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1. INTRODUCTION 

Let a0, aly ...,ar_x (r > 2) be real numbers with ar_x ^ 0. An r-generalized Fibonacci sequence 
^Fn)n>o ls defined by the initial conditions (VQ, Vx, ..., P ^ ) and the following linear recurrence rela-
tion of order r, 

K+l = aQVn +a¥n-l + • • • + ̂ -l^-r+l ** W > T ~ 1 (1) 

In the sequel we shall refer to such sequences as sequences (1). When Qj = 1 for all j (0 < j < 
r-1) and V0="-= Vr_2 = 0, Vr_x - 1, sequence (1) defines the well-known r-generalized Fibonacci 
numbers introduced by Miles in [9]? which have been studied extensively In the literature. Let 
P(X) = Xr-a0Xr~l ar_x be the characteristic polynomial of sequence (1) and set aP = 
{AGC;P(A) = 0}. 

Let (£,(.,.)) be a unitary real vector space of finite dimension m9 and consider A(E), the 
space of linear self-adjoint operators onE. An operator S e A(E) Is called simple if its spectrum 
<j(S) = {fih jU2,.-,Mm} is such that fit * jUj for i±j. Set AS(E) = {S e A(E); S is simple} and 
AF

S(E) = {S GAS(E); &(S)r\GP*%}. For any S G A ( £ ) , the sequence WX<n<? defined by 
Vn ~ (Snx, x) for n = 0, \..., p < oo ? where x * 0 is a vector of 2J, Is called a sequence of moments 
ofS on the vector x. The //wear moment problem associated to a sequence {Vn}Q^n^p consists of 
finding S e AS(E) such that 

FH = (5"x,x) for* = 0,1, •. . , />£», (2) 

where x * 0 is a vector of £ (see [5] and [6]), In expression (2), the vector x Is considered as 
fixed because It is not unique. 

The aim of this paper Is to study the linear moment problem for a given sequence (1). More 
precisely, we give a necessary and sufficient condition for the sequence (1) to be a sequence of 
moments of S e AS(E). Applications and examples are given. In particular, we can characterize 
sequences (1) which are linear combinations of geometric sequences. We also consider an appli-
cation to the study of a linear system of Vandermonde type. 
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2. LINEAR MOMENT PROBLEM FOR SEQUENCES (1) 

2.1 Moments of an Operator and Sequences (1) 
Let (E9 (.,.)) be a unitary real vector space of dimension m and S e A8(E) such that a(S) = 

{Xl9...,Xm}. We have E = ®J=lEj, where Ej is the eigenspace Ej = {x GE; SX = XJX}. Let 
{ev e2, ...,em} be an orthogonal basis of E, where e. e £".. Set {?̂ }w>o, the sequence of moments 
of 5 on a fixed (nonvanishing) vector x = Ey=1/i/y of E. Let PC(X) = W}=l{X- Xj) be the char-
acteristic polynomial of S, and consider a polynomial Q(X) = Xr - a0Xr~l - • - • - ar_x such that 
Pc (X) is a divisor of Q(X); we derive from the Cayley-Hamilton theorem that Q(S) = 0, and 
then Sn+l = a0£" + • • • + ar.1iS"I"r+1 for any n > r -1. Thus, the sequence of moments Fw = (£*x, x) 
(n > 0) of 5 on x is a sequence (1). If r <m-1, we suppose that a-.(iS)o cr^ = {A1? X2,...,Xk} and 
set Si = <%, where X = ®%xEj. It is clear that 5i e A,(£) and g(Si) = 0. Then, for any x e L 
(with x * 0), the sequence of moments Vn = (S"x, x) (n > 0) is again a sequence (1). 

In the sequel, we study the converse question. More precisely, we study the linear moment 
problem (2) for a given sequence (1). 

2*2 Reduction of the Linear Moment Problem for Sequences (1) 
Let P(X) = Xr -a0Xr~l -•"-ar_l be the characteristic polynomial of sequence (1) and let 

ap = {Xl9 X2, --,Xk} be the set of characteristic roots of the sequence (1). 

