THE INTEGRITY OF SOME INFINITE SERIES

Feng-Zhen Zhao

Department of Applied Mathematics, Dalian University of Technology
116024 Dalian, China
(Submitted November 1998-Final Revision March 2000)

1. INTRODUCTION

Consider a sequence $\left\{W_{n}\right\}$ defined by the recurrence relation

$$
W_{n}=p W_{n-1}-q W_{n-2}, n \geq 2, W_{0}=a, W_{1}=b,
$$

where a, b, p, and q are integers with $p>0, q \neq 0$, and $\Delta=p^{2}-4 q>0$. We are interested in the following two special cases of $\left\{W_{n}\right\}$: $\left\{U_{n}\right\}$ is defined by $U_{0}=0, U_{1}=1$, and $\left\{V_{n}\right\}$ is defined by $V_{0}=2, V_{1}=p$. It is well known that $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ can be expressed in the form

$$
\begin{equation*}
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, V_{n}=\alpha^{n}+\beta^{n}, \tag{1.1}
\end{equation*}
$$

where $\alpha=(p+\sqrt{\Delta}) / 2, \beta=(p-\sqrt{\Delta}) / 2$. Especially, if $p=-q=1,\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are the usual Fibonacci and Lucas sequences.

Recently, André-Jeannin studied the infinite sum (see [1])

$$
S_{V}(x)=S_{V}(x ; p, q)=\sum_{n=0}^{\infty} \frac{V_{n}}{x^{n}}
$$

At the end of his paper, he presented a problem to study the integrity of an infinite sum

$$
T_{k}(x)=\sum_{n=0}^{\infty} \frac{V_{k n}}{x^{n}}, k>0 .
$$

In this paper, we solve this problem completely for the case in which $k \geq 2$ and $q= \pm 1$.
By using the Binet forms (1.1) and the geometric series formula, we have

$$
T_{k}(x)=\frac{x\left(2 x-V_{k}\right)}{x^{2}-V_{k} x+q^{k}},|x|>\alpha^{k} .
$$

In what follows, we shall make use of the identities:

$$
\begin{gather*}
U_{n+2 k}-q^{k} U_{n}=U_{k} V_{n+k}, \tag{1.2}\\
U_{n+2 k}+q^{k} U_{n}=V_{k} U_{n+k}, \tag{1.3}\\
V_{2 n}+2 q^{n}=V_{n}^{2}, \tag{1.4}\\
V_{2 n}-2 q^{n}=\Delta U_{n}^{2}, \tag{1.5}\\
U_{2 n}=U_{n} V_{n}, \tag{1.6}\\
V_{k} V_{2 k(n+1)}+\Delta U_{k} U_{2 k(n+1)}=2 V_{k(2 n+3)} . \tag{1.7}
\end{gather*}
$$

All the identities can be obtained by the Binet form (1.1).

2. MAIN RESULTS

Let

$$
\begin{equation*}
V_{n}^{\prime}=V_{k n}=\alpha^{k n}+\beta^{k n}, U_{n}^{\prime}=\frac{\alpha^{k n}-\beta^{k n}}{\alpha^{k}-\beta^{k}}=\frac{U_{k n}}{U_{k}} \tag{2.1}
\end{equation*}
$$

In fact, the sequences $\left\{U_{n}^{\prime}\right\}$ and $\left\{V_{n}^{\prime}\right\}$ satisfy the recurrence relation $W_{n}=V_{k} W_{n-1}-q^{k} W_{n-2}$. From (2.1) and applying Theorems 2-4 in [1] to the sequence $\left\{V_{n}^{\prime}\right\}$, we can obtain the main results of this paper.
Theorem 1: If $q= \pm 1$ and $k \geq 2$, there do not exist negative rational values such that $T_{k}(x)$ is an integer.

Theorem 1 is a direct consequence of Theorem 2 in [1], and its proof is omitted.
Theorem 2: If $q=-1$ and $r \geq 0$, the positive rational values of x for which $T_{2 r+1}(x)$ is integral are given by

$$
x=\frac{U_{(2 r+1)(2 m+1)}}{U_{2 m(2 r+1)}} \quad(m=1,2, \ldots)
$$

and

$$
x=\frac{V_{(2 r+1)(2 m+2)}}{V_{(2 r+1)(2 m+1)}} \quad(m=0,1,2, \ldots) .
$$

The corresponding values of $T_{2 r+1}(x)$ are given by

$$
T_{2 r+1}\left(\frac{U_{(2 r+1)(2 m+1)}}{U_{2 m(2 r+1)}}\right)=\frac{U_{(2 r+1)(2 m+1)} V_{2 m(2 r+1)}}{U_{2 r+1}}
$$

and

$$
T_{2 r+1}\left(\frac{V_{(2 r+1)(2 m+2)}}{V_{(2 r+1)(2 m+1)}}\right)=\frac{U_{(2 r+1)(2 m+1)} V_{(2 r+1)(2 m+2)}}{U_{2 r+1}}
$$

