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1. INTRODUCTION 

Let si be an alphabet. Let st be the monoid of all words over si. Let s denote the empty 
word, and let si+ = si* \{s}. Ifw = axa2 ...an, where at esi, the positive integer n is called the 
length of w, denoted by \w\. Let |£|=0. A word x is said to be & prefix (resp., suffix) of w, 
denoted by x <p w (resp., x <s w), if there is a word yesi+ such that w = xy (resp., w = yx). 
We write x <p w (resp., x <s w) if x <p w (resp., x <s w) or x = w. Prefixes and suffixes of an 
infinite word are defined similarly. 

Let/be an infinite word over si. For j > 0, let SJf denote the suffix off obtained from/by 
deleting the first 7 letters off For simplicity we write Sf for Slf. This defines an operator S act-
ing on infinite words over si. The cyclic shift operator T on si+ is given by T(ala2...an) = 
a2--'anai> where ai esl. For j > 1, let P - T(P~l), where T° denotes the identity operator on 
sl+. Clearly, each operator TJ has an inverse T~J. 

Let u,v esi+, xx-u^ x2= v, and xn - xn_2xn_x (n > 3). The infinite word x1x2x3... is called a 
Fibonacci word pattern generated by u and v and is denoted by F(i/, v). The words u and v are 
called the seed words of F(u, v). Let 3*m,n denote the set of all Fibonacci word patterns F(u, v) 
with \u\ - m and |v| = n. Let SF denote the set of all Fibonacci word patterns. 

Given u, vssi+, \u\ = m, \v\ = n, Turner [17] proved that F(u, v) G^r,s, where (r, s) = 
(F2i_lm-\-F2iny F2im + F2j+Iri) for all i > 1. In Section 2 of this paper we find necessary and suffi-
cient conditions for F(u, v) to be a member of ^m+n (resp., ^-m,m ^2m-n,n-m^ ( T h e o r e m s 22-
2.4). We also find necessary and sufficient conditions for SF(u, v) to be a member of <3;m,n (resp., 
gp,m+«̂  (Theorems 2.5-2.6). The fact that 9 is invariant under S is a consequence of Theorem 
2.7, which asserts that SF(u, v) always belongs to <$m+n>m+2ri_ The Fibonacci word patterns over 
{0,1} are called Fibonacci binary patterns (see [5], [17]). The most famous Fibonacci binary 
pattern is the golden sequence F(l, 01), which is identical to the binary word cxc2..., where cn -
[(« + l)a]-[wa], n > 1, and a = (S-1)/2. See, for example, [2], [3], and [5]-[18]. In Section 
3 we use the above results and Lemma 3.1 to compute the possible lengths of the seed words of 
the suffixes SJF(l, 01), j > 0 (Theorem 3.2 and Table 1). It turns out that all these possible pairs 
of seed words of SJF(l, 01) have Fibonacci lengths and are pairs of Fibonacci words, the notion 
of which was introduced by Chuan [4] (see Definition in Section 4). They can be determined by 
different representations of/ in Fibonacci numbers (Theorems 4.5 and 4.6). This gives another 
proof of Corollary 3.3 of [9] for the case a = (V5 -1) / 2. 

2. FIBONACCI WORD PATTERNS AND THEIR SUFFIXES 

Throughout this section, let u, v G ^ + , \u\ = m, \v\ = n. 

Theorem 2 1 (see [17]): F(u, v) = F(uv, ww) e %m+n>m+2n. 
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Theorem 2.2: 
(a) Let m<n. Then F(u9 v) E &">m+n If and only if u <s v. Moreover, F(u9 JCW) = F(i*x, rax) for 

all x e^J*. 
f6> Let m>n, u = xy9 where x,jE,9i+, \x\ = n. Then F(», v) E 3 P ' ^ if and only if xy = yv. 

In this case, F(i/, v) = F(x, xyx). 

Proof: (a) (m < n) Suppose that F(u9 v) E SP'w+?1. Let v = xy, where x, y E,sf, | j | = m. 
Then 

F(w, v) = F(u9 xy) = (u)(xy)(uxy)(xyuxy) • • • 
= (ux)(yux)(yxyux) 

Since F(i#, v) E 3^' m+n, it follows that 
F(w, v) = F(mr, jwx) = (ux)(yux)(tixyux) 

By comparing the two expressions of F(u,v) and using the assumption that | j | = \u\ = m, we 
have u- y. This proves that u <s v, v = xw, and F(w, xw) = F(wx, rax) . 

