CONVOLUTION SUMMATIONS FOR PELL AND PELLL-LUCAS NUMBERS

A. F. Horadam
The University of New England, Armidale, Australia 2351
(Submitted December 1998-Final Revision April 1999)

1. RATIONALE

Pell and Pell-Lucas Convolution Numbers

Pell and Pell-Lucas polynomials $P_{n}(x)$ and $Q_{n}(x)$, respectively, were investigated in some detail in [3], which was followed up with a study of the properties [4] of the $m^{\text {th }}$ convolution polynomials $P_{n}^{(m)}(x)$ and $Q_{n}^{(m)}(x)$.

These convolution polynomials may be defined [4] by generating functions, thus:

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n+1}^{(m)}(x) y^{n}=\left(1-2 x y-y^{2}\right)^{-(m+1)} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} Q_{n+1}^{(m)}(x) y^{n}=\left(\frac{2 x+2 y}{1-2 x y-y^{2}}\right)^{m+1} \tag{1.2}
\end{equation*}
$$

Putting $x=1$ yields the $m^{\text {th }}$ convolution Pell and Pell-Lucas numbers $P_{n}^{(m)}(1)$ and $Q_{n}^{(m)}(1)$, respectively. Furthermore, if also $m=0$, then we have the Pell numbers $P_{n}^{(0)}(1)=P_{n}$ and the Pell-Lucas numbers $Q_{n}^{(0)}(1)=Q_{n}$.

Recurrence relations are given in (2.1) and (2.2) for $P_{n}^{(m)}$, and in (3.1) with (3.2) for $Q_{n}^{(m)}$ ($m \geq 1$ in both cases). Further specific work on P_{n} and Q_{n} was related to Morgan-Voyce numbers in [2].

Morgan-Voyce and Quasi Morgan-Voyce Polynomials

Morgan-Voyce polynomials $X_{n}(x)=B_{n}(x), b_{n}(x), C_{n}(x)$, and $c_{n}(x)$, and the four associated quasi Morgan-Voyce polynomials $Y_{n}(x)=\mathscr{B}_{n}(x), \mathbf{b}_{n}(x), \mathscr{C}_{n}(x)$, and $\mathbf{c}_{n}(x)$ are defined [1], [2] recursively by

$$
\begin{equation*}
X_{n+2}(x)=X_{n+1}(x)-3 X_{n}(x), X_{0}(x)=a, X_{1}(x)=b \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{n+2}(x)=Y_{n+1}(x)+3 Y_{n}(x), \quad Y_{0}(x)=a, \quad Y_{1}(x)=b \tag{1.4}
\end{equation*}
$$

(a, b integers), in accordance with the following tabulation:

$X_{n}(x)$	a	b	$Y_{n}(x)$
$B_{n}(x)$	0	1	$\mathscr{B}_{n+1}(x)$
$b_{n}(x)$	1	1	$\mathbf{b}_{n+1}(x)$
$C_{n}(x)$	2	$2+x$	$\mathscr{C}_{n}(x)$
$c_{n}(x)$	-1	1	$\mathbf{c}_{n+1}(x)$

Only $\mathscr{B}_{n}(x)$ is required in this paper.

Our Challenge

Yet remaining for attention are some additional data to be obtained for $P_{n}^{(m)}(x)$ in Section 2, to be complemented by a corresponding, and slightly more thorough, analysis of properties of $Q_{n}^{(m)}(x)$ in Section 3.

In particular, our study of the row sums and column sums of $P_{n}^{(m)}$ and $Q_{n}^{(m)}$, as well as the rising diagonal sums $\sum_{m=1}^{n} P_{m}^{(n-m)}$ and $\sum_{m=1}^{n} Q_{m}^{(n-m)}$ will reveal some pleasing features.

For ease of reference and calculation, the short table of Pell number convolutions $P_{n}^{(m)}(1)$ which appeared in [4] will necessarily have to be repeated here as Table 1. Furthermore, a new table for Pell-Lucas number convolutions $Q_{n}^{(m)}(1)$, not previously recorded, will have to be incorporated as Table 2. Extensions of Tables 1 and 2 may be effected by employing the recurrence relations (2.1) and (3.1).

2. NEW PROPERTIES OF PELL CONVOLUTIONS

Prompted by an observation made by a colleague at the Rochester, New York State, meeting of the Fibonacci Association (July 1998)-an observation actually covered in [2]-we begin an investigation of certain summation properties of the Pell convolutions (Table 1).

