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1. INTRODUCTION 

A frequently occurring problem in the theory of binary quadratic forms is to determine, for a 
given integer m, the existence of solutions to the Diophantine equation 

f(x, y): = ax2 + hxy + cy2 = m, 

having discriminant A = b2 - 4ac. In the case of a strictly positive nonsquare discriminant, it is 
well known that the occurrence of one solution to f(x,y) = m implies the existence of infinitely 
many other solutions. Using this fact, one may attempt to investigate the solvability of the follow-
ing family of binomial Diophantine equations, 

where d e N\{0}, as they can be recast into a quadratic form by completion of the square to 
obtain the following Pell-like equation 

X2-dY2 = l-d, (2) 

where X = 2x +1 and Y = 2y + 1. Indeed, as (1, 1) is a solution of (2), there will exist infinitely 
many solutions (X, Y) when A = Ad > 0 and is nonsquare. Unfortunately, in order to relate this 
to the solvability of our family of Diophantine equations, we must demonstrate that within the 
solution set of (2) there exists an infinite subset of solutions (X, Y) for which both X and Y are 
odd integers. To address such a problem, it will be necessary here to exploit a group action on 
the solution set SP: = {(x, y) e Z2 : f(x, y) = m}, which allows one to generate an infinite subset of 
elements in 5f from a given solution in SP. In the case of (2) for a nonsquare d e N\{0}, an 
infinite subset of odd solutions can be generated from (1, 1). Although the solvability of (1) has 
been proved using elementary arguments (see [1]), the approach taken here is more direct and can 
be applied to a wider class of Diophantine equations. To illustrate, the above method will be used 
to establish, for each m e Z\{0}, the existence of infinitely many integer solutions to the more 
general family of equations 

x(x+m) = dy(y + fn), (3) 

when d e N \ {0} is nonsquare. The subset of solutions generated from the above group action 
are often referred to within the literature as orbits since they are closed with respect to the group 
action. It is well known (see [2]) that the solution set £P, when nonempty, is equal to a finite 
union of distinct orbits, each generated from a unique solution in &). Consequently, in addition to 
proving the solvability of (3), we shall derive an asymptotic formula for the maximum number of 
distinct orbits that are required to completely describe £P in the case of (3) as d -> oo through 
nonsquare values. Despite the reliance in this paper on algebraic methods, it is possible to 
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demonstrate the solvability of the original class of Diophantine equations, for d = 2,3, by a more 
elementary argument than that used in [1]. This method, which has already been applied to the 
case d = 2 in connection with the study of Pythagorean triples (see [3]), will result here in an 
algorithm for generating all positive integer solutions for the case d = 3. As an interesting aside, 
we further provide what the authors believe to be an unknown characterization for the solutions 
of the "negative Pell equation" X2 -2Y2 = -1 in terms of the set of square triangular numbers; 
this follows as a direct consequence of the analysis in [3]. 

2. MAWMESULT 

We begin in this section by introducing some well-known concepts and results from the 
theory of binary quadratic forms that will be required in describing the group action on the set 
^ = {<X y) e Z2 : f(x, y) = m}. The background material that follows has been taken from [2], 
where quadratic forms are treated from the perspective of quadratic number fields and their rings 
of integers. In what follows, assume A is a positive, nonsquare integer with A = 0 (mod 4). 

Definition 2.1: Let Q(-jA) be the quadratic extension of Q obtained by adjoining VA . Define 
conjugation a and norm N as follows: For x9y eQ and a = x+jVA, set a(a) = x-y^fK and 
N(a) = aa(a) = x2-Ay2eQ. 

Using the well-known fact that a:Q(-J&) —»<2(VA) is an automorphism, it is easily deduced 
that the norm map N is multiplicative. In the theory of binary quadratic forms, the Pell equation 
plays a central role. We now introduce this equation and briefly examine the algebraic structure 
of its solution set. 
Definition 12: The Pell equation is given by /A(x, y) = l, where fA is an integral binary form as 
follows: 

fA(x,y) = x2-jy2, 

with discriminant A. The negative Pell equation is /A(x, y) = -l. One also defines Pell±(A) = 
{(x, y) e Z2 : /A(x, y) = ±1} and Pell(A) = {(x, y) e Z2 : /A(x, y) = 1}. 

