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1. RATIONALE

Pell and Pell-Lucas Convolution Numbers

Pell and Pell-Lucas polynomials F,(x) and (,(x), respectively, were investigated in some
detail in [3], which was followed up with a study of the properties [4] of the m™ convolution
polynomials B (x) and O/(x).

These convolution polynomials may be defined [4] by generating functions, thus:

> By = (1= 2xy - y2) 0mD (1.1)
n=0
and
m+1
= 2x +2
My = | —2 =X 12

Putting x =1 yields the mt convolution Pell and Pell-Lucas numbers B{™(1) and O{™ (1), respec-
tively. Furthermore, if also m = 0, then we have the Pell numbers P{®(1) = £, and the Pell-Lucas
numbers Q1) = Q,.

Recurrence relations are given in (2.1) and (2.2) for 2, and in (3.1) with (3.2) for Q{™
(m >1 in both cases). Further specific work on £, and O, was related to Morgan-Voyce numbers
in [2].
Morgan-Voyce and Quasi Morgan-Voyce Polynomials

Morgan-Voyce polynomials X,,(x) = B,(x), b,(x), C,(x), and c,(x), and the four associated
quasi Morgan-Voyce polynomials ¥,(x) =%, (x), b,(x), 6,(x), and ¢,(x) are defined [1], [2]
recursively by

Xo2(¥) = Xpa (%) = 3X,(x), Xo(x)=a, X(x)=0, (13)
and
Lia(¥) = 1,(0) +31,(x), L(x) =a, h(x) =b, (1.4)
(a, b integers), in accordance with the following tabulation:
X,x)|a b | KX
B(x)| 0 1 | R
B [ 1 1| by (1.5)
C(x)|2 2+x| 6,(x)
() -1 1 | ¢ux)

Only &, (x) is required in this paper.
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Our Challenge

Yet remaining for attention are some additional data to be obtained for P (x) in Section 2,
to be complemented by a corresponding, and slightly more thorough, analysis of properties of
0% (x) in Section 3.

In particular, our study of the row sums and column sums of 2™ and Q{™, as well as the
rising diagonal sums X"_, P"™ and ¥ _, O™ will reveal some pleasing features. ;

For ease of reference and calculation, the short table of Pell number convolutions P™ (1)
which appeared in [4] will necessarily have to be repeated here as Table 1. Furthermore, a new
table for Pell-Lucas number convolutions O¢™(1), not previously recorded, will have to be incor-
porated as Table 2. Extensions of Tables 1 and 2 may be effected by employing the recurrence

relations (2.1) and (3.1).

2. NEW PROPERTIES OF PELL CONVOLUTIONS

Prompted by an observation made by a colleague at the Rochester, New York State, meeting
of the Fibonacci Association (July 1998)-—an cbservation actually covered in [2]—we begin an
investigation of certain summation properties of the Pell convolutions (Table 1).

Crucial to our presentation is the recurrence relation [4] for Pell convolutions,

P =2 pm 4 pm) 4 pmD - (> 1), (2.1)
with
PM=0. (2.2)
An abbreviated table for these convolutions, given in [2] and [4], is repeated here for the
reader's convenience.

TABLE 1. Pell Convolution Numbers P™

o 1 2 3 4
1] 1 1 1
212 4 6 8 10
3| 5 14 27 44 65
4 112 44 104 200 340
5129 131 366 810 1555

When required for formal algebraic purposes, values of P{™ could be extended for negative
in (2.1).

Basically, our concern is with three summation formulas, namely, those for rows, columns,
and rising diagonals.in Table 1.

Row Sums

Theorem 1: Z P® = l{]’,,(ﬁ) - Z P,,(fl)} (n fixed).
k=0

2 k=0

Proof: Write out (2.1) for successive values of m (=0,1,..., k) with n fixed. Add (the
columns) to obtain
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m m m m—1
> PO =23 P+ 3+ S R,
k=0 k=0 k=0 k=0

m=1 m m m—1
k) _ k
B+ S PO =23 PR+ 3 P+ S o)
k=0 k=0 k=0 k=0

whence the result enunciated for & follows on replacing 7 by n+1.
Example (n=3, m=4): Theorem 1—2x155=340-30(=310).
Column Sums
n 1 n+l
Theorem 2: ) P™ = 5 B4+ pm %" R(’”“‘)} (m fixed).
i=1 i=1
Proof: Proceed as in Theorem 1 (m fixed). Quickly it follows that
n n+2
OW-LI R I Wl
i=1 i=1
n+2
= BR+B™+ B -3 B0 by @)
i=1
n+l
= R+ B0 -3 P
i=1
Hence, the theorem is demonstrated.
Example (m =3, n=4): Theorem 2 — 253 =1{810+200~504}.

