A COMPOSITE OF GENERALIZED MORGAN-VOYCE POLYNOMIALS

Gospava B. Djordjević

University of Niš, Faculty of Technology, 16000 Leskovac, Yugoslavia
(Submitted December 1998-Final Revision January 2000)

1. INTRODUCTION

In this note we shall study a class of polynomials $\left\{R_{n, m}^{(r, u)}(x)\right\}$, where r and u are integers, n and m are nonnegative integers. The polynomials $\left\{R_{n, 1}^{(r, u)}(x)\right\}$ and $\left\{R_{n, 2}^{(r, u)}(x)\right\}$ were studied in [2]. Furthermore, the class of polynomials $\left\{R_{n, m}^{(r, u)}(x)\right\}$ involve a great number of known polynomials. Some of these polynomials are (see [2]):

$$
\begin{aligned}
& R_{n, 1}^{(0,1)}(x)=b_{n+1}(x), \\
& R_{n, 1}^{(1,1)}(x)=B_{n+1}(x), \\
& R_{n, 1}^{(2,1)}(x)=c_{n+1}(x), \\
& R_{n, 1}^{(0,2)}(x)=C_{n}(x), \\
& R_{n, 1}^{(0,0)}(x)=x B_{n}(x), \\
& \left.R_{n, 2}^{(1,0)}(x)=\phi_{n}(2,-1 ; x) \text { (see }[3]\right), \\
& \left.R_{n, m}^{(r, 1)}(x)=P_{n, m}^{(r)}(x) \text { (see }[4]\right),
\end{aligned}
$$

where $B_{n}(x)$ and $b_{n}(x)$ are Morgan-Voyce polynomials (see [1]). In this paper we also consider the sequence of numbers $\left\{R_{n, 3}^{(r, u)}(2)\right\}$.

2. POLYNOMIALS $\left\{R_{n, m}^{(r, u)}(x)\right\}$

First, we define the polynomials $\left\{R_{n, m}^{(r, u)}(x)\right\}$ by the following recurrence relation:

$$
\begin{equation*}
R_{n, m}^{(r, u)}(x)=2 R_{n-1, m}^{(r, u)}(x)-R_{n-2, m}^{(r, u)}(x)+x R_{n-m, m}^{(r, u)}(x), n \geq m, \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{n, m}^{(r, u)}(x)=(n+1) r+u, n=0,1, \ldots, m-2, R_{m-1, m}^{(r, u)}(x)=m r+u+x . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we get

$$
\begin{align*}
R_{m, m}^{(r, u)}(x) & =u+(m+1) r+(2+u+r) x, \\
R_{m+1, m}^{(r, u)}(x) & =u+(m+2) r+(3+3 u+4 r) x, \tag{2.3}\\
R_{m+2, m}^{(r, u)}(x) & =u+(m+3) r+(4+6 u+10 r) x, \ldots
\end{align*}
$$

Hence, we see that there is a sequence of numbers $\left\{c_{n, k}^{(r, u)}\right\}$ such that

$$
\begin{equation*}
R_{n, m}^{(r, u)}(x)=\sum_{k=0}^{[(n+1) / m]} c_{n+1, k}^{(r, u)} x^{k}, \tag{2.4}
\end{equation*}
$$

where $c_{n, k}^{(r, u)}=0$ for $k<0$ or $k>[(n+1) / m]$.

If we take $x=0$ in (2.4), then we have

$$
\begin{equation*}
R_{n, m}^{(r, u)}(0)=c_{n+1,0}^{(r, u)} \tag{2.5}
\end{equation*}
$$

Furthermore, from (2.1), (2.2), and (2.4), we get

$$
\begin{equation*}
c_{n+1, k}^{(r, u)}=2 c_{n, 0}^{(r, u)}-c_{n-1,0}^{(r, u)}, n \geq 1, m \geq 2 \tag{2.6}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{0,0}^{(r, u)}=u+r, c_{1,0}^{(r, u)}=u+2 r . \tag{2.7}
\end{equation*}
$$

The solution of the difference equation (2.6), using (2.7), is

$$
\begin{equation*}
c_{n, 0}^{(r, u)}=u+(n+1) r, n \geq 0 . \tag{2.8}
\end{equation*}
$$

Again from (2.1) and (2.4), we have

$$
\begin{equation*}
c_{n, k}^{(r, u)}=2 c_{n-1, k}^{(r, u)}-c_{n-2, k}^{(r, u)}+c_{n-m, k-1}^{(r, u)}, k \geq 1, n \geq m . \tag{2.9}
\end{equation*}
$$

3. COEFFICIENTS $c_{n, k}^{(r, u)}$

The main purpose in this section is to determinate the coefficients $\left\{c_{n, k}^{(r, u)}\right\}$ for $k \geq 1$. First of all, we shall write the coefficients $\left\{c_{n, k}^{(r, u)}\right\}$ in the following form:

