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INTRODUCTION

A palindrome is a finite sequence (x,, x,, ..., X,) of numbers satisfying
(x5 %,)=(x,, X, .. %)
Let A, =|na]-|(n—-1)a] for some positive irrational &, and n=1,2,.... In [2], Kimberling
shows that there are infinitely many palindromes (A,, ..., A)) in the infinite A-sequence (or the
characteristic word of the Beatty sequence). For example, for a = (1++/5)/2, the A-sequence
begins 1,2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,.... So (A,,...,A;) is a palindrome
for
Ie{1,3,8,21,55,144,377,987, ...},
and (A,, ..., A,,) is a palindrome for
le {3,5,8,13,21, 34, 55,89, 144, 233,377, 610,987, ...}.

(The examples in [2] only partly match this observation.) In [1] Droubay proves that, if a =
(1++/5)/2, the number of palindromes of length 7 is exactly 1 if n is even, and 2 if 7 is odd (see
also [3], e.g.). Then, how can we describe all the palindromes in the A-sequence? This paper
gives an answer to this question.

MAIN RESULTS

As usual, we denote the continued fraction expansion of & by a =[a,;a,,a,,...]. Then its
n® (total) convergent p,/q, =[a,; @, ..., a,] is given by the recurrence relations

Pn=8,Dn +pn—2 (n = 0’ 1> )’ b= 0’ b= 1’
qn = An-1 +qn—2 (n = 0’ 1’ ): 9, = 1’ q-; = 0.
Define the n™ intermediate (or partial) convergents by p, ./q,, (r=0,1,2,...,a,—1), where

pn,r =1Pp1t Py and qn,r =1rqpt 4, ([3]> cf. [5]) SO, pn,a,,n = Pns+2 and qn,a,ﬁz =qn42-
We define the fractional part of x by {x} = x—|x].

Lemma 1: Let [ and m be integers satisfying /> 2m— 1. Then A, Apirs -5 Ap_ppyy) 1 @ palin-
drome if and only if {ka}+ {(/ —k)a} is invariant of k for k =m—1,m,....|(I+1)/2].

Proof: By definition, (A,,, A1, .-, A;_,,41) i @ palindrome if and only if, for k =m—1, m,
o LU+1)/2],
|G+ D+ (k- Dar) = ket + [0~ By,
or
{(k+Da}+{(-k-Da}={ka}+{(I-k)a}.

Of course, this also holds for £ =| (/+1)/2]+1, |[((+1)/2]+2,...,I-m.
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Lemma 2 (cf. Theorem 1, [2]): Let q be an integer with g >¢,. There are integers 7 and r with
n=0,1,.. and r=1,2,...,a,,, such that g=gq, . if and only if, for k=1,2,...,q—1, the sum
{ka}+{(q—k)a} is invariant of k, that is,

{ga}+1 ifniseven,
{ga} if nis odd.

Sublemma (Theorem 3.3, [5]): Let q=1,2,..,N-1. Ifq,,_,<N<gq,, 2<r<a,,,, n>0),
then

(ka}+{(g~k)a} = {

49,0 <{gqa}<{q,,a} ifniseven,
{9} <{ga} <{q,,,a} ifnisodd.
Ifg,,,<N<gq,; (n>0), then
{g,0} <{qa}<{q,,a} ifniseven,
{9,102} <{qe} < {q,a} if nis odd.
If N <qy, then {a} < {2a} < < {(N -1a}.
Proof of Lemma 2: 1f q = q, , for some integers n and 7, then by the Sublemma for £ =1, 2,

e g1,
{ka}>{qa} ifniseven,

{ka} <{ga} ifnisodd.
Thus, for k=1,2,...,q-1,
{ka}+{(qg-k)a}>{qa} if nis even,
{ka}+{(qg—Fk)a} <{ga}+1 ifnisodd.
Therefore, for k=1,2,...,9-1,

{ga}+1 ifniseven,

ka}+{(g-Fka} = {{qa} if n is odd.

