ON THE EXTENDIBILITY OF THE SET $\{1,2,5\}$

Omar Kihel
Département de mathématiques de statistiques, Pav. Vachon, Université Laval, G1K7P4, Québec, Canada
(Submitted January 1999-Final Revision July 1999)

Let t be a nonzero integer and S a set of positive integers. We say that S is a P_{t}-set if, for any two distinct elements x and y of S, the integer $x y+t$ is a perfect square. A P_{t}-set is extendible if there exists a positive integer $a \notin S$ such that $S \cup\{a\}$ is still a P_{t}-set.

The problem of extending P_{t}-sets is very old and dates back to the time of Diophantus (see Dickson [5], p. 513). The most spectacular result in this area is due to Baker and Davenport [3] who showed that the P_{1}-set $\{1,3,8,120\}$ is nonextendible. Since then, several authors have made efforts to give a characterization of the P_{t}-sets (see references).

The P_{-1}-set $\{1,2,5\}$ was studied by Brown [4] who proved that this set is nonextendible. His method is based on deep results of Baker [3] and techniques of Grinstead [10]. In this paper we give another proof of the nonextendibility of the P_{-1}-set $\{1,2,5\}$ using only elementary number theory.

Suppose that there exists an integer a such that $\{1,2,5, a\}$ is a P_{-1}-set. Then the following system of equations

$$
\left\{\begin{align*}
a-1 & =Y^{2}, \tag{1}\\
2 a-1 & =Z^{2}, \\
5 a-1 & =X^{2},
\end{align*}\right.
$$

has integral solutions X, Y, Z, in \mathbb{Z}. Without loss of generality, we can suppose X, Y, Z are in \mathbb{N}^{*}. Elimination of a in system (1) yields

$$
\left\{\begin{align*}
Z^{2}-2 Y^{2} & =1, \tag{2}\\
2 X^{2}-5 Z^{2} & =3 .
\end{align*}\right.
$$

Lemma 1: If system (1) admits a solution a, then there exists an integer k such that $a=12 k+1$.
Proof: From system (1), it is clear that $a \equiv 1(\bmod 4)$. The first equation in system (1) implies that $a \equiv \pm 1(\bmod 3)$. If $a \equiv-1(\bmod 3)$, then the second and third equations in system (1) imply that X and Z are both divisible by 3; which is impossible from the second equation in system (2). This gives $a \equiv 1(\bmod 3)$. Then there exists an integer k such that $a=12 k+1$.

After replacing a by $12 k+1$ in system (1), we obtain

$$
\left\{\begin{align*}
12 k & =Y^{2} \tag{3}\\
24 k+1 & =Z^{2} \\
60 k+4 & =X^{2}
\end{align*}\right.
$$

System (3) yields

$$
\left\{\begin{array}{r}
3 k=y^{2}, \tag{4}\\
24 k+1=z^{2}, \\
15 k+1=x^{2},
\end{array}\right.
$$

where $X=2 x, Y=2 y$, and $Z=z$. Therefore,

$$
\begin{equation*}
x^{2}+3 y^{2}=z^{2}, \text { where }(x, y, z)=1 . \tag{5}
\end{equation*}
$$

It is well known that the solutions of equation (5) are $x= \pm\left(n^{2}-3 m^{2}\right), y=2 n m, z=n^{2}+3 m^{2}$, with n and m two relatively prime integers.

The equation $y^{2}=3 k$ implies $4 n^{2} m^{2}=3 k$ and $n^{2}=\frac{3 k}{4 m^{2}}$. Therefore,

$$
24 k+1=z^{2}=\left(n^{2}+3 m^{2}\right)^{2}=\left(\frac{3 k}{4 m^{2}}+3 m^{2}\right)^{2}
$$

and

$$
(24 k+1) 16 m^{4}=9 k^{2}+144 m^{8}+72 m^{4} k
$$

Hence,

$$
\begin{equation*}
9 k^{2}-312 m^{4} k-16 m^{4}\left(1-9 m^{4}\right)=0 \tag{6}
\end{equation*}
$$