Proof: Since $q=-1$, we can apply Theorem 3 in [1] to the sequence $\left\{V_{n}^{\prime}=V_{(2 r+1) n}\right\}$. Therefore, the positive rational values of x for which $T_{2 r+1}(x)$ is integral are given by

$$
x=\frac{U_{2 m+1}^{\prime}}{U_{2 m}^{\prime}}(m=1,2, \ldots)
$$

and

$$
x=\frac{V_{2 m+2}^{\prime}}{V_{2 m+1}^{\prime}}(m=0,1,2, \ldots)
$$

The corresponding values of $T_{2 r+1}(x)$ are given by

$$
T_{2 r+1}\left(\frac{U_{2 m+1}^{\prime}}{U_{2 m}^{\prime}}\right)=U_{2 m+1}^{\prime} V_{2 m}^{\prime}
$$

and

$$
T_{2 r+1}\left(\frac{V_{2 m+2}^{\prime}}{V_{2 m+1}^{\prime}}\right)=U_{2 m+1}^{\prime} V_{2 m+2}^{\prime}
$$

From (2.1), we can obtain the results.

Theorem 3: If $q=1, p \geq 3$, and $r \geq 0$, the positive rational values of x for which $T_{2 r+1}(x)$ is integral are given by

$$
x=\frac{U_{(2 r+1)(m+1)}}{U_{m(2 r+1)}}(m=1,2, \ldots)
$$

and

$$
x=\frac{X_{(2 r+1)(m+1)}}{X_{m(2 r+1)}}(m=0,1,2, \ldots)
$$

where $X_{m(2 r+1)}=U_{(2 r+1)(m+1)}+U_{m(2 r+1)}$. The corresponding values of $T_{2 r+1}(x)$ are given by

$$
T_{2 r+1}\left(\frac{U_{(2 r+1)(m+1)}}{U_{m(2 r+1)}}\right)=\frac{U_{(2 r+1)(m+1)} V_{m(2 r+1)}}{U_{2 r+1}}
$$

and

$$
T_{2 r+1}\left(\frac{X_{(2 r+1)(m+1)}}{X_{m(2 r+1)}}\right)=\frac{\left(U_{(2 r+1)(m+1)}-U_{m(2 r+1)}\right) X_{(2 r+1)(m+1)}}{U_{2 r+1}^{2}}
$$

Proof: By $q=1$ and $p \geq 3$, we have that

$$
V_{2 r+1}=\alpha^{2 r+1}+\alpha^{-(2 r+1)} \geq 3
$$

Similarly to the proof of the last theorem, we can prove the conclusion from Theorem 4 in [1].
Theorem 4: If $q=-1$ and $r \geq 1$, the positive rational values of x for which $T_{2 r}(x)$ is integral are given by

$$
x=\frac{U_{r(m+2)}}{U_{r m}}(r \text { or } m \text { even and } m \geq 1)
$$

and

$$
x=\frac{V_{r(2 m+3)}}{V_{r(2 m+1)}}(r \text { odd and } m \geq 0)
$$

The corresponding values of $T_{2 r}(x)$ are given by

$$
T_{2 r}\left(\frac{U_{r(m+2)}}{U_{r m}}\right)=\frac{U_{r(m+2)} V_{r m}}{U_{2 r}}
$$

and

$$
T_{2 r}\left(\frac{V_{r(2 m+3)}}{V_{r(2 m+1)}}\right)=\frac{U_{r(2 m+1)} V_{r(2 m+3)}}{U_{2 r}}
$$

Proof: Apply Theorem 4 in [1] to the sequence $\left\{V_{n}^{\prime}=V_{2 r n}\right\}$. Therefore, the positive rational values of x for which $T_{2 r}(x)$ is integral are given by

$$
x=\frac{U_{m+1}^{\prime}}{U_{m}^{\prime}}(m=1,2, \ldots)
$$

and

$$
x=\frac{X_{m+1}^{\prime}}{X_{m}^{\prime}}(m=0,1, \ldots)
$$

where $X_{m}^{\prime}=U_{m+1}^{\prime}+U_{m}^{\prime}$. The corresponding values of $T_{2 r}(x)$ are given by

$$
T_{2 r}\left(\frac{U_{m+1}^{\prime}}{U_{m}^{\prime}}\right)=U_{m+1}^{\prime} V_{m}^{\prime}
$$

and

$$
T_{2 r}\left(\frac{X_{m+1}^{\prime}}{X_{m}^{\prime}}\right)=X_{m+1}^{\prime}\left(U_{m+1}^{\prime}-U_{m}^{\prime}\right)
$$

From (2.1), we have

$$
\frac{U_{m+1}^{\prime}}{U_{m}^{\prime}}=\frac{U_{2 r(m+1)}}{U_{2 r m}} \quad \text { and } \quad X_{m+1}^{\prime}=\frac{U_{2 r(m+2)}+U_{2 r(m+1)}}{U_{2 r}} .
$$