Because {ka}+{(q— k)a} takes only the values {ga} or {ga}+1, the sum {ka}+{(q—k)a} is
invariant of k.
On the other hand, if g #¢, , for some integers n and , then there exist integers &’ and k"

with k' # k" and 0< k', k"< q such that {k'a} < {qa} < {k"a}. Hence,
{(k'a}+{(g-k"Na}<{ga}+1 and {k"a}+{(q—k")a}>{qa}.

Since {ka}+{(q—k)a} takes only the values {ga} or {ga}+1, the sum is not invariant of & for
k=12, ..,9-1,.
When m = 2, we have the first main theorem by using Lemmas 1 and 2.

Theorem 1: Let the continued fraction expansion of an irrational  be
a=[aya,a,..,a,..]

Then (A,, ..., A,_;) is a palindrome only for
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le,2,..,q, q+12q,+1,...,9,, ¢, +9,29,+q,,....q;, ...,
;.—\f_._J A ~ vl - ~ J

aQ a a3

gn-—l +qn—-2’ 2qn—1 + qn—Z’ (] qnl’ } - {1’ 2}

ap

Proof: Since 1/(a;+1) <{a}=[0;a,,a,,...]<1/a;, we have, for a, > 2,
Ay+-+A, = laa|-lal=alal-|a]=(@-D| ]
yielding A, =---= A, =|a] because A, =|a] or [a|+1. Hence, (4,,...,A,,) is a palindrome
for [=3,4,...,q,+1. For g;=1, itis trivial that /= 3.
Setn=0,1,2,... ByLemma2fork=12,..,q9,,-2(r=12,...,a,,),
{(k+Da}+{(g, , — (k+D)a} = {ka} +{(q,,, - k)a}.
Thus, by Lemma 1, (A,,..., A, ) is a palindrome for /=g, , (r=12,...,a,,,). Lemma 2 also
shows that there is no other possibility for /.

Example 1: Let a=e=[2,1,2,1,1,4,1,16,1,1,8,1,...]. Then the denominators of its conver-
gents are
(@0 G G s Gor ) = (1,3, 4,7, 32, 39, 71, 465, 536, 1001, ..).

Hence, (A,, ..., A._;) is a palindrome for

le{1,2,3 4, 7,11,18,2532, 39,
b e

S R S T S
4
71,110,181, 252, 323,394, 465, 536, 1001, ...}~ {1, 2}

={3,4,7,11,18,25 32,39, 71, 110, 181, 252, 323, 394, 465, 536, 1001, ...}.

In fact, A begins with 2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,.... One
can see the palindromes between v and ~ (included).
Next, we put m =1 to obtain the following result.

Theorem 2: (A,, ..., A)) is a palindrome only for
le{l,2,..,9, ;+9,2q0,+q, ... %, 44+ G3, 29, + G5, ..., G, ...,
;ﬂ_l - ~— ) \ ~ 1

a) as as
Gon* Gan-1> 2920+ Gan15 > Dane1y 51
az:+1
Proof: Since Aj=A,=--=A, =|a], (A,...,A) is a palindrome for /=1,2,...,q,. Set

n=0,12,.... ByLemma2fork=23..,q,,-1(r=12,..,4,,),

{ka} +{(q,,, - B)a} = {(k-Da} +{(q,,, —k +Da}.