Conversely, let v = xu, where x e$&*. We claim that F(u, xu) = F(uxy uux). Let 
Xi=U, X2 = V = X£#, Xn = XW_2XW_1? 

Clearly, w <5 xn, n > 1. Write x„ = znu9 where zn ed*. Since xw = xn_2x„_l9 we have z„ = r ^ i / r ^ , 
n > 3. Now it is easy to see that yn_x ~uzn9n>2. Therefore, 

F(u, v) = F(w, xw) = xlx2x3- • • = u(z2u)(z3u) • • • 
= (uz2)(uz3)(uz4) •. • = >y/2j3 • • • = F(wx, rax). 

(b) (m > n) The proof is similar to part (a). • 

We note that the condition xy = yv holds if and only if there are words zhz2 esi* and an 
integer r > 0 such that x = zxzl9 y = (zlz2)rzl, and v = z2zx (see [15]). 

Corollary: Let u <s v and let uk9 vk esi+ be such that \uk | = 7^/w + iyi , |v^ | = Fkm + Fk+ln, and 
w*v* <p F(i/, v), £ > 0. Then F(w, v) - F(uk9 vk) E g?l"*Hv*l and uk <s vk. Here F_x = 1, F0 = 0. 

Theorem 2 J: Let m<n<2m. Then F(w, v) E SP""1'w if and only if i# and v have a common 
prefix of length n—m and w <5 v. 

Proof: Suppose that F(n, v) = F(x, z), where \x\=n-m and |z| = m. It follows from part 
(a) of Theorem 2.2 that x <s z, i.e., z = yx for some j e,s4*. Also, u = xy and v = xxy. Hence, x 
is a common prefix of u and v of length n—m and u<sv. 

Conversely, suppose that u and v have a common prefix x of length n—m and u<s v. Then 
M = xy? v = xxy, where j / e i * . Then, according to part (a) of Theorem 2.2, we have F(x9yx) = 
F(xy9 xxy). Hence, F(u, v) E <&n~m*m. • 

Theorem 2.4 follows from Theorem 2.1. 

Theorem 24: Let m < n < 2m. Then F(u, v) E <§lm-n*n-m if and only if u and v have a common 
suffix of length n-m and u <p v. 
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Theorem 2.5: Let 1 < k < min(>, n). Then SJF(u, v) e 8F*n for all j , 0 < j < k, if and only if u 
and v have a common prefix of length k. In this case, SJF(u, v) = F(P(u), P(v)). If, in addition, 
^<,v,then P{u)<sP{v). 

Proof: Suppose that SkF(u,v) G^m,n. Let u = wx, v = wxy, where w, w1? x, and y are 
words and |w| = |wx| = &. Then it is clear that SkF(u, v) = F(xwhyw) and w -wx. Thus, w is a 
common prefix of both u and v. 

Conversely, suppose that u and v have a common prefix az, where a esi, z e i * . Write 
u = azx, v - azy, where x, y e M*. Then SF(u, v) = F(zxa, zyd) e 3 ^ w . Moreover, z is a com-
mon prefix of the seed words zxa, zya of SF(u, v), \z\-k-\, zxa = JT(¥), and zya = T(v). If 
x/ <_y v, then clearly zxa < ̂  zya. Now the result follows by inductive argument. • 

The following theorem can be proved in a similar way. 

Theorem 2.6: 
(a) Let rn<n. Then SF(u, v) e gp'w+w if and only if u and v have a common suffix of length 

#i ̂  1. Moreover, F(ax, zx) = aF(xz, xaxz) for all a Gsi, x, z G si+. 
(h) Let m>n, u-axy, where a esl, x, j est, \x\ =n. Then SF(u,v) ^^m+n if and only if 

xy = yv. In this case, F(axy, v) = aF(x, yvax). 