For the above values of the discriminant A, it is known that Pell(A) has infinitely many 
elements. More importantly, all solutions with positive x and y can be generated as a power of a 
minimal "fundamental" solution. These results can be deduced by analyzing the Pell equation 
from the context of the subring 0A of Q(-jA) having the underlying set {x+ypA:x,y eZ} , 
where pA = VA/4. We expand here a little on this analysis, which not only leads to the group 
structure of Pell(A) but will also help to effect the desired group action of SP. 

As every ordered pair (x, y) e Pe//±(A) can be uniquely represented as an element x+ypA e 
0A, one sees from the calculation N(x+ypA) = /A(x, y) that solving the positive or negative Pell 
equation is equivalent to finding the elements in ©A having norm equal to ±1. However, from the 
multiplicativity of N, it is easily established that N(a) = ±1 for a e ©A if and only if a is a unit in 
the ring ©A, Consequently, if one denotes the group of units in 0A by 0 A , then y/:=x+ypA 

defines a bijection y/: Pell^iA) -> 0A. Hence, Pe//±(A) is a group, as it is in bijection with the 
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commutative group ©A. Moreover, by using y/ to map the group law from ©A, it is easily seen 
that the product of solutions in Pell±(A) is given by 

(u,v)-(U9V) = (uU+jvV9uV + vu\ (4) 

If we further define ©AJ = {a G ©A : N(a) = 1} and ©A + = {a G ©A : a > 0}, then restricting 
y/ to the subgroup 6A>1 of ©A gives an isomorphism Pell(A) = GAl. The cyclic nature of the 
group Pell(A) can be deduced by first noting that ©A>+ contains a minimal element s over all ele-
ments in ©A> + that are greater than unity (see [2]). Using this fact, it can be easily shown, as 
©A,+ £ (°> °°) = UW€Z|>W, sn+l), that any a G©A>+ is of the form a = s" for some neZ. Since 
any ft - +&1 for some n GZ. Thus, if one formally defines 

is if#(s) = l, 
TA~[S2 if N(s) =-I, 

then Glx = {±rm
A :meZ} = Pell(A). 

Remark 2.1: Note that, if a = ©A \GX
A>+, then as -1 = - l + 0pA G ©A and -a G©A> + , one must 

have -a = +£w or a - +8" for some neZ. Consequently, if s = a+bpA, then from the bijection 
V^:Pell±(A)-^Gl it is clear that Pell±(A) = {±(xrnyn):n EZ}, where xn+ynpA = (a+bpA)n. 
Similarly, the solutions in Pell(A) = {±(xn,yn):n eZ} can be calculated from xn+ynpA = rn

A. 
While in the case in which N(e) = -l the solutions in Pell~(A) are obtained from the subset 
{±(x2n+hy2n+i):n eZ} of Pell±(A) as they are the only ordered pairs in Pell±(A) for which 
N(y,) = -l. 

To help define the group action on &), we proceed in a similar manner to the above, by first 
generalizing the construction of the ring ©A. The definition given below is motivated by the 
factorization 

f(x,y) = -^a+y-^j^a+y-^-J. 

Definition 2.3: The module Mf of an integral binary quadratic form f(x,y), which has discrim-
inant A, is the ©A module having the underlying set {xa +y(b + VA) /2:x,yeZ}c: Q{4A). 

It is the closure of Mf under multiplication by elements in ©A that most interests us here. 
The important calculation is {u + vpA)(xa+y(b + VA) 12) = (x'a+y'(b + VA ) / 2), where 

[yr[ ai u+$v)w (5) 

Equation (5) can be used to define an action of the group ©A x on SP, which, given an (x, y) G $, 
one can generate an infinite set )or orbit) of solutions in ^ by repeated application of (5). To see 
this, first observe that any (x,y) G ̂  is uniquely represented as an element ax+y(b + 4A)l2 G 
Mf. Now, as in the case of the Pell form, one can set y/(x,y):=xa+y(b + jA)/2, from 
which it is immediate that N(y/(x, y)) = af(x, y). Hence, y/ defines a bijection y/: $P -» {y G 
Mf : N(y) = am}. If we formally define the action of an element a G©A?1 on the set ^ by 
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a'(x>y):=V^\aV(x>y))> t h e n from t h e multiplicity of N it is clear that N(y/(a• (x,y))) = 
N(ay/(x, y)) = am, consequently, a • (x, y) e SP. As ©A> ! is a cyclic group of infinite order, the 
set y , when nonempty, will at least contain the infinite subset of solutions in the orbit given by 
®A, 1' (*> f) = i±Tl' (x> y\ ri GZ}. Also, from the bijection y/(x, y), the elements in ©A> x • (x, y) 
can be calculated explicitly by repeated application of (5). We now apply the above group action 
to establish the solvability of the general Diophantine equation in (3). 