Crucial to our presentation is the recurrence relation [4] for Pell convolutions,

$$
\begin{equation*}
P_{n}^{(m)}=2 P_{n-1}^{(m)}+P_{n-2}^{(m)}+P_{n}^{(m-1)} \quad(m \geq 1) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{0}^{(m)}=0 . \tag{2.2}
\end{equation*}
$$

An abbreviated table for these convolutions, given in [2] and [4], is repeated here for the reader's convenience.

TABLE 1. Pell Convolution Numbers $\boldsymbol{P}_{\boldsymbol{n}} \boldsymbol{m}^{\boldsymbol{m})}$

\grave{m}	0	1	2	3	4
1	1	1	1	1	1
2	2	4	6	8	10
3	5	14	27	44	65
4	12	44	104	200	340
5	29	131	366	810	1555

When required for formal algebraic purposes, values of $P_{n}^{(m)}$ could be extended for negative n in (2.1).

Basically, our concern is with three summation formulas, namely, those for rows, columns, and rising diagonals in Table 1.

Row Sums

Theorem 1: $\sum_{k=0}^{m} P_{n}^{(k)}=\frac{1}{2}\left\{P_{n+1}^{(m)}-\sum_{k=0}^{m} P_{n-1}^{(k)}\right\} \quad$ (n fixed).
Proof: Write out (2.1) for successive values of $m(=0,1, \ldots, k)$ with n fixed. Add (the columns) to obtain

$$
\begin{aligned}
\sum_{k=0}^{m} P_{n}^{(k)} & =2 \sum_{k=0}^{m} P_{n-1}^{(k)}+\sum_{k=0}^{m} P_{n-2}^{(k)}+\sum_{k=0}^{m-1} P_{n}^{(k)}, \\
P_{n}^{(m)}+\sum_{k=0}^{m-1} P_{n}^{(k)} & =2 \sum_{k=0}^{m} P_{n-1}^{(k)}+\sum_{k=0}^{m} P_{n-2}^{(k)}+\sum_{k=0}^{m-1} P_{n}^{(k)},
\end{aligned}
$$

whence the result enunciated for k follows on replacing n by $n+1$.
Example ($n=3, m=4$): Theorem $1 \rightarrow 2 \times 155=340-30(=310)$.

Column Sums

Theorem 2: $\sum_{i=1}^{n} P_{i}^{(m)}=\frac{1}{2}\left\{P_{n+1}^{(m)}+P_{n}^{(m)}-\sum_{i=1}^{n+1} P_{i}^{(m-1)}\right\} \quad(m$ fixed).
Proof: Proceed as in Theorem 1 (m fixed). Quickly it follows that

$$
\begin{aligned}
2 \sum_{i=1}^{n} P_{i}^{(m)} & =P_{n+2}^{(m)}-P_{n+1}^{(m)}-\sum_{i=1}^{n+2} P_{i}^{(m-1)} \\
& =P_{n+1}^{(m)}+P_{n}^{(m)}+P_{n+2}^{(m-1)}-\sum_{i=1}^{n+2} P_{i}^{(m-1)} \quad \text { by }(2.1) \\
& =P_{n+1}^{(m)}+P_{n}^{(m)}-\sum_{i=1}^{n+1} P_{i}^{(m-1)} .
\end{aligned}
$$

Hence, the theorem is demonstrated.
Example ($m=3, n=4$): Theorem $2 \rightarrow 253=\frac{1}{2}\{810+200-504\}$.
Note: For $m=0$ (excluded from Theorem 2), we have [3, (2.11)] where $x=1$,

$$
\begin{equation*}
\sum_{i=0}^{n} P_{i}=\frac{1}{2}\left\{P_{n+1}+P_{n}-1\right\} . \tag{2.3}
\end{equation*}
$$

Rising Diagonal Sums

Upward slanting (i.e., rising) diagonals are to be imagined in the mind's eye in Table 1. Accordingly, we seek $\sum_{m=1}^{n} P_{m}^{(n-m)}$. Specifically, these convolution number sums $\sum_{m=1}^{n} P_{m}^{(n-m)}$ turn out empirically to be the sequence

$$
\begin{equation*}
(0), 1,3,10,33,109,360, \ldots=F_{n}(3), \tag{2.4}
\end{equation*}
$$

where $F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x)\left(F_{0}(x)=0, F_{1}(x)=1\right)$ are the Fibonacci polynomials.
Why is this so?
Theorem 3: $\sum_{m=1}^{n} P_{m}^{(n-m)}=F_{n}(3)$.
Proof (by induction): For small values $n=1,2,3,4$ (say), the validity of the theorem is clearly verifiable. Suppose it is true for $n=N$ (fixed). That is, assume

$$
\begin{equation*}
P_{1}^{(N-1)}+P_{2}^{(N-2)}+P_{3}^{(N-3)}+\cdots+P_{N-2}^{(2)}+P_{N-1}^{(1)}+P_{N}^{(0)}=F_{n}(3) . \tag{A}
\end{equation*}
$$