Corollary: Let y>0 , ^., v;. e,s$+, UJVJ <p $JF(u,v), \Uj\=Fj_lm + Fjn, \Vj\ = Fjfn + Fj+ln. If 
i/ <, v, then SJF(u, v) = Ffy, vy) e S^1'1^1 and ar, <, v,. 

Theorem 2 J: $F(u,v) e&m+n>m+2n. 

Proof: According to Theorem 2.1, F(u,v) = F(uv,uvv) e3*m+n-m+2n. Since uv and ww 
have the same first letter, it follows from Theorem 2.5 that SF(u, v) = 8F(uv, uvv) e &™+">™+2\ n 

Corollary: All suffixes of F(u,v) belong to 8?. More precisely, for j > 0 , SJF(u,v) GW,S, 
where (r, 5) = {F2j_lm + F2/i, F 2 / I I + F2y+1^). 

3. THE GOLDEN SEQUENCE F{% 01) 

Let si = {0,1}. Consider the golden sequence / = F(\, 01). For each j > 0, we shall show 
how to compute pairs of positive integers (r, s) for which Sjf G9T,S , A key observation is the 
following lemma. 

Lemma 3.1: Let n > 2 and Fn - 1 < j < Fn+l - 2. Then SJf = F(u-, v.), where uj9 v • G {0,1}+, 
l ^ / l " ^ I V . / I = J'VI-I> uj<svj> &nd w.,v. have a common prefix of largest length Fn+l-2-j. 
(When n-2 and 7 = 0, % v0 have different first letters.) 

Proof: The result clearly holds when n = 2, 3. Suppose that it holds for n = k. Let i = 
Fk+l-2. It follows from Theorems 2.5 and 2.6 that Si+lf E ^ ^ ' ^ A ^ ' ^ 1 . Moreover, 
5,/+1/ = F(iff+1,v/+1), where |n+1| = Ffc+1, |v/+1| = F^+2, n+1<,v/+1, and ui+hvi+l have a common 
prefix of largest length Fk -I. According to Theorem 2.5, if \<m<Fk and j = i+m, then 
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SJf = F(Uj,Vj), where \Uj\=Fk+u 1̂ 1 = ̂ +2, Uj<svj9 and uj9Vj have a common prefix of 
largest length Fk-m = Fk+2 -2- j . Thus, the result holds for all n> 2. D 

Theorem 3,2: Let n>2 and Fn-l<j<Fn+1-2. Then SJf e 9F^F^ If k >n, and ^ ' / £ 
g t t . V i f i < ^ < w - L 

Proof: The first part Is a consequence of Lemma 3.1, Theorem 2.5, and the Corollary to 
Theorem 2.2. The second part follows from Lemma 3.1 and Theorems 2.1, 2.3, and 2.4. D 

For example, when w = 6 and 7 < J < 1 1 , Theorem 3.2 implies that Sjf e 3F'*, where 
(r,j) = (8,13), (13,21), (21,34),... and &f*W-°, where (r, 5) = (1,2), (2,3), (3,5), (5,8). This 
completes the part of Table 1 corresponding to 7 < j < 11. 

TABLE 1 

j 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

(r, J) for which ^ / e ^ * 
(1,2), (2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(2,3), (3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(3,5), (5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(5,8), (8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 
(8,13), (13,21), (21,34), (34,55), (55,89), (89,144) 

(13,21), (21,34), (34,55), (55,89), (89,144) 
(13,21), (21,34), (34,55), (55,89), (89,144) 

4. SEED WORDS OF SjF(t, 01) ARE FIBONACCI WORDS 

Again we let / = F(1,01). We have seen in Theorem 3.2 that, if n>2 and Fn-l<j< 
Fn+l-2, then Sjf e^F^F^\ for all k >n. Now let (uJk,vJk) denote the pair of seed words of 
Sjf such that \ujk\ = Fk and \vjk[=Fk+l. We shall show in Theorem 4.5 that ujk and vJk are 
Fibonacci words, as defined below, whose labels can be determined. Special cases can be found 
in [5]. 

Fibonacci words over the alphabet {0,1} are defined as follows: Let 
w(0) = 10, w(l) = 01, 

w(00) = 101, w(01) = 110, w(10) = 011, w(ll) = 101. 