Theorem 2.1: Suppose d>lis a nonsquare integer and m eZ\{0}, then there exist infinitely 
many solutions to the Diophantine equation 

x(x+m) = dy(y + m). (6) 

Proof: By completing the square, the Diophantine equation in question can be rewritten in 
the form 

X2-dY2=m2(l-d), (7) 

where X = 2x + nt and Y = 2y+m. When m = 2s, equation (7) can be reduced further to the 
quadratic form 

Z2-dW2 = s2(l-d), (8) 

where Z = x + s and W = y + s. Now, for the assumed values of-d, equation (8) has the non-
square discriminant A = 4d and so an infinite number of solutions can be generated from the orbit 
®A, i" (s> s) = {(Z,W) = ±r"A -(s9s):n GZ}. Hence, the original Diophantine equation in (6) will 
have at least the infinite subset of solutions given by {(x, y) = (Z - s,W - s): (Z,W) G ©^ x • ($, $)}. 
Ifm is odd, then the question of solvability of (6) is reduced to knowing whether there exist infi-
nitely many odd solutions to (7). We now examine the orbit of solutions generated by the action 
of ©^! on (m, m). If rA = u + vpA, then, by (5), the sequence of elements {rA • (m, m)}^=0 can be 
generated using 

faM" ?£) <9> 
with (x0, yQ) = (m, m). We claim that, for all nonsquare d > 1, the sequence {(xn, Jw)}^0 contains 
infinitely many odd ordered pairs. To demonstrate this by induction it will be convenient, since 
u2 = 1 + dv2, to deal with the following cases separately. For brevity, one need only attend to the 
inductive step in each case. 
Cascl. 2|rf 

In this instance, u and v will be of opposite parity. If, for some n>0, it is assumed that 
(x„, yn) is an odd ordered pair, then by (9) both xw+1 and yn+l are the sum of an odd and even 
number and so must be odd. 

Case2„ 2\d 
Now u will always be odd irrespective of the parity of v. If v is even, then the oddness of the 

ordered pair (x„, yn) follows by an analogous argument to the one above. For v odd, we shall 
establish that all the odd solutions are contained in the subsequence {(x2w, j^JK^o- Therefore, 
suppose x2n and y2n are odd for some n>0, then by (9) x2w+1 is odd while y2n+i is even. 
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However, by another application of (9), one finds that both x2n+2 and y2n+2 are the sum of an odd 
and an even integer and so must be odd. D 

Corollary 2.1: Suppose d>\ is a nonsquare integer and Tn denoted the 71th triangular number, 
then there exist infinitely many pairs of positive integers (m, n) such that Tm = dTn. If d is a per-
fect square then, in general, only at most finitely many solutions (m, n) can be found while, in 
particular, non exist when d = p2s for p a prime. 

Proof: The first statement follows from setting m = 1 in Theorem 2.1. Suppose n o w i is a 
perfect square, with m = 4d. Clearly, the equation f(X, Y) = l-d, where f(X, Y) = X2 -dY2 

can have only finitely many integer solutions due to the factorization f(X, Y) = {X-mY)(X + 
mY). In the case of d = p2s, consider equation (1) given here as JC(JC + 1) = dy(y + 1). If one 
assumes to the contrary that a positive integer solution (JC, y) exists, then p2s | x(x +1). However, 
this can only be true if either p2s | x or p2s j (JC +1) as (x, x +1) = 1. Suppose JC = mp2s for some 
fixed m GN\{0}, then y must be a root of the quadratic 0 = y2 +y - (m2p2s +m). However, as 
the discriminant of this equation satisfies the inequality 

(2psm)2 < 4p2sm2 + Am +1 < (2psm+l)2 

and so cannot be a square, one deduces that y &N'. A similar contradiction follows if x + l = 
mp2s, as the discriminant of the resulting quadratic satisfies the inequality 

(2psm -1)2 < 4p2sm2 -4m + l< (2psm)2. • 

Remark 2.2: One can use the above argument to compute an infinite subset of solutions to the 
Diophantine equation x(x+m) = dy(y + m) for nonsquare d via (5). All that is required is the 
determination of the element TA = u + vpA, which will result upon finding the unit f e O ^ + . This 
can be achieved by applying the following method taken from [2]. Consider the quadratic form 
f4d(x>y) = x2-cty2, which has a nonsquare discriminant 4d>0. If y is the smallest positive 
integer such that one of the dy2 +1 or dy2 - 1 is a square and JC is the positive integer root, then 
e = x+y*Jd. 