It follows from (1.2) and (1.3) that

$$
X_{m+1}^{\prime}=\frac{U_{2 r} V_{2 r(m+1)}+V_{2 r} U_{2 r(m+1)}+2 U_{2 r(m+1)}}{2 U_{2 r}}
$$

From (1.2)-(1.7), we have

$$
X_{m+1}^{\prime}= \begin{cases}\frac{U_{r(2 m+3)}}{U_{r}} & r \text { is even, } \\ \frac{V_{r(2 m+3)}}{V_{r}} & r \text { is odd. }\end{cases}
$$

Using a similar method, we have

$$
X_{m}^{\prime}= \begin{cases}\frac{U_{r(2 m+1)}}{U_{r}} & r \text { is even, } \\ \frac{V_{r(2 m+3)}}{V_{r}} & r \text { is odd } .\end{cases}
$$

It follows from (1.2) and (1.6) that

$$
\begin{aligned}
U_{m+1}^{\prime}-U_{m}^{\prime} & =\frac{U_{2 r(m+1)}-U_{2 r m}}{U_{2 r}}=\frac{U_{r} V_{r(2 m+1)}+\left((-1)^{r}-1\right) U_{2 r m}}{U_{2 r}} \\
& = \begin{cases}\frac{V_{r(2 m+1)}}{V_{r}} & r \text { is even, } \\
\frac{U_{r} V_{r(2 m+1)}-2 U_{2 m}}{U_{2 r}} & r \text { is odd. } .\end{cases}
\end{aligned}
$$

When $q=-1$ and r is odd, from (1.2) and (1.3) we have

$$
U_{m+1}^{\prime}-U_{m}^{\prime}= \begin{cases}\frac{V_{r(2 m+1)}}{V_{r}} & r \text { is even, }, \\ \frac{U_{r(2 m+1)}}{U_{r}} & r \text { is odd. }\end{cases}
$$

Therefore, the positive rational values of x for which $T_{2 r}(x)$ is integral are given by

$$
\begin{align*}
& x=\frac{U_{2 r(m+1)}}{U_{2 r m}}(m \geq 1) \tag{2.2}\\
& x=\frac{U_{r(2 m+3)}}{U_{r(2 m+1)}} \cdot(r \text { even and } m \geq 0), \tag{2.3}
\end{align*}
$$

and

$$
x=\frac{V_{r(2 m+3)}}{V_{r(2 m+1)}}(r \text { odd and } m \geq 0)
$$

The corresponding values of $T_{2 r}(x)$ are given by

$$
\begin{align*}
& T_{2 r}\left(\frac{U_{2 r(m+1)}}{U_{2 r m}}\right)=\frac{U_{2 r(m+1)} V_{2 r m}}{U_{2 r}}, \tag{2.4}\\
& T_{2 r}\left(\frac{U_{r(2 m+3)}}{U_{r(2 m+1)}}\right)=\frac{U_{r(2 m+3)} V_{r(2 m+1)}}{U_{2 r}}(r \text { even }), \tag{2.5}
\end{align*}
$$

and

$$
T_{2 r}\left(\frac{V_{r(2 m+3)}}{V_{r(2 m+1)}}\right)=\frac{U_{r(2 m+1)} V_{r(2 m+3)}}{U_{2 r}}(r \text { odd }) .
$$

It is clear that (2.2) and (2.3) can be rewritten as

$$
x=\frac{U_{r(m+2)}}{U_{r m}} .
$$

Similarly, (2.4) and (2.5) can be rewritten as

$$
T_{2 r}\left(\frac{U_{r(m+2)}}{U_{r m}}\right)=\frac{U_{r(m+2} V_{r m}}{U_{2 r}} .
$$

On the other hand, since $q=-1, \frac{U_{r(m+2)}}{U_{m n}}>\alpha^{2 r}$ holds when m or r is even. Hence, the conclusions are valid.

Theorem 5: If $q=1, p \geq 3$, and $r \geq 1$, the positive rational values of x for which $T_{2 r}(x)$ is integral are given by

$$
x=\frac{U_{r(m+2)}}{U_{r m}}(m=1,2, \ldots)
$$

and the corresponding values of $T_{2 r}(x)$ are given by

$$
T_{2 r}\left(\frac{U_{r(m+2)}}{U_{r m}}\right)=\frac{U_{r(m+2} V_{r m}}{U_{2 r}}
$$

Proof: Since $q=1$ and $V_{2 r} \geq 3$, we can apply Theorem 4 in [1] to the sequence $\left\{V_{n}^{\prime}=V_{2 r r}\right\}$. The proof is similar to the one of the last theorem.

Clearly, André-Jeannin's results are special cases of Theorems 2 and 3.

ACKNOWLEDGMENT

The author wishes to thank the anonymous referees for their helpful comments.

REFERENCE

1. R. André-Jeannin. "On the Integrity of Certain Infinite Series." The Fibonacci Quarterly 36.2 (1998):174-80.

AMS Classification Numbers: 11B39, 26C15, 30B10