For any binary sequence rh % ..., r„, n > 3, the word w(rf2 ...r„) is defined recursively by 

(w(rf2..^k-i)w(rlr2...rk_2) if r* - 0, 
w(rf2...rk) = 

HV2---h-2Mm..-rk-i) if/i = l, 
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3<k<n. The word w(rxr2 .../•„) is called a Fibonacci word generated by the pair of words (0,1). 
The sequence rhr2,...,rh is called a label of w(rf2..,rn). It describes how the Fibonacci word 
w(r\r2-'rn) is generated. A Fibonacci word may have several different labels. For example, 
10101101 = w(0010) = w{\ 100) = w(l 111). The words 0 and 1 are also Fibonacci words. For 
convenience, we write 1 = w(X), where X denotes the empty label. The above notion of Fibonacci 
word was introduced by Chuan [4] and was later generalized to the notion of a-word by her [8]. 
:Many known results in the literature involve Fibonacci words (see, e.g., [4]-[12], [16]-[18]). 

We need the following properties of Fibonacci words, the proofs of which can be found in 
[4]. Letyx = 0, y2 = 1, yn=yn-2yn.x (i.e., yn = w(ll...l)), n>3. 

Lemma4.1: Let n>\, rhr2,...,r„, shs2,...,sn e{0,1}. Then: 

(a) \w(rlr2...r„)\ = Fn+2. 
n 

Q>) KJ = TiriFi+i>then w(r\r2-r„) = T-k(y^2)9 where k = Fn+3-2- j . 
/=! 

n n 
(c) If ]T ^ + i = X ^ + 1 ( m o d Fn+2 X then w(rxr2... rn) = wfa^ ...$n). 

7=1 / = ! 

Let u, x GS&+. Then 

F(u, xu) = F(ux, uux) - uF(xu9 uxu) = uxF(uux, uxuux). 

The first equality follows from part (a) of Theorem 2.2; the second one is trivial; the third one can 
be proved in a similar way as Theorem 2.2(a). It follows that, if \u\ -m and \x\ -1, then 

SmF(u, xu) - F(xu9 uxu), 
$m+tF(u, xu) = F(uux, uxuux). 

In particular, we have the following lemma. Part (d) follows from Theorem 2.1. 

Lemma 4.2: Let n > 1, rh r2,...,rn, rn+l e{0,1}. Let u = w(rxr2 ...rn), v = w(rxr2 ...rnl). Then: 
(a) F(u,v) = F(w(rlr2...rn0\w(rlr2...rn0l)). 
(b) SF^F(u,v) = F(w(rf2...r„l),wfa...rn\ 1)). 
(c) SF^F(uyv) = F(w(rf2..Tn0l)Mrir2^rn0l^ 
(d) F(w(rlr2...rn),w{rxr2...rw+1)) = F(w(r\...rw+1l)?w(rx...rw+110)). 

Lemma 43 (see [1]): Each positive integer j is uniquely expressed as j = Sf=i^+i, where rn = 1, 
rt G{0,1}, and max(/-, ri+1) = 1 (1 <i < n-1). 

The representation y = Z?=i Tjî +i in Lemma 4.3 is called the maximal representation of j . 
The code (jy2.. .r„) is called the maximal code of/. The number n is called the length of the maxi-
mal code of/. For convenience, the maximal code of the integer 0 is defined to be the empty code 
X. It has length 0. We note that Fn+2 -\<j< Fn+3 - 2 if and only if the length of the maximal 
code of/' is n. 

Lemma 4.4: For each j >0, let (rf2...rn) be the maximal code of/'. Then Sjf - F(w(r\r2...rn), 
w(rf2--rnl)). 
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Proof; The result clearly holds for 0 < j < 3. Now suppose that k > 3 and that the result is 
true for all j , 0<j<k. We show that it is also true for j = k. Let n > 3 be such that Fn+2 -1 < 
k<Fn+3~2. 