When determining the full solution set one will, of course, have to find all the distinct orbits 
that comprise Sf. This can be achieved because a finite list containing the generators of each such 
orbit can be constructed using the following result (see [2]). 

Proposition 2.1: Let /(JC,y) be an integral form with discriminant A and suppose m&O GZ. If 
r = TA is the smallest unit in ©^ x that is greater than unity, then: 

(i) Every orbit of integral solutions of /(JC, y) = m contains a solution (x, y) e Z2 such that 
0<;;<tf , where tf=|awr/A|1/2(l-^ 

(a) Two distinct solutions (JC1? yx) * (x2, y2) E Z2 of the equation /(JC, y) = m such that 
0 < y< U belong to the same orbit if and only if yx = y2 = 0 or yt =y2=U. 

Since every orbit of solutions to /(JC, y) = m contains an element in the finite set 
&>' = {(x,y):0<y<U}, 
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any (x, y) e SP' can be listed and sorted into orbits using Proposition 2.1. The set SP' which con-
tains the representatives of the orbits can be viewed as a finite list from which the solutions in if 
can be generated from the group action. In the case of (6), it is of interest to estimate the maxi-
mum number of distinct orbits needed to describe SP as d -> oo. Using the following result, which 
is taken from [4], we can obtain an asymptotic bound for the maximum number of possible orbits 
for the Diophantine equation in (6). 

Lemma 2.1: If rA = u+pAv is the smallest unit in ©A? t that is greater than unity with A = Ad, 
then u ~ as d -> oo through nonsquare values. 

Theorem 2.2: For a given m e Z\{0), the maximum number of distinct orbits for the equation 
x(x+m) = dy{y + rri) is given by [M(d)], where 

M(d)~ V2 
as d -> oo through nonsquare values where k - m 12 form even and k = m for k odd. 

Proof: We first note that no proper orbit can be generated from the solution (0,0). Thus, 
from Proposition 2.1, the maximum number of distinct orbits is equal to the total number of posi-
tive integers less than or equal to U, that is, [U]. Now when m = 2s and d is nonsquare, the 
solutions of the Diophantine equation in (2) arise, directly from the orbits of Z2 -dW2 =s1(l-d) 
via a translation of these orbits by subtraction of the ordered pair (s, $). Consequently, we have 
by Lemma 2.1 that 

M(d)-. Ad 

1*1 
V2 

l-d 
d 

1/2 

1/2 

i+-L 
1/2 

_l*l 
2 

l-d 
d 

111 
| r A +2 + o-(rA)| 1/2 

M | M + 1 | i / 2 ^ ( ^ yfd+0(l)y/2 

as d-^oo. When m is odd, the solutions are derived from the odd solutions in the orbits of 
X2-dY2 =m2(l-d). Thus, if in each of these orbits there exists an infinite subset of odd solu-
tions, then the maximum number of distinct orbits is again [U] and the asymptotic bound will 
result as in the above by replacing s by m. • 

3. AN ELEMENTARY APPROACH 

In contrast to the algebraic methods used previously, we present in this section an alternate 
technique for demonstrating the solvability of (1) for the cases d = 2,3. Although of interest on 
its own, the elementary approach employed here has the advantage of allowing one to deduce a 
characterization for the solutions of the negative Pell equation in terms of square triangular 
numbers. We first observe that, if 0 < x < y, then x(x +1) < dy(y +1), while, if x > dy > 0, then 
x(x +1) > dy{y +1). Consequently, for an arbitrary y e N \ {0}, the only integer values which x 
may possibly assume in order that x(x +1) = dy(y +1) are those in which y < x < dy. So, if (x, y) 
is a solution, then there must exist a fixed t e N\{0} such that x = y + t and (y + t)(y + t + l) = 
dy(y + X). With the introduction of the parameter t9 one can then solve for y in terms of t and so 
the question of solvability is necessarily reduced to knowing whether the discriminant of the 
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associated quadratic is a square for infinitely many t. We now apply this method of the case 
d - 3. The following technical lemma will be required to establish the necessary condition for the 
existence of integer solutions. 

Lemma 3.1: Suppose (v, u) is a positive integer solution of the Pell equation v2 - 3u2 = 1. Then 
(v, u) = (2, l)w, for some n > 1, where the product of solutions is taken in the sense of (4). 