Note: For m=0 (excluded from Theorem 2), we have [3, (2.11)] where x =1,

B=2{Bu+B=1} 23)
=0

Rising Diagonal Sums

Upward slanting (i.e., rising) diagonals are to be imagined in the mind's eye in Table 1.
Accordingly, we seek X" _, PU*™  Specifically, these convolution number sums X7_; P turn
out empirically to be the sequence

(0),1,3,10,33,109, 360, ...= F,(3), (2.4)
where F,(x) = xF,_(x)+F,_,(x) (Fy(x) =0, Fj(x)=1) are the Fibonacci polynomials.
Why is this so?
Theorem 3: Z Pimm = F (3).
m=1

Proof (by induction): For small values n=1,2,3,4 (say), the validity of the theorem is
clearly verifiable. Suppose it is true for n= N (fixed). That is, assume

BOD 4 B0 4 B 4 B, 4 B 4 BY = ). @
Apply the recurrence relation (2.1) repeatedly for m=1,2,..., N +1. Arrange the summations

in three columns, in accordance with (2.1). Then
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NZHP’S'NH—m) = B 4 VD 4 pN=D) 4Ly PO 4 PO 4 pO)
m=1
=2F,(3)+ Fy_,(3)+ Fy(3) by (2.1) and (A)
=3F,()+Fy,0)
= Fy,,(3) by the definition of F,(x) above.

Hence, the theorem is valid for n= N +1.
Consequently, Theorem 3 has been demonstrated for all ».
Indeed [2]
EQ)=%,0)=%,, (2.5)

where %, are quasi Morgan-Voyce numbers (of one kind) formed from the quasi Morgan-Voyce
polynomials %, (x) when x=1.
Now the Binet form for these quasi Morgan-Voyce numbers is [2]

RB,=(a"-p"/A, (2.6)
where ¢, § are the roots of the characteristic quasi Morgan-Voyce equation
2-31-1=0, 2.7
whence
a=3+;/1—5,ﬂ=3“;/ﬁ,aﬁ:—l,a+ﬂ=3,a~/3=A=m‘. 2.8)

Combining these ideas, we deduce that

Theorem 3a: Y P =% =% ;ﬁ , where @, B3, A are defined in (2.8).

m=1
5 a’ __'35
Example (n=5): Y P{™ = P 109 = %;.
m=1 -

As an extension, the sum of the %, (i.e., the sum of the sums of the rising diagonal convolu-
tions) reduces, after algebraic maneuvering, to

k
Theorem 4: Y B, = %(%Hﬁ%k—l).
n=1

Example (k =5): Theorem 4 — 156 =4 (360+109-1).

Properties of the quasi Morgan-Voyce numbers %, which are well documented in [2] may,
because of Theorem 3a, be conceived in terms of sums of rising diagonal Pell convolutions.
Recall that %, =%, (x) when x =1.

One might compare the forms on the right-hand side in Theorem 4 and equation (2.3).

3. NEW PROPERTIES OF PELL-LUCAS CONVOLUTIONS
Recurrence Relation

n o

Coming now to the Pell-Lucas convolution polynomials O™, we must first discover their
recurrence relation, a fundamental requirement which was not incorporated into [4].
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Ordinarily, one might reasonably anticipate that the form of this recurrence relation would
closely resemble that in (2.1). However, there is an unexpected scorpion-like twist to the tail of
this formula.

Empirical evidence enables us to spot the following recurrence relation, cf. (2.1),
7 = 200 + Q) +2(0 D+ Q0TY) (= 1) 3.1)
with
om =12, (3.2)
Substituting m =1 in (3.1) reduces the bracketed "tail" to 4F,.
On the basis of (3.1) and (3.2), we can construct a shortened convolution array for Q™

(Table 2). Recall that a few simple values (m=1,2; n=1,2,3,4,5) could readily have been cal-
culated from the data in the table on page 68 in [4].

