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1. RATIONALE 

Pel! and Pell-Lucas Convolution Numbers 
Pell and Pell-Lucas polynomials Pn(x) and Q„(x), respectively, were investigated in some 

detail in [3], which was followed up with a study of the properties [4] of the nfi1 convolution 
polynomials P£m)(x) and Q^m\x). 

These convolution polynomials may be defined [4] by generating functions, thus: 

YlPgkx)y» = (l-2xy-?)<"»*> 
n=Q 

and 

HQftlwy-- 2x + 2y m+l 

(1.1) 

(1.2) 
n=o Kl-2xy-y 

Putting x-\ yields the mth convolution Pell and Pell-Lucas numbers /$w)(l) and Q$F\l), respec-
tively. Furthermore, if also m = Q, then we have the Pell numbers P„(0)(l) = P„ and the Pell-Lucas 
numbers Qj®(l) = & . 

Recurrence relations are given in (2.1) and (2.2) for i*»>, and in (3.1) with (3.2) for Q&> 
(m > 1 in both cases). Further specific work on Pn and Qn was related to Morgan-Voyce numbers 
in [2]. 
Morgan-Voyce and Quasi Morgan-Voyce Polynomials 

Morgan-Voyce polynomials X„(x) = B„(x), bn(x), C„(x), and c„(x)9 and the four associated 
quasi Morgan-Voyce polynomials Y„(x) = %,(x), b„(x), %n(x)9 and c„(x) are defined [1], [2] 
recursively by 

Xn+2(x) = Xn+l(x)-3X„(x)9 X0(x) = a, Xx{x) = ft, (1.3) 

and 
Yn+2(x) = Y„+l(x) + 37w(x), Y0(x) = a, Y^x) = b, (1.4) 

(a, b integers), in accordance with the following tabulation: 

(1.5) 

Xn{x) 
B„(x) 

*„(*) 
CM 
C»(X) 

a 
0 
1 
2 
-1 

b 
1 
1 

2 + x 
1 

Yn(x) 
%»i(x) 

K+i(x) 
%(*) 
C»+lW 

Only 2S„ (x) is required in this paper. 
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Our Challenge 
Yet remaining for attention are some additional data to be obtained for P^m\x) in Section 2, 

to be complemented by a corresponding, and slightly more thorough, analysis of properties of 
Q^\x) in Section 3. 

In particular, our study of the row sums and column sums of P£m) and Q^\ as well as the 
rising diagonal sums 2^=ii^w_/w) and Z^=1Qm'^ will reveal some pleasing features. 

For ease of reference and calculation, the short table of Pell number convolutions P£m\l) 
which appeared in [4] will necessarily have to be repeated here as Table 1. Furthermore, a new 
table for Pell-Lucas number convolutions Qj^(l), not previously recorded, will have to be incor-
porated as Table 2. Extensions of Tables 1 and 2 may be effected by employing the recurrence 
relations (2.1) and (3.1). 

2. NEW PROPERTIES OF PELL CONVOLUTIONS 

Prompted by an observation made by a colleague at the Rochester, New York State, meeting 
of the Fibonacci Association (July 1998)—an observation actually covered in [2]—we begin an 
investigation of certain summation properties of the Pell convolutions (Table 1). 

Crucial to our presentation is the recurrence relation [4] for Pell convolutions, 

P « - 2 P « + i ) « + ̂ - 1 ) {m>\\ (2.1) 
with 

P0
im) = 0. (2.2) 

An abbreviated table for these convolutions, given in [2] and [4], is repeated here for the 
reader's convenience. 

TABLE 1. Pell Convolution Numbers P„(m) 

> ^ 
1 
2 

3 
4 
5 

0 

~T 
2 

5 
12 
29 

1 
1 
4 
14 
44 
131 

2 
1 
6 

27 
104 
366 

3 
1 
8 

44 
200 
810 

4 
1 
10 

65 
340 
1555 

When required for formal algebraic purposes, values of P„(m) could be extended for negative n 
in (2.1). 

Basically, our concern is with three summation formulas, namely, those for rows, columns, 
and rising diagonals, in Table 1. 

Row Sums 
m 1 f m ] 

Theorem 1: £ i f > = \ J # ? - £ ^ (»fixed). 
k=0 Z L Ar=0 J 

Proof: Write out (2.1) for successive values of m (=0,1,..., k) with n fixed. Add (the 
columns) to obtain 
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m m m m-l 

k=0 k=0 k=0 k=0 
m-l m m m-l 

k=0 k=0 k=0 k=0 

whence the result enunciated for k follows on replacing n by n +1. 

Example (n = 3,m = 4): Theorem 1 ->2 x 155 = 340-30(= 310). 