And for k =1, {a} +{(g,,, —Da} ={q, .} is true only when n is odd. Therefore, (A,,...,A, )
is a palindrome for /=¢q,, , , (r =12, ..., a,,,;; n=1,2,...). By Lemma 2, all the possibilities for
[ appear here.
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MORE PALINDROMES

There are infinitely many palindromes that do not start from A, or A, in the A-sequence. In
other words, for any integer m, there exist infinitely many integers / with /> 2m—1 such that

(Am’ Am+1’ T Al—m+1)
is palindromic. Defining A, =| 0a|-|—a ], we have the following theorem.
Theorem 3: (A, A,, ..., Ay,) is a palindrome only for
le {ql’ g2 +q1: 2q2 +q1: ] %)a g4 +q3) 2q4 +q37 sees q51’ )

a3 as

an + Gan-1> 2q2n + D2n-1>-++» q2n+lla e }

Dntl
Proof: Since Ay=-|-a]=la]+1=4,, and Aj=4,=--=A, =|a], (4, ..,A,) isa
palindrome for /= ¢q,. By Lemma 2,
{(k-Da}+{(q,,,—k+Da}={(k-2a}+{(q,, -k +2)a}
holds for k=3,4,...,q, ., —1. For k=2, {a}+{(g,,—Da}=1{q, ,a} is true only when n is odd.
Consider the case £k =1. When nis odd,

(4,2} +{a} =9, ,@-|q, ,al+{a}

1>y
qn+l
Therefore, {g, ,a}+{a}={(q,,+Da}+1 or {g, ,a} = {-a}+{(g,,, + Da}. Of course, there are

no other possibilities for /.
Next, we shall consider the cases where m>3. From Theorem 1, we immediately obtain the

following.

1
= 1+{a}_(pn,r—qn,ra)> 1+_&1T_

Corollary: Form=3,4,...,(A,, Ayt ---» Ai_mer) 18 @ palindrome for
le{l,2,..,q,q+1,2q,+1,...,9,,4, + 41, 2q, + Gy, ..., G, ...,
e — X ~ 57 C 5, A
a ay as

gn—l +qn—2’ 2Qn-l + Tn-25--+5 qry }

ap

with />2m—1.

However, this does not necessarily show all the palindromes. If {ka}+{(/-k)a} is invari-
ant of kjust for k=m—1,m, ..., (I+1)/2], (A, Apsss - Ar_e1) already becomes a palindrome. *
For example, when m = 3, all the palindromes are described as follows.

Theorem 4: (A5, A,, ..., A,_;) is a palindrome only for
le{L,2,...,q,,+1,2q,+),...,9,,9, +4,2q, + 4y, ..., G35 .-
e —— < ~ 5" < % 5

a a, as

gn—l +qn-2’ 2qn—l + Dn-25--> qry }

p
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with /=5, or
I=q+2ifa 23, I=q,+2ifa=1anda, <2

Proof: Let n'be even. By Lemma 2, if {a}+{(q—1a}={qa} and, for k=2,3,...,9-2,
{ka}+{(q-k)a}={qa}+1, then (A;,A,, ..., A, ;) is a palindrome. Therefore, {a} <{ga} or
{(g-Da} <{ga}, and {ka} > {qa} (k=2,3,..,9-2).

If g < g, this is clearly impossible.

If g,,; <q <q,,, then, by the Sublemma, {g,a} <{qa} <{q,,a}. So, g,=1o0r q,=q-1.
But g, =1 is impossible because ¢ >5. The case g = g, +1 does not satisfy g > q,,,,.

If g,,,<g<gq,, for some integers n and r > 2, then, by the Sublemma, {g, ,_,a} <{qa} <

{g,.,a}. So,q,,=1orgq,,,=q-1 Butg,, =1Iisimpossible because ¢ >5. Suppose that
G -1 =9 —1. Since
{95, r10} <{((r = 2)n11 + @)} <{(gy, ;1 + D} = {ga}, _

we must have (r—2)q,.,+¢,=1, yielding r=2. Hence, n=0. Similarly, we have n=1 and
a,=1 when n is odd. Therefore, g=¢o,+1=q,+2 if q; 23; g=¢q,,+1=¢q,+2 if g, =1 and
a,>2. -

But it is not so easy to describe all the palindromes for general m>3. It is convenient to use
the following Lemma to find the extra palindromes in addition to those appearing in the Corollary.