TABLE 2. Pell-Lucas Convolution Numbers Q™

S0 1 2 3 4
1|2 4 8 16 32
2 24 72 192 480
3014 92 384 1312 4004
4 134 304 1632 6848 24810
582 932 6120 30512 128344

Extension Example: O =200 + O +2(Q +Q5) = 1864 + 304 + 2(198 + 82) = 2728

Paralleling the triad of Theorems 1-3 in Section 2, we now explore the new territory for o,
Not unexpectedly, the forms of the corresponding enunciations are not quite so pleasing to the
eye, because of (3.1).

Row Sums

Theorem 5: Y OF = Q0D - 200D — 4% OF) - 22" = 1)  (n fixed).

=0 k=0
Proof: Proceed as for Theorem 1.
3
Example (m=3,n=3): Y O =4004-964-1176-62(=1802).
k=0

Column Sums
Aesthetically, we are blessed with no more joy here than we were in Theorem 5.

n=2 n—1
Theorem 6: Y O = %{Qf,’") QMY =23 0D - oD - 2’"*2} m fixed, n>2.
k=2 k=2
Proof: As for Theorem 2.
Example (m=2,n=5): 456=1{6120-1632} -840-932-16.

The requirements of realism necessitate the lower summation bound to be at k =2. This is
because & =0 and k =1, from (3.1), will yield terms O§™ and Q% which do not exist in Table 2.
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Rising Diagonal Sums
Upward slanting (rising) diagonal sums are of the form X"_, Q"™ Denote this by 9, so
that 9, =2. Then Table 2 reveals that

{9,}=2,10,46,214,994, 4618, ..., (3.3)
whence one can spot the recurrence relation
92 =42,,,+32,. (3.4

What can we know about this new sequence? Elementary procedures enable us to establish
the relation

9’n = Zn —|—Zn_1 (35)
where the Binet form for Z, is
2 n 1
Z,=5-("=9"), (3.6)
1
in which y, & are the roots of the characteristic equation for (3.4), namely,
2 —4t-3=0; (3.7
so that
y+8=4y5=-3y-8=2JT=A, (3.8)
Consequently, we have (Z, = 0)
{Z}=2,8,38,176,818, .., (3.9)
with the same form of the recurrence relation for Z, as that for 2, i.e,,
Z,,,=4Z, ,+3Z,. (3.10)

Since 2, is a composite of two Z-numbers, it is simpler to concentrate our energies on Z,.

Generating Functions
One may readily obtain the generating function for the Z-numbers, to wit,

> ZxF =2(1-4x-3x%)7, (3.11)
k=1
thence (3.5) engenders
> 9,xF =(2+2x)(1-4x-3x?)7" (3.12)
k=1
Summations
The Binet form (3.6) leads to
n
S Z, = {2, +3Z, -2} (3.13)
k=1 6

which, by (3.5) with (3.8), produces

n

1
% =2 (Zys~2). (3.14)
k=1 3
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5
Example: 39, = %(3 800 2) = 1266.
k=1

Simson Formulas
Invoking the application of (3.6) with (3.8), we derive the Simson formula

Zn+IZn—1 - er = -4(_3)71_1 (3.15)
while employing (3.5) with (3.8) yields the Simson formula
9‘n-§~19)‘r1—-1 - 937 = —8(_3)n_2- (3 16)

Example (n=4): Both sides of (3.14) have the value -72.

Observe, in passing, that

Q'nﬂ - Q‘n = Zn+l - Zn—l' (317)
Limits
From (3.6) and (3.5),
1imga+—1=1im9—"ﬂ=y=2+ﬁ(z4646) (3.18)
n>w L, n—»o0 9,” ’ > ’
whereas by (2.6) and (2.8),
fim Peet _ o 3413 5503 (3.19)
n—»w n 2
Merely for curiosity we record that
%z 14 (one decimal place). (3.20)
4. END-PIECE

Though the properties of the O™ will, by their very nature, be necessarily more complicated
than those for P it is nevertheless pleasing to unearth the rather unexpected conjunction of the
Z's in (3.5). While other facets of the convolution numbers P(™ and O™ might be pursued, it
seems reasonable to halt at this stage.
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