) + 7 eTn+l; 
(4) if / > n andj > n +1, then / G Z ^ Iff i = 2w. 

Proof: The proof Is by induction on £. For A = 0, it Is easily checked. Consider some k > 0, 
and assume, as the inductive hypothesis, that the proposition holds for all smaller values of k. Let 
n = 2k, and let / = i(2w +1) + 7, where 0 < 1 < 2n and 1 < 7 < 2« +1. We proceed by Induction on 
t. The proof splits naturally Into four cases. Since each Is routine, we will show only case (1), 
where i<n and j <n + \. This case splits Into three subcases. 

Subcase 1: i = 0. Then t = j9 and it Is clear that 7 G T2n+l and 7 G 2^+!. 
Subcase 2: 1 > 0 audi > 1. Then, using the Triple Criterion and the Inductive hypothesis on 

f, we see that t G 2 ^ Iff 
i - i e r 2 H + l o i - ( 2 « + i ) ^ 2 w + 1 

iff 
/(2w + l) + 7 - l Gr2,+1o(i™l)(2w + l) + 7 e 

iff 
/(» + l ) + ; - l e r„+1 O ( / - ! ) ( « +1)+j € T„+l 

iff 
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Subcase 3: i > 0 and j = 1. Then, again using the Triple Criterion and the inductive hypothe-
sis on t, we see that t G T2n+l iff 

hn+l 
iff 

(i -1)(2« +1) + (2/i +1) e T2n+l o (/ -1)(2« +1) +1 «s T2n+i 

iff 

iff 
i(n + l) + leTn+v D 

Proposition 4: Suppose k>l and n = 2k, and let 2<t<n2 + \. Then / G ^ + 1 iff whenever 
0 < r < k, then br(t - 2 ) > ^ + r (* ~ 2 ) . 

Proof: The proof is by induction on &. For small values of k, say & = 1,2, it is easily checked. 
Let « = 2*; we will prove it for the case 2w = 2k+l. Let 2 < t < 4n2 +1, and (as in Proposition 3) 
let t = i(2n + l) + j , where 0<i<2n and l<y<2w + l. As r>2, it is obvious that 2<i+j. The 
proof splits naturally into the same four cases as does Proposition 3. Since each one is routine, 
we will show just case (1), where/ <n and j <n +1. Thus, 2<i + j <2n + l = 2*+1 + l. 

Subcase 1: i+y < 2*. Since / = i2k+l + (i + j), where 2 < / + y < 2*, it is clear that bk (t-2) = 
**+i(' - 2) = 0 and also that £r(r - 2) = br(in + (? + y) - 2) and ^+(r+1)(? - 2) = ^+r(wt + (/ + y) - 2) 
for r < k. Therefore, from the inductive hypothesis, 

r e r 2 n + 1 «* ( / i + l) + y ^ 
for r <& obr(t-2)>h(k+l)+r(t- 2) for r < &. 

Subcase 2: i +y = 2*. Then bQ(t-2) = bk(t-2) = &2A:+1(r -2 ) = 0, and br(t-2)= 1 if 1 <r <£. 
Also, \ + 1 ( r - 2 ) = 0 iff i is even. Therefore, we have that br(t~2)>b^k+V)+r(t-2) whenever 
0 < r < k iff i is even. On the other hand, 

t G T2n+l oi(n +1) + y e Tn+l <=> (/ + l)n e Tn+l obk(( i + l)«-2) = 0 o i is even. 
Subcase 3: i +y = 2* +1. Then bk(t - 2 ) = b2k+l(t-2) = 0 and br(t -2) = 1 if 0 < r < k. Thus, 

we have that br(t - 2) > b^k+l^+rQ - 2) whenever 0 < r < k. On the other hand, 

/2*+1+2* + l Er 2 w + 1 o( / + l)/i + l GT„+1, 

which is the case since br(Q + l)w -1) = 1 for all r < k. 
Subcase 4: 2* + 2 < i+y < 2*+1. As in Subcase 1, it is clear that ^( r -2 ) = 1 and also that 

Ar(r - 2) = br(in + (/ + y) - 2) and bk+(r+l)(t -2) = bk+rQn + (' + i ) -2 ) for r < k. Therefore, from 
the inductive hypothesis, 

/ G 4 l + 1 o i ( i t + l)+y e ^ 1 o i r ( / , ( » + l ) + ; - 2 ) ^ U ' ( « + l ) + ; - 2 ) 
for r < £ o &r(r - 2) > 6(it+1)+r(f - 2) for r < &. 