Lemma 2.1: Let {Vn}n>0 be a sequence (1). Suppose that there exists S e AS(E) such that Vn -
($nx, x) for all n > 0, where x * 0 is a (fixed) vector ofE. Then a(S) r\aP- {Xh..., Xt} * 0 and 
x = Zy=i Xj, where Xj e Ej. 

Proof: Let S e AS(E) and, for any n > r -1, set R„ = Sn+l - a0Sn a^1Sw~r+1. Then we 
have J^x = X%x jUjXy^PiXjfy for any x = ZJLi fijej e £ . Using equation (2), we obtain the 
following system of m linear equations in the unknown variables fi\,fi\, ...9Mm> 

m 
%#JP{XJ)tf = 0;k = 0,l9...,m-l9. 
/=i 

by taking w = r - 1 , r, ..., r + /w - 2. The determinant of this system of Vandermonde type is A = 
P{X^)...PiX^Yl^^j^Xj-Xt). The operator 5 is simple, so Xj ^Xt for i^j, and because 
x^Owe must have A = 0, which implies that a(S) r\aP = {Xl,...,Xl}^$ and x = Zy=i fifj • D 

If IX X) does not have a real root, Lemma 2.1 shows that the sequence (1) is not a sequence 
of moments of an operator S e AF

S(E). Let S e AS(E); if cr(S)r\ap = 0, then the sequence (1) 
cannot be a sequence of moments of the operator S. A partial converse of Lemma 2.1 is given by 
Lemma 2.2. 

Lemma 2.2: Let {Vn}n>0 be a sequence (1). Suppose that there exists S e AP
S(E) with a(S)n 

ap = {Xh..., Aj}. Then there exists a vector x i=- 0 in £ such that (ST*1*, x) = J^a^S^x, x ) 
for all w > r - 1 . More precisely, we have x = Y!J=l XJ , where Xj e 2^. 
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Proof: Let S G AS(E) and set cr(S) = {Xl9...9Xm). Then we have the orthogonal decompo-
sition E = @J=lEj9 where Ej = {x GE; SX = AJX}. Suppose that a(8)r\crp = {Al9...9As}. For 
any kj (0 < j < s) and Xj G £ , , we have SkXj = A*xy (* > 0) and A*+1 = aQXkj + • • • +ar_2^/ r + 2 + 
ar_^-r+1 (* > r -1) . Thus, we have (Sn+lxj9 xj) = Zrjl\ aj(Sn-jxj9 xj) for all n > r -1, Because 
the decomposition E-©J=1£y is orthogonal, we derive (Sn+lx9x) = JJ~}0aJ.(Sri~Jx:)x) for any 
n>r-1, where x = Ey=ix- (Xj G J^). D 

Example 2.1—Characterization of geometric r-generalized Fibonacci sequences which are 
sequences of moments: If E = R, a simple self-adjoint operator £ on E is defined by $(x) = Ax, 
where 1 = S(l) and a(5) = {1}. Let {FJn>0 be a sequence (1). TfVn = (S% x) for all n > 0, we 
derive that x2 = V0 and Vn = Q^/V0)nV09 n = l92,...,r-l. For n > r, expression (1) allows us to 
have P7 = 2y~o aj^^lV{~j~l. Then {Fw}n>0 is a sequence of moments of S G A,(R) on x * 0 if 
and only if x2 =V0, Vn^Q\/V0yV09 n = \29...9r-\9 and Q(VQ9Vj)^9 where g ( j r , l > r -
EyIoay^"/'+1^r~'/'~i- Geometrically, sequence (1) is a sequence of moments of S G A / R ) on 
x * 0 if and only if x2 = V0, Vn = Q\/V0yV09 w = l ,2 , . . . , r - l , and 0 ^ ) is a point of the 
algebraic curve of equation Q(X9 Y) - 0. D 

A subspace X of E is called invariant under 5 e A(2?) (or S-invariant) if Sx GL for all 
X E L ? and we denote by 5jL the restriction of S to L. 

