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1. INTRODUCTION 

Let Z and IR (C) denote the ring of the integers and the field of real (complex) numbers, 
respectively. For a field F, we put i7* = F\{0}. Fix A GC and B G C*, and let X(A, B) consist 
of all those second-order recurrent sequences {wn}neZ of complex numbers satisfying the recur-
sion: 

wn+i = Aw„ ~ Bwn-i (i.e., Bwn_Y = Awn - wn+l) for n = 0, ± 1, ± 2,.... (1) 

For sequences in SE(A,B), the corresponding characteristic equation is x2 - Ax + B-Q, whose 
roots {A ± ̂ A2-4B) 12 are denoted by a and /?. If As R* and A = A2 - 4B > 0, then we let 

A-*e(AhfK and p=A + sgorhfA (2) 
2 r 2 w 

where sg(^l) = 1 if A > 0, and sg(A) = -1 if A < 0. In the case wx = ocw0, it is easy to see that 
wn = anw0 for any integer n. If A - 0, then w2n = (-B)nw0 and w2n+l = (~B)nwl for all n G Z. 
The Lucas sequences {u„}neZ

 a n^ {v«}«ez m ^(A B) ta^e special values at n = 0,1, namely, 

u0 = 0, ̂  = 1, v0 = 29vl = A. (3) 
It is well known that 

{a-P)un = an-pn and vn = an+pn forn G Z . (4) 

If ^ = 1 and B = - 1 , then those Fn = un and L„ = vn are called Fibonacci numbers and Lucas num-
bers, respectively. 

Let mbea positive integer. In 1974,1. J. Good [2] showed that 
i F m~l ( n2" F 
1 _ i 2W-1 : ^ V \~l) - 2" - j , i.e., 2* F - p 

n=0 J 2n 2m «=0 2"+1 2"1 

V. E. Hoggatt, Jr., and M. Bicknell [4] extended this by evaluating S ^ F ^ i , where k is a posi-
tive integer. In 1977, W. E. Greig [3] was able to determine the sum EJJLowjt2n w** B = -\/m 
1995, R. S. Melham and A. G. Shannon [5] gave analogous results in the case B = 1. In 1990, 
R. Andre-Jeannin [1] calculated Z^Li 1 /(%„%(„+!>) and Y%=il/(vknvk(n+i)) m t h e c a s e B = -l and 
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Foundation of the People's Republic of China. 
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2\k, using the Lambert series I(x) = Z^=1x"/(l-xw) (|x| < 1); in 1995, Melham and Shannon 
[5] computed the sums in the case B = 1, in terms of a and /?. 

In the present paper we obtain the following theorems that imply all of the above. 

Theorem 1: Let mbea positive integer, and/a function such that f(ri) e Z and wf{n) ^ 0 for all 
W = 0 ,1 , . . . , J ? I . Then 

y D UAf(n) _n Uf(m)-f(0) 
w=0 Wf(n)Wf(n+l) Wf(0)Wf(m) 

where Af (n) = f(n +1) - f(ri). If wx ̂  ow>0, then 

r C-l)w f 2 a m ^/(WV(.)1 1_ (a™ 
n=0 Wf(n) wx - awQ W /(»+!) wl-aw0 Vwf(0) 

-(-If 
yf(»>A 

W fMj 

(5) 

(6) 

Theorem 2: Suppose that A, B e R* and A = A2 - 4B > 0. Let / : {0,1,2,...} -» {k e Z: wk * 0} 
be a function such that lim„^+00 f{ri) = +oo. If Wj ^ ow0, then we have 

a /(0) y n utf{n) = 

£o W/(n)W/(«+l) (Wl ~ ^ ( > / ( 0 ) 

= y (-iff 2g**> ^/(WV(.) 
(7) 

*=0 Wf(n) wl-awQ f(n+l) 

In the next section we will derive several results from these theorems. Theorems 1 and 2 are 
proved in Section 3. 

2. CONSEQUENCES OF THEOREMS 1 AND 2 

Theorem 3: Let k and / be integers such that wkn+l * 0 for all n = 0,1,2,.... Then 
m-\ 

%s B >kn 
_ ukm 

n=0 Wkn+lWk(n+l)+l WlWkm+l 
forallw = l,2,3,... . 