Column Sums 
n - i f n+l 1 

Theorem 2: £ / J ( w ) = ̂ j P Ĵ? + ̂ w ) -X^ ( w " 1 } [ (^ fixed). 

Proof: Proceed as In Theorem 1 (m fixed). Quickly it follows that 
n+2 

2V pw - pw - pw - y p(m_i) 

n+2 

= # ? + Pn
(m) + ̂ 2l) - 1 P^X) by (2.1) 

n+l 

Hence, the theorem is demonstrated. 
Example (m = 3,m = 4): Theorem 2 -» 253 = ̂ {810 + 200- 504}. 

Note: For m = 0 (excluded from Theorem 2), we have [3, (2.11)] where x = 1, 

L^jtf^ + ̂ -l)- (2-3) 
7=0 L 

Rising Diagonal Sums 
Upward slanting (i.e., rising) diagonals are to be imagined in the mind's eye in Table 1. 

Accordingly, we seek E^=i P^~m)'. Specifically, these convolution number sums TTm=\ P^~m) turn 
out empirically to be the sequence 

(0), 1, 3,10, 33,109, 360, ...= F„(3), (2.4) 

where Fn(x) = xFn_x{x) + Fn_2(x) (FQ(x) = 0, Fx(x) = 1) are the Fibonacci polynomials. 
Why is this so? 

Theorems: f>iw~w ) = F„(3). 
m=l 

Proof (by induction): For small values n = 1,2, 3,4 (say), the validity of the theorem is 
clearly verifiable. Suppose it is true for n = N (fixed). That is, assume 

p(N-l) _, piN-2) + p(N-3) + . . . + p(2)2 + p ^ + p(®) = jr ( 3 ) . (A) 

Apply the recurrence relation (2.1) repeatedly for m = 1,2,..., N +1. Arrange the summations 
in three columns, in accordance with (2.1). Then 
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X P^1^ = P[N) + If-* + P3
(N~2) + - + Ptf\ + PJP + Ptfll 

= 2FN(3) + FN_l(3) + FN(3) by (2.1) and (A) 
= 3FN(3) + FN_l(3) 
- FN+l(3) by the definition of Fn(x) above. 

Hence, the theorem is valid for n - N +1. 
Consequently, Theorem 3 has been demonstrated for all n. 
Indeed [2] 

Fn(3) = mn(l)^„, (2.5) 

where (3^n are quasi Morgan-Voyce numbers (of one kind) formed from the quasi Morgan-Voyce 
polynomials 2S„ (x) when x - 1. 

Now the Binetform for these quasi Morgan-Voyce numbers is [2] 

% = {a"-P")IA, (2.6) 

where a, J3 are the roots of the characteristic quasi Morgan-Voyce equation 

A2 - 3 1 - 1 = 0, (2.7) 
whence 

a=3+^, jff^3 ^ , ajff = - l , a + /? = 3, a-j3 = A = Vl3. (2.8) 

Combining these ideas, we deduce that 

Theorem 3a: £ i^""0 = 9^ = a" ~^\ where a, /?, A are defined in (2.8). 
m=l ^ 

5 ^ 5 _ /?5 
Example (n = S): Y<Pm~m)'s _ o = 109 = 885. 

As an extension, the sum of the 2S„ (i.e., the sum of the sums of the rising diagonal convolu-
tions) reduces, after algebraic maneuvering, to 

Theorem* ^ X =4(»* + i+»*- l ) . 

Example (k = 5): Theorem 4 -» 156 = ̂ (360 + 109-1). 

Properties of the quasi Morgan-Voyce numbers 26w which are well documented in [2] may, 
because of Theorem 3 a, be conceived in terms of sums of rising diagonal Pell convolutions. 
Recall that % = % (x) when x = l. 

One might compare the forms on the right-hand side in Theorem 4 and equation (2.3). 

3. NEW PROPERTIES OF PELL-LUCAS CONVOLUTIONS 

Recurrence Relation 
Coming now to the Pell-Lucas convolution polynomials Q^m\ we must first discover their 

recurrence relation, a fundamental requirement which was not incorporated into [4]. 
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Ordinarily, one might reasonably anticipate that the form of this recurrence relation would 
closely resemble that in (2.1). However, there is an unexpected scorpion-like twist to the tail, of 
this formula. 

Empirical evidence enables us to spot the following recurrence relation, cf. (2.1), 

a(w)=2e&^e^^2(^i>+o&1)) (m>\) p.i) 
with 

Q)W = 2. (3.2) 

Substituting m = 1 in (3.1) reduces the bracketed "tail" to 4Pn. 
On the basis of (3.1) and (3.2), we can construct a shortened convolution array for Q^ 

(Table 2). Recall that a few simple values (m = 1,2; n = 1,2,3,4,5) could readily have been cal-
culated from the data in the table on page 68 in [4]. 