Lemma 3: Let q #q,, , for any integers 7 and r. Suppose that the sequence {a}, {2a}, ..., {ga}
is sorted as

{wma} <{wa} <---<{ua} <{qa} <{uy,a} < <{u,_aj},
where {u,uy, ..., U, Uy, .. U} ={L,2,...,q—1}. Put

M = max min(u,,q—u,) and M'= max min(u,, g—u,).
i<j<k (w,9-u) k+1<j<q-1 (w9 -u))

If g>2M +3, then (A, ..., A,_,,41) is palindromic with m= M +2, M +3, s lg+D/2]
If g>2M'+3, then (A, ..., Ay_yy) is palindromic with m= M’ +2, M’ +3,...,| (g +1)/2].

Remark: The conditions ¢ >2M +3 and ¢ >2M'+3 do not hold simultaneously. For, either
M=q/2 or M'=q/2 when q is even; either M =(q—1)/2 or M’'=(q—-1)/2 when q is odd.
It is possible that both conditions fail for some ¢'s.

Proof: First of all, notice that {ka} and {(q —k)a} lie on the same side of {ga}. If {ka}<
{ga} <{(g—k)a}, then {qa}<{ka}+{(q—k)a}<{qa}+1, yielding a contradiction because
{ka}+{(qg—k)a} must be either {ga} or {ga}+1. Now, since {Ma} <{qa}<{ka} (k=M +1,
M+2,..,|(q+1)/2], we have

{Ma}+{(qg—- M)a}<{ga}+1 and
{ka}+{(g-k)a}>{qa} (k=M+1,M+2,..,|(g+1)/2)),
yielding
{Ma}+{(q—-M)a}={ga} and
{ka}+{(qg-k)a}={ga}+1 (k=M+1, M+2,...,|(g+1)/2]).
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Together with Lemma 1 we have the desired result. The proof for M’ is similar and is omitted
here.

Example 2: Let a=(~29 +5)/2=[55,5,5, ...]. Then the sequence {a}, {2a}, ..., {483a} is
sorted as
{431a} < {296a} < {161a} < {26a} < {457a} < {322a}

<{187a} < {52a} < {483a} < ............ <{462a}

all the others
<{327a} < {192a} < {57a} < {353a} < {218a} < {83a}
<{37%a} < {244a} < {109a} < {405a} < {270a} < 135a}.

When g =483, M = max(52,187,161,26) =187, and ¢ >2M +3. By Lemma 3, (A,, A,.1»
A, 1) is palindromic for g =483 with m=189,190, ...,242 only. Of course, M’ =241 does
not satisfy the condition g > 2M' +3.

When g =462, M =max(135,192,57,109,218,83)=218, and ¢ >2M +3. By Lemma 3,
(An» A1 Ag_miy) is palindromic only for g = 462 with m = 220,221, ...,231.

HOW TO FIND M OR M’ IN LEMMA 3

Lemma 3 shows that once M or M’ is given for an arbitrary positive integer g with g #g,, ,,
all the palindromes (4,,, ..., A,_,,.;) can be discovered without omission. It is, however, tiresome
to sort the sequence {a},{2a}, ..., {ga} as seen in Example 2. In fact, M or M’ can be deter-
mined without any real sorting.

Consider the general integer g with g # g, ; for arbitrary integers » and i. For example, put
q=rq,,+jq, r=12,..,a,.,, j=2,3,..,4a,,). Then, since

(g +ada} < <{(Gni+ )} <{q,2}
<{(1gp1 +29,)a} <+ <{(@nn1 +29,)0} <{2¢,a} <
< {(rqn+1 +.]qn)a} << {(qn+l +jqn)a} < {jqna} <o
when n is even (the order is reversed, and M’ replaces M, when n is odd; cf. [5]). M in Lemma 3
can be determined by
r-1q,./2+(-1)gq, ifrisodd,
M=:0q,,+(-1q,)/2 if 7 is even and j is odd,
(rq,. +J9,)/2 if  is even and j is even.