Lemma 23: Let 5 G AS(E) and let Z be a nontrivial ^-invariant subspace of E. Then P(5j/,) = 0 
if and only if L c ffi^^na/^ 

The proof of this lemma my be deduced using the fact that any operator S G AS(E) defines a 
basis of eigenvectors of E and its restriction to any nontrivial ^-invariant subspace L is an operator 
ofA,(Z). 

From Lemmas 2.1, 2.2, and 2.3, we can derive the following proposition. 

Proposition 2.1: Let {VJn>0 be a sequence (1). Suppose that there exists S G AS(E) such that 
Vn = (Snx9 x) for all n > 0, where x * 0 is a vector of an ^-invariant subspace L ofE. Then we 
have Vn = (5j£x, x) for any w > 0. 

With the aid of Lemma 2.2 and Proposition 2.1, the linear moment problem for a sequence 
(1) may be reduced as follows: Find S G AS(E) such that a(S)nsaF * 0 and V„ = (Snx9 x) for 
#? = 0 , l , . . . , r - l , with x;&0 in l = ®xea{S)rsapEx, where EX = {x GE; Sx = Ax}. Thus, from 
Lemmas 2.1-2.2 and Proposition 2.1, we derive the following result. 

Theorem 2.1: Let {VJn^0 be a sequence (1). Then {VJn^0 is a sequence of moments of 
S G AS(E) on a vector x ^ 0 of E if and only if S G AP

M(E) and S is a solution of the reduced 
moment problem 

Vn = (S\ x) for H = 0 ,1 , . : . , r -1 , (3) 
where x GL = ®x€a(S)rsaPEx^ 

Suppose the reduced linear moment problem (3) has a solution S G AS(E) with x ^ 0 in X, 
an ^-invariant subspace ofE. If P(S^L) = 0, then S is a solution of the linear moment problem (2). 
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Proposition 12: Let {VJn>0 be a sequence (1). Suppose that S e A8(E) is a solution of the 
linear moment problem (3) with x * 0 in Z, an ^-invariant subspace of E, such that P(Su) = 0. 
Then any extension Sx e AS(E) of $jL to £ satisfies Vn = (S"x, x) for all n > 0. 

Example 2.2: Let { F J ^ Q be a sequence (1) with VQ > 0 and S e A,(£). Suppose <r(5)r> a> = 
{2}; it is obvious that 2 ^ 0 because ar_x * 0. Let ex be a basis of Ex with (e1? ^ ) = 1. Then 
{VJn>0 is a sequence of moments of S on x = JPQ (or - ^ " ) if and only i£Vk = ($kx, x) = XkV0 

for any k = 0,1,..., r -1. This example is an extension of Example 2.1. Thus, we have the same 
geometrical interpretation. D 

Example 23: Let (E, (.,.)) be a unitary real vector space of dimension m and let {Vn}n>0 be a 
sequence (1) with r > 2. Suppose that the reduced linear moment problem, Vk = (Skx, x) for k -
0,1,..., r - 1 , where x & 0, has a solution S e A5(Is). Let a(S) r\ap = {Xt, X2}, with Xl<X2. 
Let ej be a basis of Ej with (e,., e7-) = 1 (J = 1,2). It is obvious that (el9 e2) = 0. Then we have 
Vk - (Skx, x}= X\a2 + Xk

