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Let  be a nonzero integer and S a set of positive integers. We say that Sis a P,-set if, for any
two distinct elements x and y of S, the integer xy +7 is a perfect square. A P,-set is extendible if
there exists a positive integer a .5 such that S {a} is still a P -set.

The problem of extending F,-sets is very old and dates back to the time of Diophantus (see
Dickson [5], p. 513). The most spectacular result in this area is due to Baker and Davenport [3]
who showed that the F-set {1, 3, 8,120} is nonextendible. Since then, several authors have made
efforts to give a characterization of the P,-sets (see references).

The P, -set {1,2,5} was studied by Brown [4] who proved that this set is nonextendible. His
method is based on deep results of Baker [3] and techniques of Grinstead [10]. In this paper we
give another proof of the nonextendibility of the P ,-set {1,2,5} using only elementary number
theory.

Suppose that there exists an integer a such that {1,2,5,a} is a P -set. Then the following
system of equations

a-1=Y?
2a-1=272, M
S5a-1= X2,

has integral solutions X, ¥, Z, in Z. Without loss of generality, we can suppose X, ¥, Z are in N,
Elimination of @ in system (1) yields

2 _Aay2 _
{z 272 =1, @

2X*-57% =3,

Lemma 1: If system (1) admits a solution a, then there exists an integer & such that a =12k + 1.

Proof: From system (1), it is clear that a=1 (mod 4). The first equation in system (1)
implies that a = +1 (mod 3). If a=-1 (mod 3), then the second and third equations in system (1)
imply that X and Z are both divisible by 3, which is impossible from the second equation in system
(2). This gives a =1 (mod 3). Then there exists an integer £ such that a =12k +1. O

After replacing a by 12k +1 in system (1), we obtain

12k =12,
24k +1= 72, 3)
60k +4 = X2.
System (3) yields
3k =),
24k +1= 22, C))
15k +1=x2,
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where X =2x, Y =2y, and Z =z. Therefore,
x*+3y* =z* where (x, y,z) = 1. %)

It is well known that the solutions of equation (5) are x = +(n* - 3m?), y = 2nm, z = n* + 3m?,
with n and m two relatively prime integers.

The equation y* = 3k implies 4n°m* = 3k and n* = fm%. Therefore,

2 2 212 3k 2V
24k +1=z"=(n"+3m")" =| —+3m
4m
and
(24k +1)16m* = 9k? +144m® + 72m*k .
Hence,
%2 -312m*k —16m*(1-9m*) = 0. (6)

Equation (6) is of the second degree in & with integer coefficients. Since £ is an integer, the
discriminant 12213%m® +144m*(1 - 9m*) = 144m*(160m"* + 1) of the left side in (6) should be the
square of an integer. That is, 160m* +1=¢* for some 7 € N.

Lemma 2: The only solution of 160m* +1=¢* is (m, 1) = (0, +1).

Proof: Clearly m=0, t = 1 is a solution for the equation 160m* +1=r*. Without loss of
generality, we can suppose m >0 and ¢ > 0 [of course, if (m,1) is a solution, (+m, £7) is also a
solution for our equation]. Put M =2m, then we obtain the equation

10M* +1=1¢*, M >0, t>0. @)
From (¢ —1)(t +1) = 10M*, we have either
t—1=2a* t+1=80b*, M =2ab

or ®
t—1=800*% t+1=2a* M =2ab

or

t—1=10a*, t+1=16b", M =2ab
or O]
t-1=16b* t+1=10a", M =2ab,

where a and b are two positive integers.
System (8) gives
a*—40b* = £1. (10)

A congruence mod 4 shows that the minus sign on the left side of equation (10) can be rejected,
and from (a® - 1)(a® +1) = 40b*, since a*+1 and a* -1 are not squares in N and @”+1 is not
divisible by 4, we have a® +1=2c* a>-1=20d*, and b = cd, which gives

10d* +1=C?, where C =c*. (11)

Equation (11) is of the same type as equation (7), and since d <a < M, one can apply the method
of descent.
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System (9) gives
5a* —8b* = £1. (12)

A congruence mod 8 shows that this is impossible. O

Theorem 1: The P -set {1,2,5} is nonextendible.
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