TABLE 1

$n \backslash k$	0	1	2	\ldots
0	$r+u$	\cdots	\cdots	\cdots
1	$2 r+u$	\cdots	\cdots	\cdots
2	$3 r+u$	\cdots	\cdots	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots
$m-1$	$m r+u$	1	\cdots	\cdots
m	$(m+1) r+u$	$2+u+r$	\cdots	\cdots
$m+1$	$(m+2) r+u$	$3+3 u+4 r$	\cdots	\cdots
$m+2$	$(m+3) r+u$	$4+6 u+10 r$	\cdots	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots

Now we shall prove the following theorem, using induction.
Theorem 3.1: The coefficients $c_{n, k}^{(r, u)}$ are given by

$$
\begin{equation*}
c_{n+1, k}^{(r, u)}=u\binom{n-(m-2) k}{2 k}+r\binom{n+1-(m-2) k}{2 k+1}+\binom{n-(m-2) k}{2 k-1}, \tag{3.1}
\end{equation*}
$$

where $n \geq 0$ and $0 \leq k \leq[(n+1) / m]$.
Proof: For $n=0,1, \ldots, m-2$, we obtain $k=0$. Then, from (2.8), we see that (3.1) is true. We shall assume that (3.1) is true for $n(n \geq 1)$. Then, by (2.9) and (3.1), we get

$$
\begin{align*}
c_{n, k}^{(r, u)} & =2 c_{n-1, k}^{(r, u)}-c_{n-2, k}^{(r, u)}+c_{n-m, k-1}^{(r, u)} \tag{3.2}\\
& =\alpha_{n, k}+r \beta_{n, k}+u \gamma_{n, k},
\end{align*}
$$

where

$$
\begin{align*}
& \alpha_{n, k}=2\binom{n-1-(m-2) k}{2 k-1}-\binom{n-2-(m-2) k}{2 k-1}+\binom{n-m-(m-2)(k-1)}{2 k-3}, \\
& \beta_{n, k}=2\binom{n-(m-2) k}{2 k+1}-\binom{n-1-(m-2) k}{2 k+1}+\binom{n+1-m-(m-2)(k-1)}{2 k-1}, \tag{3.3}\\
& \gamma_{n, k}=2\binom{n-1-(m-2) k}{2 k}-\binom{n-2-(m-2) k}{2 k}+\binom{n-m-(m-2)(k-1)}{2 k-2} .
\end{align*}
$$

Using the known equality $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$, by equalities (3.3) we have

$$
\begin{equation*}
\alpha_{n, k}=\binom{n-(m-2) k}{2 k-1}, \beta_{n, k}=\binom{n+1-(m-2) k}{2 k+1}, \gamma_{n, k}=\binom{n-(m-2) k}{2 k} . \tag{3.4}
\end{equation*}
$$

Hence, (3.1) is true for all $n \geq 0$.
Corollary 3.1: If $m=1$, then (3.1) becomes (see [2], eq. (2.11)):

$$
c_{n+1, k}^{(r, u)}=\binom{n+k}{2 k-1}+r\binom{n+k+1}{2 k+1}+u\binom{n+k}{2 k} .
$$

Corollary 3.2: If $m=2$ and n is even, then by (3.1) we have (see [2], eq. (6.3)):

$$
\begin{equation*}
c_{n / 2+1, n / 2}^{(r, u)}=u+r+n . \tag{3.5}
\end{equation*}
$$

Using the standard methods, from (2.1) and (2.2), we can prove the following theorem.
Theorem 3.2: The polynomials $\left\{R_{n, m}^{(r, u)}(x)\right\}$, for $m \geq 2$, possess the following generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} R_{n, m}^{(r, u)}(x) t^{n}=\frac{u+r-u t+x t^{m-1}}{1-2 t+t^{2}-x t^{m}} . \tag{3.6}
\end{equation*}
$$

Corollary 3.3: For $m=2$ in (3.6), we get the generating function of the polynomials $\left\{R_{n}^{(r, u)}(x)\right\}$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} R_{n}^{(r, u)}(x) t^{n}=\frac{u+r+(x-u) t}{1-2 t+t^{2}(1-x)}, \tag{3.7}
\end{equation*}
$$

(see [2]).