Apply the recurrence relation (2.1) repeatedly for $m=1,2, \ldots, N+1$. Arrange the summations in three columns, in accordance with (2.1). Then

$$
\begin{aligned}
\sum_{m=1}^{N+1} P_{m}^{(N+1-m)} & =P_{1}^{(N)}+P_{2}^{(N-1)}+P_{3}^{(N-2)}+\cdots+P_{N-1}^{(2)}+P_{N}^{(1)}+P_{N+1}^{(0)} \\
& =2 F_{N}(3)+F_{N-1}(3)+F_{N}(3) \text { by }(2.1) \text { and (A) } \\
& =3 F_{N}(3)+F_{N-1}(3) \\
& =F_{N+1}(3) \text { by the definition of } F_{n}(x) \text { above. }
\end{aligned}
$$

Hence, the theorem is valid for $n=N+1$.
Consequently, Theorem 3 has been demonstrated for all n.
Indeed [2]

$$
\begin{equation*}
F_{n}(3)=\mathscr{B}_{n}(1) \equiv \mathscr{B}_{n}, \tag{2.5}
\end{equation*}
$$

where \mathscr{B}_{n} are quasi Morgan-Voyce numbers (of one kind) formed from the quasi Morgan-Voyce polynomials $\mathscr{B}_{n}(x)$ when $x=1$.

Now the Binet form for these quasi Morgan-Voyce numbers is [2]

$$
\begin{equation*}
\mathscr{B}_{n}=\left(\alpha^{n}-\beta^{n}\right) / \Delta, \tag{2.6}
\end{equation*}
$$

where α, β are the roots of the characteristic quasi Morgan-Voyce equation

$$
\begin{equation*}
\lambda^{2}-3 \lambda-1=0, \tag{2.7}
\end{equation*}
$$

whence

$$
\begin{equation*}
\alpha=\frac{3+\sqrt{13}}{2}, \beta=\frac{3-\sqrt{13}}{2}, \alpha \beta=-1, \alpha+\beta=3, \alpha-\beta=\Delta=\sqrt{13} . \tag{2.8}
\end{equation*}
$$

Combining these ideas, we deduce that
Theorem 3a: $\sum_{m=1}^{n} P_{m}^{(n-m)}=\mathscr{B}_{n}=\frac{\alpha^{n}-\beta^{n}}{\Delta}$, where α, β, Δ are defined in (2.8).
Example $(n=5): \sum_{m=1}^{5} P_{m}^{(5-m)} \equiv \frac{\alpha^{5}-\beta^{5}}{\alpha-\beta}=109=\mathscr{B}_{5}$.
As an extension, the sum of the \mathscr{B}_{n} (i.e., the sum of the sums of the rising diagonal convolutions) reduces, after algebraic maneuvering, to
Theorem 4: $\sum_{n=1}^{k} \mathscr{B}_{n}=\frac{1}{3}\left(\mathscr{B}_{k+1}+\mathscr{B}_{k}-1\right)$.
Example $(k=5)$: Theorem $4 \rightarrow 156=\frac{1}{3}(360+109-1)$.
Properties of the quasi Morgan-Voyce numbers \mathscr{B}_{n} which are well documented in [2] may, because of Theorem 3a, be conceived in terms of sums of rising diagonal Pell convolutions. Recall that $\mathscr{B}_{n}=\mathscr{B}_{n}(x)$ when $x=1$.

One might compare the forms on the right-hand side in Theorem 4 and equation (2.3).

3. NEW PROPERTIES OF PELL-LUCAS CONVOLUTIONS

Recurrence Relation

Coming now to the Pell-Lucas convolution polynomials $Q_{n}^{(m)}$, we must first discover their recurrence relation, a fundamental requirement which was not incorporated into [4].

Ordinarily, one might reasonably anticipate that the form of this recurrence relation would closely resemble that in (2.1). However, there is an unexpected scorpion-like twist to the tail of this formula.