Equation (6) is of the second degree in k with integer coefficients. Since k is an integer, the discriminant $12^{2} 13^{2} m^{8}+144 m^{4}\left(1-9 m^{4}\right)=144 m^{4}\left(160 m^{4}+1\right)$ of the left side in (6) should be the square of an integer. That is, $160 m^{4}+1=t^{2}$ for some $t \in \mathbb{N}$.
Lemma 2: The only solution of $160 m^{4}+1=t^{2}$ is $(m, t)=(0, \pm 1)$.
Proof: Clearly $m=0, t= \pm 1$ is a solution for the equation $160 m^{4}+1=t^{2}$. Without loss of generality, we can suppose $m>0$ and $t>0$ [of course, if (m, t) is a solution, $(\pm m, \pm t)$ is also a solution for our equation]. Put $M=2 m$, then we obtain the equation

$$
\begin{equation*}
10 M^{4}+1=t^{2}, M>0, t>0 . \tag{7}
\end{equation*}
$$

From $(t-1)(t+1)=10 M^{4}$, we have either

$$
\left\{\begin{array}{r}
t-1=2 a^{4}, t+1=80 b^{4}, M=2 a b \tag{8}\\
t-1=80 b^{4}, t+1=2 a^{4}, M=2 a b
\end{array}\right.
$$

or

$$
\left\{\begin{array}{r}
t-1=10 a^{4}, t+1=16 b^{4}, M=2 a b \tag{9}\\
\text { or } \\
t-1=16 b^{4}, t+1=10 a^{4}, M=2 a b
\end{array}\right.
$$

where a and b are two positive integers.
System (8) gives

$$
\begin{equation*}
a^{4}-40 b^{4}= \pm 1 \tag{10}
\end{equation*}
$$

A congruence mod 4 shows that the minus sign on the left side of equation (10) can be rejected, and from $\left(a^{2}-1\right)\left(a^{2}+1\right)=40 b^{4}$, since $a^{2}+1$ and $a^{2}-1$ are not squares in \mathbb{N} and $a^{2}+1$ is not divisible by 4 , we have $a^{2}+1=2 c^{4}, a^{2}-1=20 d^{4}$, and $b=c d$, which gives

$$
\begin{equation*}
10 d^{4}+1=C^{2} \text {, where } C=c^{2} . \tag{11}
\end{equation*}
$$

Equation (11) is of the same type as equation (7), and since $d<a<M$, one can apply the method of descent.

System (9) gives

$$
\begin{equation*}
5 a^{4}-8 b^{4}= \pm 1 \tag{12}
\end{equation*}
$$

A congruence mod 8 shows that this is impossible.
Theorem 1: The P_{-1}-set $\{1,2,5\}$ is nonextendible.

REFERENCES

1. J. Arkin, V. E. Hoggatt, Jr., \& E. G. Strauss. "On Euler's Solution of a Problem of Diophantus." The Fibonacci Quarterly 17.4 (1979):333-39.
2. J. Arkin, V. E. Hoggatt, Jr., \& E. G. Strauss. "On Euler's Solution of a Problem of Diophantus II." The Fibonacci Quarterly 18.2 (1980):170-76.
3. A. Baker \& H. Davenport. "The Equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$." Quart. J. Math. Oxford, Ser. (2), 20 (1969):129-37.
4. E. Brown. "Sets in Which $x y+k$ Is Always a Square." Math. Comp. 45 (1985):613-20.
5. L. E. Dickson. History of the Theory of Numbers. Vol. 2, pp. 518-19. New York: Chelsea, 1966.
6. A. Dujella. "Generalisation of a Problem of Diophantus." Acta Arith. 65 (1993):15-27.
7. A. Dujella. "On Diophantine Quintuples." Acta Arith. 81 (1997):68-79.
8. A. Dujella. "An Extension of an Old Problem of Diophantus and Euler." To appear in The Fibonacci Quarterly.
9. A. Dujella \& A. Pethoe. "Generalisation of a Theorem of Baker and Davenport." Quart. J. Math. Oxford, Ser. (2), 49 (1998):291-306.
10. C. M. Grinstead. "On a Method of Solving a Class of Diophantine Equations." Math. Comp. 32 (1978):936-40.
11. P. Heichelheim. "The Study of Positive Integers (a, b) such that $a b+1$ Is a Square." The Fibonacci Quarterly 17.3 (1979):269-74.
12. B. W. Jones. "A Variation on a Problem of Davenport and Diophantus." Quart. J. Math. Oxford, Ser. (2), 27 (1976):349-53.
13. B. W. Jones. "A Second Variation on a Problem of Diophantus and Davenport." The Fibonacci Quarterly 16.2 (1978):155-65.
14. S. Mohanty \& A.-M. Ramasamy. "On $P_{r, k}$ Sequences." The Fibonacci Quarterly 23 (1985): 36-44.
15. S. Mohanty \& A.-M. Ramasamy. "The Simultaneous Diophantine Equations $Y^{2}-20=X^{2}$ and $2 Y^{2}+1=Z^{2}$." J. Number Theory 18 (1984):356-59.
16. V. K. Mootha \& G. Berzsenyi. "Characterization and Extendibility of P_{t}-Sets." The Fibonacci Quarterly 27.3 (1989):287-88.
AMS Classification Numbers: 11D09, 11D25