The Binet Form for $\boldsymbol{R}_{n, 3}^{(r, u)}(x)$

For $m=3$ in (2.1) and (2.2), we get the polynomials $\left\{R_{n, 3}^{(r, u)}(x)\right\}$ such that

$$
\begin{equation*}
R_{n, 3}^{(r, u)}(x)=2 R_{n-1,3}^{(r, u)}(x)-R_{n-2,3}^{(r, u)}(x)+x R_{n-3,3}^{(r, u)}(x), n \geq 3 \tag{3.8}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{0,3}^{(r, u)}(x)=r+u, R_{1,3}^{(r, u)}(x)=2 r+u, R_{2,3}^{(r, u)}(x)=3 r+u+x . \tag{3.9}
\end{equation*}
$$

Using the known methods, by (3.8) and (3.9), we find the Binet form for $\left\{R_{n, 3}^{(r, u)}(x)\right\}$. That is, we can prove the following theorem.

Theorem 3.3: The Binet form for $\left\{R_{n, 3}^{(r, u)}(x)\right\}$ is given by

$$
\begin{equation*}
R_{n, 3}^{(r, u)}(x)=C_{1} \lambda_{1}^{n}+C_{2} \lambda_{2}^{n}+C_{3} \lambda_{3}^{n}, \tag{3.10}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}=\frac{2}{3}+\frac{1}{3}(\alpha(x)+\beta(x)), \\
& \lambda_{2}=\frac{2}{3}+\frac{\varepsilon_{1}}{3}\left(\alpha(x)+\varepsilon_{1} \beta(x)\right), \tag{3.11}\\
& \lambda_{3}=\frac{2}{3}+\frac{\varepsilon_{1}}{3}\left(\varepsilon_{1} \alpha(x)+\beta(x)\right),
\end{align*}
$$

and

$$
\begin{align*}
\alpha(x) & =\left(\frac{\Delta(x)+\sqrt{\Delta(x)^{2}-4}}{2}\right)^{1 / 3}, \\
\beta(x) & =\left(\frac{\Delta(x)-\sqrt{\Delta(x)^{2}-4}}{2}\right)^{1 / 3}, \tag{3.12}\\
\Delta(x) & =27 x-2, \\
\varepsilon_{1} & =\frac{-1+i \sqrt{3}}{2},
\end{align*}
$$

for $(\Delta(x))^{2}-4 \geq 0$.
The coefficients C_{1}, C_{2}, and C_{3} are the solutions of the equation

$$
\begin{equation*}
\lambda^{3}-2 \lambda^{2}+\lambda-x=0, \tag{3.13}
\end{equation*}
$$

with starting values (3.9). Namely, we get

$$
\begin{equation*}
C_{i}=\frac{\lambda_{i} x+(r+u)\left(\lambda_{i}^{2}+x-\lambda_{i}\right)+r \lambda_{i}^{2}}{2 x+\lambda_{i}^{3}-\lambda_{i}}, i=1,2,3 . \tag{3.14}
\end{equation*}
$$

4. SEQUENCE OF NUMIBERS

The sequence of numbers $\left\{R_{n, 3}^{(r, u)}(1)\right\}$ was studied in [2]. In this section we shall consider the sequence of numbers $\left\{R_{n, 3}^{(r, u)}(2)\right\}$. Namely, for $m=3$ and $x=2$, from (2.1) and (2.2), we get the following difference equation,

$$
\begin{equation*}
a_{n+3}=2 a_{n+2}-a_{n+1}+2 a_{n}, n \geq 0, \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{0}=r+u, a_{1}=2 r+u, a_{2}=3 r+u+2 \tag{4.2}
\end{equation*}
$$

where $R_{n, 3}^{(r, u)}(2) \equiv a_{n}$.
The characteristic equation for (4.1) is

$$
\begin{equation*}
\lambda^{3}-2 \lambda^{2}+\lambda-2=0, \tag{4.3}
\end{equation*}
$$

whose roots are

$$
\begin{equation*}
\lambda_{1}=2, \lambda_{2}=i, \lambda_{3}=-i \tag{4.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\lambda_{3}=2, \lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}=1, \quad \lambda_{1} \lambda_{2} \lambda_{3}=2 . \tag{4.5}
\end{equation*}
$$

Hence, we have the following representation:

$$
\begin{equation*}
a_{n}=C_{1} \cdot 2^{n}+C_{2} \cdot i^{n}+C_{3} \cdot(-i)^{n} \tag{4.6}
\end{equation*}
$$

From (4.6) and (4.2), we get the following system of linear equations:

$$
\begin{aligned}
& C_{1}+C_{2}+C_{3}=r+u, \\
& 2 C_{1}+i \cdot C_{2}-i \cdot C_{3}=2 r+u, \\
& 4 C_{1}-C_{2}-C_{3}=3 r+u+2,
\end{aligned}
$$

whose solutions are

$$
\begin{align*}
& C_{1}=\frac{2}{5}(2 r+u+1), \\
& C_{2}=\frac{1}{10}(r+3 u-2-i(2 r+u-4)), \tag{4.7}\\
& C_{3}=\frac{1}{10}(r+3 u-2+i(2 r+u-4)) .
\end{align*}
$$