2b2 for any £ > 0, where x = aex +be2. If r = 2, we have 

a2 = 2 ° 1 > 0 and * =- i 3 > 0 -

If r > 3, wTe have 
2 _ 1 ^V^-Vjc 2_ 1 Vk-AiVk-i 0 

"IF* 2 2 ~ &-1 2-2 
A2 A"i ~~ A j A2 sl2 A*Y 

for any k = 1,..., r -1. These expressions imply that 

vk = y^i-K^o - ̂ + f t - W 4 ] 
for all ^ > 0 . D 

2,3 Sequences (1) and Associated Matrix S 
For the construction of S e AS(E) associated to a given sequence (1), it is more convenient 

to consider a unitary real vector space (E, (.,.)) of dimension m = card {A j G R O O>} < r. In 
this case, we set a(S)no> = {2 1 ? . . . ,^}cR and consider an orthogonal basis {ex,...,em} ofE9 

where SeJ. = XJeJ. for j = l9...9l. Then 5 may be identified with the diagonal matrix D-
diag(Xl9 ...,At). If m > r +1, Theorem 2.1 and Proposition 2.2 allow us to see that we can con-
sider a self-adjoint extension Sx ofS and x & 0, JC e Z = ©AC^O^O-J^ • 

3. REDUCED LINEAR MOMENT PROBLEM OF SEQUENCES (1) 
AND HANKEL FORMS 

3.1 Hankel Matrices and Hankei Forms 

A real (or complex) matrix M = (aJk)Q<j)k<p, where 0<p<+ao, is called positive semi-
definite (resp. positive definite) if To<j9k<maJkrij?jk >0 (resp. >0) for any finite sequence 17 = 
{ •̂lo^y^w, where z denotes the complex conjugate of z. Let y = {y J}J:>0 be a sequence of real or 
complex numbers. The family of matrices defined by H(m) = (Tju)o^j,k<m-h where m = 1,23..., 
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are called Hankel matrices associated with y = {y J}J>Q, and the family of quadratic forms defined 
by 3^07, rj) =Jlo<j,k<m-i rj+kijjrik, where t] = {*7/}o£/£m-i> a r e c a l l e d Hankel forms. An infinite 
Hankel matrix, H = (yry+jt)y,jt2i0> *s called positive semidefinite (resp. positive definite) if, for any 
iw, the Hankel form 3̂ OT is positive semidefinite (resp. positive definite) or, equivalently, the 
Hankel matrices H{m) = {yj+k\^jk^m_l (m=l,2,...) are positive semidefinite (resp. positive 
definite). Hankel matrices and forms play an important role in the theory of moment problems 
(see, e.g., [l]-[6]). 

3.2 Linear Moment Problem of Sequences (1) and Hankel Forms 

Let (E9 (.,.)) be'a unitary real vector space of finite dimension m and fix an orthogonal basis 
{el,e2, ...,em} ofE. Let A - (VQ,..., Vr_x) (r > 2) be a sequence of real numbers, and consider the 
real quadratic Hankel forms on E defined by 3^(x,^) = Ho<jik<p^iVJ.+k^J^k (p>T) for x = 
ZJ=i Zj4y Suppose r - 2m-1 and that the Hankel form K^ is positive definite, and consider the 
scalar product on the K-vector space K ^ J X J (K = R or Q of polynomials of degree < m -1, 
defined by ( i > , 0 = So</,jt<m-iry+^/%J where P = To<j<m-iCjXJ and Q = TsQ<j<m.l7]jXJ• 
Let S: K ^ J X ] -» K ^ X ] be the linear operator defined by S(XJ) = Xj+l. Then S is a simple 
hermitian operator of defect 1 which satisfies Vk = (Skx9x) for & = 0,1, . . . , r - l , where JC = 
P(X) = 1 (see [5], pp. 348-51; [6], pp. 443-48). More generally, it was shown in [5] and [6] that 
the linear moment problem Vk - (Skx, x) for k = 0,1,..., r -1 has a solution S G AS(E) on x * 0 
if and only if the Hankel form $Crt±n is positive semidefinite and rkDt* - min(/?, m) for /? = 1,2, 
..^Pf1]* where r&$C^ is the rank of 9^ and [z] is the integer defined by [z]<z<[z] + l for 
z G R. Let Or be the set of A = (V0,..., Vr_t) G Rr such that 9C ±̂i] is positive semidefinite and 
r^^Cp = min(/?, m) for p = 1,..., py1]. Then, for a sequence (1), we derive the following result 
from Theorem 2.1. 