Subcase 5: i +y = 2*+1. (This subcase is similar to Subcase 2.) Then b0(t - 2) = ̂ ( / - 2) = 0 
and br(t - 2) = 1 if 1 < r < k. Also, bk+l(t - 2) = 0 iff i is even. Therefore, we have that br(t - 2) > 
&(£+i)+r(* - 2) whenever 0 < r < k iff i is even. On the other hand, 
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/ eT2n+l<=>i(n + l)+j eTn+l<z>(i + l)n eTn+l obk((i + l)n-2) = 0oi is even. 
Subcase 61 i+j = 2*+1 + L Therefore, we have i = n, j = n + l, and t = 22k+l+ 2k+l + l. 

Then br(t - 2) = 1 for all r < k. Thus, we have that br(t - 2) > *(*+1)+r(f - 2) whenever 0 < r < k. 
On the other hand, 

* eJi^onC&t+iMH+i) er2„+1o/i(«+i)+(.+i)rw+1o22^2w
+iErM+1, 

which is the case by the inductive hypothesis since hr(22k + 2k+l -1) = 1 for all r < k. • 

Proposition 5: Suppose that w >2 and s = in + j , where 0<i <n and 0<j<n. Then: 
(1) if / < w - l andy < w - i - l , then D{n)-s <£ Tn; 
(2) if * <wandy = / i - i"- l , then D(n)-s e 3 ;̂ 
fJ| if i < J I - 1 andy = #t- l , then D(n)-s sTn. 

Proof: The proof is by induction on 5. We provide the details. We let s = in + j , where 
0<i <n and either 0< j<n-i-1 or y = n-1. Suppose the proposition is true for all smaller 
values of s. Let a = D(n)-$, so a might be negative. We will determine whether or not a e Tn 

by seeing whether or not each of a + n and a + n-l is in ^ , and then use the Triple Criterion 
applied to {a,a + n-1, a + n). To do so, it is necessary to know that a + n*\. In each case, it 
will be clear that a+n -*• 1 since there will be A such that a<b<a+n and 6^3^. 

Case 1: i = 0, 0<y <#f-L Then a+n = n + D(ri)-j e Tn since w-y eTn, and a + « - l = 
n+D(n)~j-l e 3̂  since w - y - 1 e 3 .̂ Therefore, a £ 3 .̂ 

Case 2s i = 0, y = n - L Then a+/i = D(w) + l sTn since 1 e3^, and a + n-l = D(ri) £Tn by 
the inductive hypothesis. Therefore, a GTn. 

CaseSi 0 < I < # I - 1 , y = 0. Then a+n = D(n) = (i-l)n £Tn and a + n-1 = £>(/i)-((/'- l)n 
4-1) tf 3̂  by the inductive hypothesis. Therefore, a £ T„. 

Case 4; i = #i- l , y = 0* Then a+n = D(n)-(n-2)n &Tn and"a + w- l = D(w)-((w-2)w+l) 
G 3̂  by the inductive hypothesis. Therefore, a e T r 

Case 5: 0 < i < # i - l , 0<y < # t - i - L Then a+n = D(n)-((i-l)n + j) <£Tn and a + / i - l = 
D(w) - ((i - l)w + (y +1)) £ ̂  by the inductive hypothesis. Therefore, a <£ Tn. 

Case 6: 0 < i < # i - l , y = « - I - L Then a+n = D(n)-((i-l)n + j) £Tn and a + / t - l = 
Z)(w) - ((/ - l)w + (y + 1)) G Tn by the inductive hypothesis. Therefore, a eTn. 

Case 7: 0 < / < n - l , j = n-l. Then fl+/i = D(»)-((/-l)w + ( » - l ) ) e r w and a + « - l = 
£>{w)-in &Tn by the inductive hypothesis. Therefore, a.eTn. D 

Two special instances of Proposition 5 will be used later on. If i = 1, then (2) shows that 
D(n) - 2n + 2 G 3; and (3) shows that D(w) - 2n +1 G 7W . 

Corollary 6: Let w > 2. 
flj ThenD(n)>^i2-fi-fl. 
f2| Iffi = 2* + 1, then Z)(w) = w2-/f + l. 