The condition in Lemma 3, g > 2M +3, is satisfied if g,,;, > (j—2)g,+3 (r: odd); ¢, >3
(r: even, j: odd). But this condition is never satisfied if 7 is even and j is even.
Similarly, for ¢ =rq,,, + jq, —i@,; * =1,2,....a,_5; j=2,3,...,8,,;i=12,...,a,), we have ,

((rq,,,, + jg,— (G +1q,_)/2 ifr:odd, j+a,, =0(mod2), i: even,

("1 + 79, —1q,-1) 2 ifr: odd, j+a,,; =0(mod?2), i: odd;
M= (rqn+l + U'— l)qn —qn—-l)/2 ifr: Odd’j +an+l =1 (mOd 2)’

(rq,.y+(-1g,)/2 if 7: even, j: odd,

(rq,.1+Jj9,-19,-1)/2 if7: even, j: even, i: even,

(i1 + JGn — (G +1q,-) /2 ifr: even, j: even, i: odd.

And the condition g > 2M +3 is satisfied when

2001] 71



ON PALINDROMIC SEQUENCES FROM IRRATIONAL NUMBERS

(q,.,>3 if7: odd, j+a,,, =0(mod2), i: even,
never satisfied ifr: odd, j+a,,, =0(mod?2), i: odd;

19,2 (i-Dgq,,+3 ifr:odd,j+a,, =1(mod2),
q,2iq, ,+3 if r: even, j: odd;

never satisfied if r: even, j: even, i: even;

(Fn123 ifr: even, j: even, i: odd.

Next, put g=rq,,,—jg, r=,2,...,a,,,+1, j=0,1,...,a,,,). Then M in Lemma 3 can be
determined by

r-Dq,,/2 if r is odd,
M =:(rq,.,—(j+1gq,) /2 ifrisevenandisodd,
q,.,—-Jg,)/2 if 7 is even and j is even,

because
{9} < 29,40} < < {rq,,a}
<A{Gns1 — )} < {211 —gn)a} <+ < {(rqp1—gn)a}
< {(qn+l - 2qn)a} < {(zqn+l - 2qn)a} << {(rqn+l - 2qn)a} oo
< {1~ J8} < {211 — Jg)a} <+ <{((Qp1 — Jg)} <--

when 7 is odd (the order is reversed, and M’ replaces M, when 7 is even).
The condition g > 2M +3 is satisfied when

92 Jg,+3  ifrisodd,
q,23 if 7 is even and j is odd,
never satisfied if 7 is even and j is even.

Similarly, for ¢ =rq,,, - jq,+iq,., r=12,...,a,,+L j=0,1,..,a,,i=0,1...,4a,), we have

((rq,y01 — Jg, +(—1Dq,) /2 ifr: odd, j+a,,; =0(mod2), i: even,
("1 — 79, +1q,-1) /2 ifr: odd, j+a,,, =0(mod2), i: odd;
M = (rqn+l - (J + l)qn + (21 - 1)qn-l) / 2 lf r. Odd’ .] + an+l =1 (mOd 2)’
(rq,.;—(+Vg,+2iq, /2 ifr: even, j: odd,
(rq,.1—Jja,+iq,,)/2 if 7: even, j: even, i: even;
("G4 — JGn + (G —1q,y) /2 if r: even, j: even, i: odd.
The condition g > 2M +3 is satisfied when
(g, >3 ifr: even, j+a,,, =0(mod2), i: even;
never satisfied if r: even, j+a,,, =0(mod?2), i: odd;
19,2 (i-Dg,,+3 ifr:even, j+a,, =1(mod2),
L, 2iq, +3 if r: odd, j: odd;
never satisfied if 7: odd, j: even, i: even;
(G123 ifr: odd, j: even, i: odd.