Theorem 3.1: Let {^}„>o be a sequence (1) and set A - (VQ,..., Vr_^). Then the following state-
ments are equivalent: 

(i) i = ( F 0 , . . . / M ) E n r . 
(u) The reduced linear moment problem (3), Vn = (Snx9 x) for 0 < n < r -1, has a solution 

S G A^(E) on anonvanishing vector x GE. 
(iil) The linear moment problem (2), Vn = (S"x, x) for n > 0, has a solution 5 e A^(E) on a non-

vanishing vector x GE. 
In (ii) and (iii), we have x & 0 and j r e i , a n ^-invariant subspace ofE. 

3.3 The Case of Fibonacci and Lucas Numbers 
Let (JB, (.,.)) be a unitary real vector space of dimension 2. Let {LJn>o be the sequence of 

Lucas numbers defined by LQ = 2, Lt = l, and L„+l = I^ + I^^ for m>2. Then the associated 
Hankel matrix 

is positive semidefinite and has rank 2. Thus, the reduced linear moment problem, 
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L0 = 2 = (x,x), L, = l = (&,x), L2 = 3 = (S2x,x), 

is solvable. Then Theorem 2.1 implies that the linear moment problem is solvable for all Ln = 
(S"x, x), and because 

we derive from the method of construction of S (see Subsection 2.3) that we can choose 

Let {FJn>0 be the sequence of Fibonacci numbers defined by FQ = 0, Fx-1, and Fn+l = 
Fn +i^_! for n > 2. Then the associated Hankel matrix 

* • ( ? o 
is not positive semidefinite. Therefore, even the reduced linear moment problem F0 = 0 = (x, x), 
F1 = l = (&, x), and F2 = l = (S2x, x) is not solvable. 

Because of Theorem 2.1 and Proposition 2.2, we can consider (I?, (.,.)) as a unitary real 
vector space of dimension m > 2. 

4. DEFINITE AN© INDEFINITE LINEAR MOMENT PROBLEM 
FOR SEQUENCES (1) 

Let (E, (.,.)) be a unitary real vector space of finite dimension m, and consider a sequence of 
real numbers (Vn)o<n<p, where p < QO. The linear moment problem (2) is called definite if it has a 
unique (up to conjugation by a unitary operator) solution S and indefinite if not. It was shown in 
[5] and [6] that the linear moment problem (2) is definite if and only if p > 2m-1. Let {Vn}n>0 be 
a sequence (1). Theorem 2.1 shows that if the linear moment problem (2) is solvable, it is 
reduced to the linear moment problem (3), Vn = ($nx, x) for n = 0,1,..., r -1. 

Suppose that the reduced linear moment problem (3) has a solution S eAs(E). Then the 
Hankel form Wfr+n is positive semidefinite, and rkKp = rmn(p,m) for p = 1,2,...,pf1] (see [5], 
[6]), and from Theorem 2.1, we also have S GAP

S(E). Therefore, in this case, the definite or 
indefinite reduced linear moment problem (3) depends on the cardinality /• of the set a(S)r\aP -
{ l l 5 . . . , ! / } . Even more precisely, let S GAF

S(E) and {el9e29...9el} be an orthogonal basis of 
L = ®l

J=lEj, where ej GEJ . Then the scalars ai of the vector x = Zy=1 ajej in the reduced linear 
moment problem (3) satisfy the following linear system of r equations, 

X{yl + -^Xj
1yl=Vp 7 = 0 , . . . , r - l , 

with yj = a2j. Using Propositions 2.1 and 2.2 and Theorem 3.1, we derive the following result. 