Empirical evidence enables us to spot the following recurrence relation, cf. (2.1),

$$
\begin{equation*}
Q_{n}^{(m)}=2 Q_{n-1}^{(m)}+Q_{n-2}^{(m)}+2\left(Q_{n}^{(m-1)}+Q_{n-1}^{(m-1)}\right) \quad(m \geq 1) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{0}^{(m)}=2 \tag{3.2}
\end{equation*}
$$

Substituting $m=1$ in (3.1) reduces the bracketed "tail" to $4 P_{n}$.
On the basis of (3.1) and (3.2), we can construct a shortened convolution array for $Q_{n}^{(m)}$ (Table 2). Recall that a few simple values ($m=1,2 ; n=1,2,3,4,5$) could readily have been calculated from the data in the table on page 68 in [4].

TABLE 2. Pell-Lucas Convolution Numbers $Q_{n}^{(m)}$

\grave{m}	0	1	2	3	4
1	2	4	8	16	32
2	6	24	72	192	480
3	14	92	384	1312	4004
4	34	304	1632	6848	24810
5	82	932	6120	30512	128344

Extension Example: $Q_{6}^{(1)}=2 Q_{5}^{(1)}+Q_{4}^{(1)}+2\left(Q_{6}+Q_{5}\right)=1864+304+2(198+82)=2728$.
Paralleling the triad of Theorems 1-3 in Section 2, we now explore the new territory for $Q_{n}^{(m)}$. Not unexpectedly, the forms of the corresponding enunciations are not quite so pleasing to the eye, because of (3.1).

Row Sums

Theorem 5: $\sum_{k=0}^{m} Q_{n}^{(k)}=Q_{n-1}^{(m+1)}-2 Q_{n-1}^{(m+1)}-4 \sum_{k=0}^{m} Q_{n-1}^{(k)}-2\left(2^{m+1}-1\right) \quad$ (n fixed).
Proof: Proceed as for Theorem 1.
Example $(m=3, n=3)$: $\sum_{k=0}^{3} Q_{3}^{(k)}=4004-964-1176-62(=1802)$.

Column Sums

Aesthetically, we are blessed with no more joy here than we were in Theorem 5.
Theorem 6: $\left.\sum_{k=2}^{n-2} Q_{k}^{(m)}=\frac{1}{2}\left\{Q_{n}^{(m)}-Q_{n-1}^{(m)}\right\}-2 \sum_{k=2}^{n-1} Q_{k}^{(m-1)}-Q_{n}^{(m-1)}-2^{m+2}\right\} \quad m$ fixed, $n \geq 2$.
Proof: As for Theorem 2.
Example ($m=2, \boldsymbol{n}=5$): $456=\frac{1}{2}\{6120-1632\}-840-932-16$.
The requirements of realism necessitate the lower summation bound to be at $k=2$. This is because $k=0$ and $k=1$, from (3.1), will yield terms $Q_{0}^{(m)}$ and $Q_{-1}^{(m)}$ which do not exist in Table 2.

Rising Diagonal Sums

Upward slanting (rising) diagonal sums are of the form $\sum_{m=1}^{n} Q_{m}^{(n-m)}$. Denote this by \mathscr{Q}_{n} so that $\mathscr{L}_{1}=2$. Then Table 2 reveals that

$$
\begin{equation*}
\left\{2_{n}\right\}=2,10,46,214,994,4618, \ldots \tag{3.3}
\end{equation*}
$$

whence one can spot the recurrence relation

$$
\begin{equation*}
2_{n+2}=42_{n+1}+32_{n} . \tag{3.4}
\end{equation*}
$$

What can we know about this new sequence? Elementary procedures enable us to establish the relation

$$
\begin{equation*}
2_{n}=Z_{n}+Z_{n-1} \tag{3.5}
\end{equation*}
$$

where the Binet form for Z_{n} is

$$
\begin{equation*}
Z_{n}=\frac{2}{\Delta_{1}}\left(\gamma^{n}-\delta^{n}\right) \tag{3.6}
\end{equation*}
$$

in which γ, δ are the roots of the characteristic equation for (3.4), namely,

$$
\begin{equation*}
t^{2}-4 t-3=0 \tag{3.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\gamma+\delta=4, \gamma \delta=-3, \gamma-\delta=2 \sqrt{7}=\Delta_{1} \tag{3.8}
\end{equation*}
$$

Consequently, we have $\left(Z_{0}=0\right)$

$$
\begin{equation*}
\left\{Z_{n}\right\}=2,8,38,176,818, \ldots \tag{3.9}
\end{equation*}
$$

with the same form of the recurrence relation for Z_{n} as that for \mathscr{Q}_{n}, i.e.,

$$
\begin{equation*}
Z_{n+2}=4 Z_{n+1}+3 Z_{n} \tag{3.10}
\end{equation*}
$$

Since 2_{n} is a composite of two Z-numbers, it is simpler to concentrate our energies on Z_{n}.