Generally speaking, M (or M") in Lemma 3 can be determined as follows.

Lemma 4: If M =(-—uqy,+(s—Dqy)/2 for g=---—uqy,, +sqy, then M =(--—uqy,, +
(s—Dgy)/2forg= - —ugqy, +sqy —tqy_, (t=12,...,ay).
If M =(-~uqy, +sqy)/2 for q=---—uqy,, +sqy, then
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M= {( — UGy +Sqy —1qy_1) /2 if 7is even,
G —ugy +sqy —(@E+Dgy_)/2 iftisodd,
for g =--—uqy, +sqy —1qy_;.
EM=(~@+Dqgy,+Q2s-1)gy)/2 for g=+-—ug,,, +5qy, then
Coo—ugy,+sqy—1tqy_1)/2 if s+ay,; =1(mod2) and ¢ is odd,

M =L(—uqy, +sqy—{+Dgy_)/2 ifs+ay,, =1(mod2) and ¢ is even,
(o =uqy+(s-Dgy —qy)/2  if s+ay,, =0(mod2),

for g =--—uqy, +sqy —1qy_;.
If M=(—@+D)qy, +25qy)/2 for g=---—uq,,, +sqy, then
G —ugy g +5qy —tqy.1)/ 2 if s+ay,, =0(mod2) and 7 is odd,

M=3(~uqy,+sqy—(+Dgy_)/2 ifs+ay, =0(mod2) and ¢is even,
(o—ugqya+(-Dgy—qy_)/2 ifs+ay,,=1(mod2),

for g ="+ —uqy, +sqy —1qy-1-

Lemma 4': If M =(+uqy,,—(s+Dqy)/2 for g=--+uqy,,—sqy, then M =(--+uqgy,, -

(s+Dqy +21qy_)/2 for g="-+uqy,,—sqy +iqy_ (=12,..,ay).
IfM=(+uqy,,—sqy)/2 for g="-+uqy,, —sqy, then

G tuqy - sqy Figy_y) /2 if #is even,
TGt ugyg —sqy +(E-Dgy_) /2 if tis odd,

for g = +uqy, —sqy +1qy_;.
EM=(C+@-1)qy,~qy)/2 for g="--+uqy, —sqy, then
Coruqy—sqy +iqy_1)/2 if s+ay,, =1(mod2) and # is odd,
M =(+uqy,—sqy +E-Dgy1)/2 if s+ay,; =1(mod2) and #is even,
(o +uqyg—(+Dgy +(2t-Dgy_)/2 if s+ay,, =0(mod2),

for g =" +uqy, —sqy +1qy_,.
IfM=(C+@-Dqy,)/2 for g=--+ugy,, —sqy, then

CFuqy,—sqy +tqy_1)/2 if s+ay,; =0(mod2) and #is odd,
M={(+uqy,—sqy +{-Daqy_1)/2 if s+ay,; =0(mod2) and 7 is even,
(- gy —(s+Dgy + (2 -Dgy) /2 if s+ay,, =1(mod2),

forg=---+uqy, —Sqy +1qy_;.

Example 3: There is a reason for our providing two alternative expressions for each integer q.

For instance, let
V29 +5
2

For g=3q,—q,+4q,=3-26-5+4-1=77, we have M = (3g,—q,+3q,)/2 =38, not satisfying
g=2M+3. However, for q=2q,+5g, =77, we obtain M’=(2q,+4q,)/2 =36, satisfying
g =2M"+3 and leading to the conclusion that (4,,...,A,_,.) is palindromic for g =77 with
m =38 and 39.

=[5,5,5,5,...].
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SUMMARY

When g =g, ,, the palindromic sequences (4,,, ..., A,_,.;) can be found by Theorem 1, 2, 3,
4, or the Corollary. When g # g, ,, all the other palindromes can be discovered by Lemma 3 with
Lemma 4 and Lemma 4".
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