Theorem 4.1: Let S GAS(E) and (V^^Q be a sequence (1) with r > 3. Suppose a(S)r\aP = 
{11? . . . ,2 r } , where l>2. Then, if the linear moment problem (3) has a solution, it is definite if 
/ = m < l*f-} and indefinite if / < [*£] < m. 
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Example 4.1: Let (Vn)n>0 be a sequence (1) with r > 3. Suppose that the Hankel form Kfr^j is 
positive semidefinite and rkfflp = win(p9m) for p = \29...9[L7J^\. Then, by Theorem 3.1, the 
reduced moment problem (3) has a solution S e AS(E). If a(S)naF = {Xh X2} with Xx<Xl9 we 
set L = Et®E2. Then P(5jL) = 0, and we have Vn = (8nx9x) = Xtf+Xlfl- for n = 0,1, where 
x = ae1+fte2. For JW = 2 , Theorem 4.1 shows that the operator S is unique and that the linear 
moment problem (2) for the sequence (1) is definite. If 3 < m < p ^ ] , Proposition 2.1 implies that, 
for any self-adjoint extension Sx of *S|L such that a^^r^o-p = {Xl9 X2}9 we also have that Vn = 
(SiX9 x) for n > 0. Thus, the operator S is not a unique solution of the reduced linear moment 
problem (2). Hence, the linear moment problem (2) for the sequence (1) is indefinite. D 

5. APPLICATIONS AND CONCLUDING REMARKS 

5.1 Application 1: Sequences (1) Which Are Linear Combinations of Geometric Sequences 

Let {f̂ }w>0 be a sequence (1). It is well known that V„ - Zf=1 EJio1 fti,j%i> where Xl9 Xl9 ..., 
Xk are roots of the characteristic polynomial of the sequence (1), with multiplicities i^,/%..., 
mk9 respectively (JI\ H-m̂  + •••+»% = r), and ptJ are obtained from the initial conditions (V09 Vl9 

..., Vr_x) (see [7] and [8]). Then {Vn}n>0 is a linear combination of real geometric sequences if and 
only if 

PlJ = 0;j = l9...9ml-l9 7=1,. . . ,*, (4) 

and Pt0 = 0 if Xl is a complex root. The choice of the initial conditions (F0, Vl9 . . . / M ) such that 
the ptj satisfies the system of equations (4) implies that Vn = Ef=i/?/,o^> w^h Pi,o ~ 0 if ^/ *s a 

complex root. It seems difficult to find such (y0,Vl9...9Vr_l) by a direct computation from the 
system of equations (4). Meanwhile, Theorems 2.1 and 3.1 allow us to answer this question, a£ 
was shown in Examples 2.1-2.3. 

5.2 Application 2: Sequences (1) and Linear Systems of Vandermonde Type 
Consider the linear system of r equations and m unknowns yl9 ...9ym of Vandermonde type 

^ + • • • + ^ = 6,, j = 0 , l , . . . , r - l , (5) 

where r >m and Xj e R with Xt & Xj if i*j. The preceding results may be used to study this 
system. More precisely, we can associate to this linear system of equations a sequence (1) such 
that (VQ9..., Vr_t) = (A0,...,hr_t) and whose coefficients aQ9...,ar_x are given by the characteristic 
polynomial P(X) = (X~-Xl)-°(X-Xm)Q(X)9 where Q(X) is a polynomial of degree r-m. 
We now consider the linear moment problem (2) for {VJ^Q with S e AS(E), where (E, (.,.)) is 
a unitary real vector space of dimension m such that a(S) = {Xh..., Xm). Hence, if {VJn^0 is a 
sequence of moments of an operator S G AS(E), the linear system (5) has a solution (yl9 ...,ym) 
with yj > 0. Conversely, suppose that the system (5) has a solution (yl9 ...9ym) with yj > 0. Let 
(£,(.,.)) be a unitary real vector space of dimension m and set S e AS(E) such that ®(S) = 
{Xl9...,Xm). Let {etye29...9em} he an orthogonal basis of E9 where Sei = ^ / y . Then we can 
verify that FM = (5"*x, x) for all w > 0, where x = EJLi /*/_,- with ^ = yj. 
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53 Relation with Scalar Spectral Measures 
Let (£, (.,.)) be a unitary real vector space of dimension m and set S e A,(£) such that 