TABLE 2* Pell-Lucas Convolution Numbers Q(
n

m) 

1 
2 
3 

4 
5 

0 
2 
6 
14 

34 
82 

1 
4 
24 
92 

304 
932 

2 
8 

72 
384 

1632 

6120 

3 
16 
192 

1312 

6848 

30512 

4 
32 
480 

4004 

24810 

128344 

Extension Example: <$> = 2g5
(1) + g f + 2(g6 + Q5) = 1864 + 304 + 2(198 + 82) = 2728. 

Paralleling the triad of Theorems 1-3 in Section 2, we now explore the new territory for Q^\ 
Not unexpectedly, the forms of the corresponding enunciations are not quite so pleasing to the 
eye, because of (3.1). 

Row Sums 

Theorems: £ ^ } = ^ 1 ) - 2 Q ^ 1 ) - 4 £ ^ 1 - 2 ( 2 ' W + 1 - 1 ) (n fixed). 
k=0 k=0 

Proof: Proceed as for Theorem 1. 
3 

Example (m = 3,n = 3): J^Q^ = 4004-964-1176-62(= 1802). 
k=0 

Column Sums 
Aesthetically, we are blessed with no more joy here than we were in Theorem 5. 

Theorem 6: £££"> = UQim) - ^ } - 2 § Q [ ' " - 1 > -Q^-2m+2\ m fixed, n>2. 
k=2 2 k=2 J 

Proof: As for Theorem 2. 
Example (m = 2$n = 5): 456 = ^-{6120-1632}-840-932-16. 

The requirements of realism necessitate the lower summation bound to be at k = 2. This is 
because k = 0 and k = 1, from (3.1), will yield terms Q^m) and g i f w h i c h d o n o t e x i s t i n T a b l e 2-
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Rising Diagonal Sums 
Upward slanting (rising) diagonal sums are of the form 5^=i 

Q^-m) Denote this by % so 
that % = 2. Then Table 2 reveals that 

{£„} = 2,10,46,214,994,4618,..., (3.3) 
whence one can spot the recurrence relation 

&„+2 = 4&„+1 + 3&„. (3.4) 

What can we know about this new sequence? Elementary procedures enable us to establish 
the relation 

% = Zn + ̂ i (3-5) 
where the Binetform for Zn is 

Z„=f(y"-S"), (3.6) 

in which y, 8 are the roots of the characteristic equation for (3.4), namely, 

t2- At - 3 = 0, (3.7) 
so that 

y+S = 4, y$ = -3, y-S = 2^ = Av (3.8) 

Consequently, we have (Z0 = 0) 

{Z„} = 2,8,38,176,818,..., (3.9) 

with the same form of the recurrence relation for Zn as that for 2,w, i.e., 

^+2=4Zfl+1+3Z„. (3.10) 

Since 2,„ is a composite of two Z-numbers, it is simpler to concentrate our energies on Zn. 

Generating Functions 
One may readily obtain the generating function for the Z-numbers, to wit, 

fiZkxk=2(\-4x-3x*T\ (3.11) 
k=,\ 

thence (3.5) engenders 

2X** =(2 + 2x)(l-4x-3x2yl. (3.12) 
k=l 

Summations 
The Binet form (3.6) leads to 

£zk=Uzn+l + 3Zn-2} (3.13) 

which, by (3.5) with (3.8), produces 

l%=kz„+i-2). (3.14) 
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5 1 

Example: £ % = ± (3 800 - 2) = 1266. 
k=l 3 

Simson Formulas 
Invoking the application of (3.6) with (3.8), we derive the Simson formula 

Z^Z^-Z^-^-Sy-1 (3.15) 

while employing (3.5) with (3.8) yields the Simson formula 

a w + 1 V i - a 2 ^ - 8 ( - 3 r 2 . (3.16) 

Example (n = 4); Both sides of (3.14) have the value -72. 

Observe, in passing, that 
°^n+l ~~ ^ n ~ Zn+\ — Zn_x. (3.17) 

Limits 
From (3.6) and (3.5), 

l i m % ± = l i m % ^ = y = 2 + V7(«4.646), (3.18) 

whereas by (2.6) and (2.8), 

]im^± = a = 3±M^3303y (3J9) 

Merely for curiosity we record that 

— « 1.4 (one decimal place). (3.20) 
a 

4. END-PIECE 

Though the properties of the Q^ will, by their very nature, be necessarily more complicated 
than those for P^m\ it is nevertheless pleasing to unearth the rather unexpected conjunction of the 
Zs in (3.5). While other facets of the convolution numbers P£m) and Q(

n
m) might be pursued, it 

seems reasonable to halt at this stage. 
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