Hence, from (4.6), it follows that

$$
\begin{equation*}
a_{n}=\frac{2^{n+1}}{5}(2 r+u+1)+\frac{i^{n}}{10}(r+3 u-2-i(2 r+u-4))+\frac{(-i)^{n}}{10}(r+3 u-2+i(2 r+u-4)) . \tag{4.8}
\end{equation*}
$$

Using (4.8), we find that

$$
\begin{gather*}
a_{4 n}=\frac{1}{5}\left(2^{4 n+1}(2 r+u+1)+r+3 u-2\right), \\
a_{4 n+1}=\frac{1}{5}\left(2^{4 n+2}(2 r+u+1)+2 r+u-4\right), \\
a_{4 n+2}=\frac{1}{5}\left(2^{4 n+3}(2 r+u+1)-r-3 u+2\right), \tag{4.9}\\
a_{4 n+3}=\frac{1}{5}\left(2^{4(n+1)}(2 r+u+1)-2 r-u+4\right) .
\end{gather*}
$$

Remark: It is interesting to consider a generalized numerical sequence $\left\{R_{n, m}\left(2^{m-2}\right)\right\}, m \geq 2$, For example, if $m=4$, we have

$$
R_{n, 4}(4)=C_{1}(-1)^{n}+C_{2} 2^{n}+C_{3}\left(\frac{1+i \sqrt{7}}{2}\right)^{n}+C_{4}\left(\frac{1-i \sqrt{7}}{2}\right)^{n}
$$

where the coefficients $C_{i}, i=1,2,3,4$, are the solutions of the following system:

$$
\begin{aligned}
& C_{1}+C_{2}+C_{3}+C_{4}=r+u, \\
& -C_{1}+2 C_{2}+\frac{1+i \sqrt{7}}{2} C_{3}+\frac{1-i \sqrt{7}}{2} C_{4}=2 r+u, \\
& C_{1}+4 C_{2}+C_{3}\left(\frac{1+i \sqrt{7}}{2}\right)^{2}+C_{4}\left(\frac{1-i \sqrt{7}}{2}\right)^{2}=3 r+u, \\
& -C_{1}+8 C_{2}+C_{3}\left(\frac{1+i \sqrt{7}}{2}\right)^{3}+C_{4}\left(\frac{1-i \sqrt{7}}{2}\right)^{3}=4(r+1)+u .
\end{aligned}
$$

ACKNOWLEDGMENT

The author is very grateful to the anonymous referee for helpful comments and suggestions concerning the presentation of this paper.

REFERENCES

1. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quarterly 32.3 (1994):228-31.
2. A. F. Horadam. "A Composite of Morgan-Voyce Generalizations." The Fibonacci Quarterly 35.3 (1997):233-39.
3. G. B. Djordjević. "On a Generalization of a Class of Polynomials." The Fibonacci Quarterly 36.2 (1998):110-17.
4. G. B. Djordjević. "Polynomials Related to Morgan-Voyce Polynomials." The Fibonacci Quarterly 37.1 (1999):61-66.
AMS Classification Numbers: 11B39, 26A24, 11B83

LETTER TO THE EDITOR

February 14, 2000

Professor Cooper,

I would like to bring your attention to an error in Paul S. Bruckman's article entitled "On the Degree of the Characteristic Polynomial of Powers of Sequences," The Fibonacci Quarterly 38.1 (2000):35-38. In particular, the following counterexample illustrates the error. In the notation of the article, let $U_{n}=1+2^{n}+4^{n}$ with the characteristic polynomial $P_{1}(z)=(z-1)(z-2)(z-4)$ of degree $R_{1}=3$ with $m=3$ roots. The main theorem then predicts

$$
R_{3}=\binom{5}{3}=10
$$

However, on expanding $\left(U_{n}\right)^{3}$ we get $\left(U_{n}\right)^{3}=1+3 * 2^{n}+6 * 4^{n}+7 * 8^{n}+6 * 16^{n}+3 * 32^{n}+64^{n}$ with a characteristic polynomial of degree only 7 , namely, $P_{3}(z)=(z-1)(z-2)(z-4)(z-8)(z-16)(z-32)(z-64)$.

The particular reasoning error in Bruckman's article revolves around the assumption that the products of the powers of the original eigenvalues are all distinct, indicated implicitly in the equation for $P_{k}(z)$ right before equation (7) on page 36 of the article. I brought attention to this issue in my recent article in your quarterly, noting that if each root has a unique prime divisor that distinguishes it from the other roots, then the final order of the power $\left(U_{n}\right)^{k}$ can be determined easily.

Regrettably, the general result stated in Bruckman's paper is erroneous.
For your careful consideration.

Adam Stinchcombe
Adirondack Community College
640 Bay Road
Queensbury, NY 12804