a(S) = {l]b..., Xm). Consider the spectral decomposition E = ®J=iEj of E. For all x = Z ^ x • 
and j = LJLiJJy in-E, where Xj and j^-are in Ej (l<j<m), the scalar spectral measure vXt is 
defined by 

j^Mdv^t) = (f(S)x, y), (6) 

where/is a continuous function on o"(5), which may be identified with a finite sequence (al9..., 
aw). From expression (6), we derive vx^y - EJ=i v^^ , and it is easy to see that 

1^/(0^^,(0 = (f(S)Xi, yt) = Mfa, y,). 
Thus, vx.fy. = (x^y^Sx., where 5A is the Dirac measure. In particular, for f(z) = zn

y we have 
(f(S)Xj, y.) = (x.y yt)X^. Let ^Vn}n>Q be a sequence (1) and suppose that it is a sequence of 
moments of the operator 5 o i a vector x = Ej=i fifr. Then we have (Xj, y^) = //J, ju^- satisfies 
the linear system of equations of Vandermonde type (5), and {Vn}„>0 is a sequence of moments of 
the positive measure vXtX = EJ= 1/I^AS. on a(S). This measure is unique if the moment problem 
(2) (or (3)) is definite. 

In general, we can consider the measure moment problem for sequences (1) on the interval 
[0,1]; it can be formulated as follows': Characterize sequences (1) that are sequences of moments 

n = lltndv(t) of a (unique) positive Borel measure v on [0,1] (see, e.g., [l]-[4]). We have found 
some results on this question using techniques presented in [l]-[4]. 

5.4 Complex Case 

Suppose that (£,(.,.)) is a unitary complex vector space of finite dimension m. Then all 
results still hold. 
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IN MEMORIAM 

Herta Taussig Freitag 
December 1908-January 2000 

Herta Taussig Freitag, long-time teacher, mathematician, and Fibonacci enthusiast, died January 25 at 
the age of 91. Her radiant smile and articulate speech reflecting her native Austria were unforgettable 
to hundreds of colleagues and friends. She remained an active participant in The Fibonacci Association 
until shortly before her death, assisting in the presentation of four papers at its 8th International 
Conference in 1998. 

Herta's life story is one of triumph over adversity. Bora in Vienna, she pursued her education there 
with a major interest in mathematics. When Hitler took over Austria in 1938, an event for which she 
had vivid memories, she began a six-year struggle to emigrate to the United States. It became clear that 
the only way out of Nazi Austria without a financial guarantor was to obtain employment in England as 
a domestic servant, an experience her brother describes as "Dickensian." A more complete account of 
her journey to freedom is included in the book One-Way Ticket by former student Mary Ann Johnson. 

Upon arrival in the United States in 1944, Herta first taught at Greer School in New York State where 
she met her husband, Arthur H. Freitag. She began her long career at Hollins College in 1948 and 
completed her Ph.D. at Columbia in 1953. Among her numerous teaching awards were the Hollins 
Medal and the Virginia College Mathematics Teacher of the Year Award. 

In her lifetime, Herta experienced prejudice in several forms but was never embittered by it. When she 
received the Humanitarian Award from the National Conference of Christians and Jews in 1997, the 
nomination read, in part: "What would have been a life-shattering experience for many set her on a 
course of personal professional achievement directed toward helping everyone, regardless of race, sex, 
color, ethnic background, religious persuasion or social class reach their maximum potential. And she 
does it in such a way as to make one feel that she is traveling with you, rather than leading the way." 

Herta is survived by a brother, Walter Taussig, an associate conductor with the Metropolitan Opera, and 
a niece, Lynn Taussig. She will also be greatly missed by her Fibonacci "family" and a host of friends. 

Margie Rihble 
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