Phw/> It follows from Proposition 5(2) (letting i =w- l , jf = 0) that D(n)-(n-l)n eTn, so 
that Z)(/i) > w2 - w +1. For n = 2* +1, it follows from Proposition 4 that, if n2 - n + 2 < I < n2 +1, 
then / G3^, so that D(w)<w2»w + 1. D 
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It can be shown that, if n = 2k +1, then P(n) = 3k +1. 
It follows that, if n = 2k +1, then fi2 -n + 2 = l+D(n) e Tn and In2 -2n + 3 = l + 2D(w) E 2 .̂ 

We can now deduce a part of the principal theorem. 

Corollary 7: Suppose k>\ and n - 2k +1. Let a, & E 2̂  be such that a < b. 
(1) If a + b = n2-n + 3, t henar 1 and b = n2-n + 2. 
(2) Ifa + b = 2n2-2n+4,thena = lmdh = 2n2-2n + 3. 
Proof: Let a,b GTn such that a < b. 
(1) Suppose a + b = n2-n + 3 but a> 1. Let c-a-2, d = b-2, and e = c+d = n2-n-l. 

Then ^ ( e ) = 1 and, for 0<* <2* = / i - l , *,(*) = 1 iff i<2*"1. Since A e ^ and * < / I 2 - / I + 1, it 
must be that b < n2 - 2 n +1, so that d < n2 - 2 n . Therefore, there is j < k such that bk+j(c) - 1 
and then, also, bj(d) = 1. Consider some suchj. Clearly, for each i < k, b^c) * bt(d). It is also 
clear that, if k<i <2k, then b^c) = bt(d). But then 1 = bk+J(c) -bk+j{d) = bj(d) *bj(c), contra-
dicting Proposition 4. 

(2) Suppose a + b = 2n2-2n + 4, but a>1. Then b>n2 -n + 3. Let c = h-(n2-n + 1), so 
that c > 2 , c E 2̂  by Corollary 6(2), and a + c = n2-n + 3. It follows from (1) that a = c, which 
is impossible because a + c is odd. D 

With the assistance of Proposition 3 or Proposition 4 we can, in general, determine a large 
initial segment of any rfi parity sequence. 

Proposition 8: Let k > 0, q > 1,, n = q2k +1, and m = 2k +1. Suppose 1 < t < n(m-1), and let 
t = in + j , where 0<i < m - l and \<j<n. Let j = r2k +s, where 0 < r <g and 1<S'<JW. Then 
f E 2̂  iff im + 5 E Tm. 

Proof: The proof is a straightforward induction on t. D 

Proof of the Theorem: Suppose that n > 5. As previously observed, 3,4 E £/„. It follows 
from Corollary 7 that, if w = 2* +1, then ra2 - /i + 3 and 2w2 - 2« + 4 are in U„. 

For the reverse inclusion, suppose that a,b GTn are such that a<b, a + h>5, and for no 
a\b* E 2̂  is it the case that a*a'<b'*b and a' + 6' = a + 6. 

We can assume that a + h>2n. (For, as is easy to check, if s < 2n, then the number of pairs 
a,b E Tn such that a<b and a + 6 = s is [yC?-!)] if s<ny is j(n-l) if s>n is odd, is f if 4$*>/i 
and n is even, and is y (/? - 2) if s > n is even and w is even.) Since {1,2,3,...,#} c Tn and since 
{a+A-l ,a+A-2,a+A-3 J . . . , a + A-«} n r w ^ 0 , it must be that \<a<n. Also, b<2D(n) + n, 
as other-wise setting a' = a + D(n) and b' = b-D(n) yields a contradiction. 

Now let fi = q2k +1, where q is odd. We consider two cases. 
a = fc Then {6-1 ,6-2 ,6-3 , . . . ,6 - / i + l}n2; = 0. Thus, h = l + pD(n) for some /?>!, 

and also /? < 2, as otherwise a' = 1 + Z)(w), 6' = 1 + (/? -!)/)(«) would yield a contradiction. By 
Corollary 7, we can suppose that q > 1. Then, from Proposition 8, we get that 2k +1 E 2̂  and, 
from Proposition 5, that D(T?) - 2 * +1 e 3£. It follows from Corollary 6 that D(w) - 2* +1 > 2* +1 
Thus, setting a' = 2* +1 and 6' = 6 - 2k +1 yields a contradiction. 
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t<a<n: Then {a+b-i:l<i<n and i*a}nT„ = <b. Thus, Proposition 5 implies that 
b = pD(n) - w +1 for some p > 0. Either a + ri eTn or a + n-1 e Tn.. Let a' be whichever one is 
in Tn, and let b'= b-(a'-a). Then, by Proposition 5, b' e Ĵ ? thereby arriving at a contradic-
tion. • 
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