Generating Functions

One may readily obtain the generating function for the Z-numbers, to wit,

$$
\begin{equation*}
\sum_{k=1}^{\infty} Z_{k} x^{k}=2\left(1-4 x-3 x^{2}\right)^{-1} \tag{3.11}
\end{equation*}
$$

thence (3.5) engenders

$$
\begin{equation*}
\sum_{k=1}^{\infty} 2_{n} x^{k}=(2+2 x)\left(1-4 x-3 x^{2}\right)^{-1} \tag{3.12}
\end{equation*}
$$

Summations

The Binet form (3.6) leads to

$$
\begin{equation*}
\sum_{k=1}^{n} Z_{k}=\frac{1}{6}\left\{Z_{n+1}+3 Z_{n}-2\right\} \tag{3.13}
\end{equation*}
$$

which, by (3.5) with (3.8), produces

$$
\begin{equation*}
\sum_{k=1}^{n} \mathscr{2}_{k}=\frac{1}{3}\left(Z_{n+1}-2\right) \tag{3.14}
\end{equation*}
$$

Example: $\sum_{k=1}^{5} \mathscr{Q}_{k}=\frac{1}{3}(3800-2)=1266$.

Simson Formulas

Invoking the application of (3.6) with (3.8), we derive the Simson formula

$$
\begin{equation*}
Z_{n+1} Z_{n-1}-Z_{n}^{2}=-4(-3)^{n-1} \tag{3.15}
\end{equation*}
$$

while employing (3.5) with (3.8) yields the Simson formula

$$
\begin{equation*}
2_{n+1} 2_{n-1}-2_{n}^{2}=-8(-3)^{n-2} . \tag{3.16}
\end{equation*}
$$

Example $(n=4)$: Both sides of (3.14) have the value -72 .
Observe, in passing, that

$$
\begin{equation*}
2_{n+1}-2_{n}=Z_{n+1}-Z_{n-1} . \tag{3.17}
\end{equation*}
$$

Limits

From (3.6) and (3.5),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}=\lim _{n \rightarrow \infty} \frac{2_{n+1}}{2_{n}}=\gamma=2+\sqrt{7}(\approx 4.646), \tag{3.18}
\end{equation*}
$$

whereas by (2.6) and (2.8),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mathscr{B}_{n+1}}{\mathscr{B}_{n}}=\alpha=\frac{3+\sqrt{13}}{2}(\approx 3.303) . \tag{3.19}
\end{equation*}
$$

Merely for curiosity we record that

$$
\begin{equation*}
\frac{\gamma}{\alpha} \approx 1.4 \text { (one decimal place). } \tag{3.20}
\end{equation*}
$$

4. END-PIECE

Though the properties of the $Q_{n}^{(m)}$ will, by their very nature, be necessarily more complicated than those for $P_{n}^{(m)}$, it is nevertheless pleasing to unearth the rather unexpected conjunction of the $Z \mathrm{~s}$ in (3.5). While other facets of the convolution numbers $P_{n}^{(m)}$ and $Q_{n}^{(m)}$ might be pursued, it seems reasonable to halt at this stage.

REFERENCES

1. A. F. Horadam. "New Aspects of Morgan-Voyce Polynomials." In Applications of Fibonacci Numbers 7:161-76. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1998.
2. A. F. Horadam. "Quasi Morgan-Voyce Polynomials and Pell Convolutions." In Applications of Fibonacci Numbers 8:179-93. Ed. F. T. Howard. Dordrecht: Kluwer, 1999.
3. A. F. Horadam \& Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci Quarterly 23.1 (1985):7-20.
4. A. F. Horadam \& Bro. J. M. Mahon. "Convolutions for Pell Polynomials." In Fibonacci Numbers and Their Applications, pp. 55-80. Ed. A. N. Philippou et al. Dordrecht, D. Reidel, 1986.
AMS Classification Number: 11B37