Proof: Applying the method in Remark 2.2, one deduces for A = 12 that the element 
e G©A,+ ls given by s = 2 + V3. As N{s)-\, we have rl2 = s and so Pell(A) = {±(xn,yn): 
n GZ}, where (xn +.y„V3) = (2 + J3)n. Thus, the positive solutions are given by (xn,yn), where 
n e N\{0}. Now, since (xw+1,yn+i-j3) = (xn +ynj3)(2 + j3), one sees that xn+l = 2xn + 3yn and 
yn+l = xn+ 2yn. Consequently, via the product formula for solutions in (4) we have (xw+1, yn+1) = 
(x„, yn) • (2,1), from which it is deduced that (xw, yn) = (2, If as (x1? yx) = (2,1). • 

Theorem 3.1: There are infinitely many positive integer solutions to (1) in the case d = 3. More-
over, all such solutions (x, y) are given by 

2 ' 2 

where the ordered pair (vw, un) is generated recursively using 

teM> * : ) • <"•> 
with (^,1^) = (2,1). 

Proof: We first prove existence. Suppose (x, y) satisfies the Diophantine equation, then by 
the above method there must exist a fixed t > 0 such that x = y + t. Substituting this expression 
into the Diophantine equation and simplifying yields the quadratic 0 = 2y2 +2(1- t)y-(t2 + t). 
Remembering that j is assumed positive, one finds upon solving this equation that 

y-J-^f^. („) 
However, from Lemma 3.1, there are infinitely many sj GN such that 3t2 +1 = s1; moreover, by 
a simple parity argument, the numerator in (11) can be shown to be an even integer for all such t. 
Consequently, there are infinitely many integers (x, y) that satisfy 5(5 + 1) = 3y(y +1), all of which 
may be determined via (11). It is now a simple task to construct the accompanying algorithm. 
Set t = vn and s = un as in Lemma 3.1, then, clearly, from (11) we have 

v w - l + J^" vn+u„-l 3v„+w - 1 
V = —— v " = — g VL X = V + V = ^ 
y 2 2 ' n y 2 

Finally, as (vn+h un+l) = (2,1) • (2,1)" = (2,1) • (vn, un), one deduces from the product formula in (4) 
the recurrence relation of (10). D 

For larger values of d, the above method cannot be applied due to the increased difficulty 
in verifying the existence of infinitely many t for which the discriminant of (y + t)(y + t + T) = 
dy(y + \) is a square. To conclude, we examine an application of our elementary method to 
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uncover a curious connection between the solutions of the Diophantine equation X2 ~2Y2 = -1 
and the sequence of square triangular numbers. Following the above analysis it is easily seen, in 
the case d = 2, that for (x, y) to be a positive integer solution of x(x +1) = 2y(y +1) there must 
exist a t > 0 such that x = y +1 with 

2 f - l + V8? + l 
y- 1 
7 2 

Since y is an integer, %t2 +1 must be an odd perfect square. Consequently, we require 8/2 -f 1 = 
(2/w + l)2 for some m e JV\{0}, so that t and m satisfy 2t2 =m(m + f). Thus, by denoting Tn 
as the square root of the /1th square triangular number, of which there are infinitely many, one 
deduces for some n e N\{0} that 

2 ? J ~ 2 " l j 

Using these relations, one can deduce the following characterization. 

Theorem 3.2: All positive integer solutions (X, Y) of the negative Pell equation X2 -2Y2 = -1 
are of the form 

(4r„+V8tf+i,2r„+V82*TI), 
where Tn denotes the positive square root of the rfi" square triangular number. 

Proof: Recall that the negative Pell equation X2 ~ 2Y2 - - ! , where X = 2x +1, F = 2 j +1, 
can be derived by completing the square on x(x +1) = 2y(y +1). The result will follow from (12) 
if one can show that all the positive solutions (X, Y) consist only of odd integers. To establish 
this, we first observe from Remark 2.2 that, for A = 8, the element e GO^,+ ^S given by e = 1 + 
42 . Therefore, PelPfi) = {±(xn,yn):n GZ}, where xn + yn42 = (1 + ̂ 2)w. However, since 
Nil+ 42) = - 1 , the positive solutions of the negative Pell equation must be given by (Xn9 YJ = 
(*2H+I^2II+I)» w h e r e n^N. Moreover, since x2n+3+y2n+342 ^(l + 42)2(x2n+l+y2n+l42), one 
can see that the solutions (Xn9 Yn) satisfy the recurrence relation 

The desired conclusion follows now by a simple inductive argument. D 
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