(a) If Fn+2 -\<k< 2Fn+l - 2, then Fn -1 < k - Fn+l < Fn+l - 2. By the inductive hypothesis, 
$k-Fn+lj = F{w(jy2... rn_2\ w(rxr2... rn_21)), 

where (/ft ...r„_2) is the maximal code of k-Fn+l. Clearly, (jy2...rn^201) is the maximal code of 
k. Also, 

Skf = SF^Sk'F^f = SF^F{w{m...rn.2\ w(nr2 ...r„_2l)) 
= F(w(rf2.. .r„_201), w f e . . .r„_2011)), 

according to part (c) of Lemma 4.2. 
(&j If 2Fn+1-l<k<Fn+3-2 and if (^---Vi) is the maximal code of k-F„+l, then the 

inductive hypothesis implies that 

Sk-Fn+]f = F(w(r!r2... v O , Hrf2-rn-M 

Therefore, (/ft . . .r^l) is the maximal code of k and 

Skf = F(w(r!r2... r^ l ) , ^ ^ . . . . r ^ l 1)), 

according to part (b) of Lemma 4.2. D 
Using Lemma 4.4 and part (a) of Lemma 4.2, the seed words of Sj f can now be determined. 

Theorem 4.5: Let j>0 and let (/ft...r„) be the maximal code of/. Let k>n + 2. Then w^ = 
w(r1r2...r„0...0) and v^ = w(r1r2...rw0...01) (there are k-n-2 zeros right after r„). 

For example, since 3 = i^+i^ is the maximal representation of 3, we have w36 = w(1100)5 

v36 = w(l 1001). As observed before, the labels for ujk and vjk may not be unique. 

Corollary: Let j > 0 and let n be the smallest integer > 2 such that j < Fn+l - 2. If k > n, then 
SJf = F(7^*(%), ^ 0 ^ i ) X where 4 = Fk+1-2-j. 

Proof: The result follows from Theorem 4.5 and part (b) of Lemma 4.1. D 

Note that this corollary contains part (b) of Theorem 8 of [5]. 

Theorem 4.6: Let j = Efci2 ̂ + 1 , where sf e {0,1} (1 < / < k - 2) and k > 3, then 

SJf = F(w(^2 ...^_2), w(Sls2 ...sk_2l)). 

Proof: If j = 0, then the result is contained in Theorem 4.5. Now let j > 1 and let (/ft ...rw) 
be the maximal code of j . Clearly, n<k-2. Define rt = 0 if n < i < k - 2. Then 

k-2 k-2 

/=! i=l 
fc-2 fc-2 

Hence, 
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(ujk,vjk) =(Hm-rk-2XHm-rk-2d) [by Theorem 4.5] 
= (wfafy . . . ^_ 2 ) , w(sis2...sk_2l)) [by part (c) of Lemma 4.1]. 

This completes the proof. • 

For example, since 3 = F2 + F3 = F4, we have u36 = w(l 100) = w(0010) and v36 = w(l 1001) = 
w(00101). It also follows from Theorem 4.6 that the Fibonacci word pattern generated by a pair 
of Fibonacci words of the form w(rxr2 ...r„), w(r\r2 •. • r„ 1) is a suffix off. 

Corollary: For every binary sequence rhr2,...,r„, the Fibonacci word pattern F(w(r1r2...rn), 
w(j\r2> • -r«l)) *s a suffix off. More precisely, 

F(w(rlr2...rn)Mm,-rJ)) = S'f, 

where 7 = Zf=i/;-/?+i. 

We remark that Theorem 4.6 is a special case of Corollary 3.3 of [9], which was proved by a 
general representation theorem. In our proof given here, only elementary properties of Fibonacci 
word patterns and Fibonacci words are used. 

Seed words of the Fibonacci word pattern F(0,1) can also be obtained easily. Let wx = 0, 
w2 = l, and for n > 3, let wn = w„_2w„_1 if n is odd and wn =wn_lwn_2 if n is even [that is, wn = 
w(rlr2...rn_2), where rt equals 1 if n is odd and equals 0 if n is even (n> 3)]. It follows immedi-
ately from part (d) of Lemma 4.2 that F(0,1) = F C H ^ - I , w2n) G ^n-ufin (w > 1). Since w2„_1 and 
the suffix of w2n having length \w2n-\\ (= i^„_i) have different first letters (see [6]), it follows that 
F(0,1) ^ g^F2n^n+i (n>l), according to part (c) of Theorem 2.2. 
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