If A, Be R*, A2 >4B,k> 0, and wx * aw0, then 

a 

and 

«=o 

»=0 Wkn+lWk(n+l)+l 

{-ak)n , , ai (-Bk)" 
w, kn+l ™kn+l™k(n+l)+l) Wl 

(8) 

(9) 

(10) 

Proof: Simply apply Theorems 1 and 2 with f{n) = kn + l. 

Remark 1: When 5 = 1, l = k, and {wj = {uj or {vw}, Melham and Shannon [5] obtained (8) 
with the right-hand side replaced by a complicated expression in terms of a and fi. 

Theorem 4: Let A,B GM* and A = A2 - 4B > 0. Then, for any positive integer k, we have 
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i^-S-<HSMi 2k \ 

and 
(-£*)" _sgQ4) 

n=l VinV4(n+l) VA 
V8A: 

a t-fHf-j-«(^l+i 4fc 

( l i ) 

(12) 

/ * » / : Clearly, \a\ < \fi\ and / ? - a = sg(^)VA. Thus, w„ = (fin- a")I (ft- a) and v„ = 
a" + P" are nonzero for all neZ\{0}. Obviously w, -au 0 = 1 and v} -av 0 = A-2a = fi-a = 
sg(A)yfK. Applying Theorem 3 with / = k and {w„}B6Z = {un}neI or {v„}„eZ, we then obtain, 

»=1 

(-fl*)" o (-aky k\n\ 

and 

Clearly, 
»=i 

i-B*y 
k 

V VknVk(n+l) 

V UknUk(n+l) 

>k\n 

-2-
Hkn 

a 

k\n oo i-ay _ 

2 (-«*)") g*/vt 

sg(̂ )VA vfcB J sg(̂ )VA-

(-akr _ ,„_ ̂ v (-i)"(«/^)to 

«=i "itn 
YOff-q) v ~ a ' =(B-d)Y y-W'P* hi V-«*" V a)h \-(aipt 

( \ 
f (aipf f (a I (If" 
±1 \-{aiP)kn ti \~(aipT 

= 0»-a) 

= 0?" a) 

V 2|« 

21,f a 

V V 
a 

r , i £ j =«MWSl*lla» 
,4* 2& 

5* 

I f |x |< l , then 
OO ft OC 

£ j l J l + x- £ 1 + *2" £ 1 + * 
00 f x2" 2x4w ^ °° ( xn 

= 2t[ [l-x2n ~ l-x4")^ [l-x" l-x2" 

Jin 

2x 

Thus, 
- 2L(x2) - 4L(x4) - L(x) + 2L(x2) = -4L(x4) + 4L(x2) - L(x). 

k^n -=- „ (aip)kn 

^ vta hak" + pk" ti l + (a/p)k" 

= -4Z 
„2fc 

a r<*l\+4L\£L-\-L 

= -4L 
B*k + 4L 

ra4k] (a2k 

Combining the above and noting that ukvk = tilk, we then obtain the desired (11) and (12). 
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Remark 2: If \x\ < 1 then 

= L(x2) - (L(x) - 2L(x2)) + (Z(x2) - 2£(x4)) = -2L(x4) + 4L(x2) - L(x). 

Thus, Theorem 2 of Andre-Jeannin [1] is essentially our (11) and (12) in the special case B = -1 
and 2\k. 

Theorem 5: Let k, 7, m e Z and 7, m > 0. If w(/fc+w) * 0 for all n = 0,1,..., m, then 

*H-1 ,6 7 U(k+„\ B l U,k+m\ (k\ 
Z = LLJlkl. (13) 
„=o w(*j,,)M;(*+7+1) w(f)w(*Tm) 

Aw/* Let /(/!) = (*+") for n e Z. It is well known that A/(/i) = (*+?+1) - (*^) = (£?). So 
Theorem 5 follows from Theorem 1. 

Remark 3: In the case k = 0 and 7 = 2, (13) says that 

y 1^0 _ ^( f f l - l ) /2 . j 4 v 

«=0 Wn(n-l)/2Wn(n+l)/2 W0Wm(m-l)/2 

Theorem 6: Let a, k be integers, and m a positive integer. Suppose that wka„ ^ 0 for each n = 0, 
1,..., /w. Then 

5=1 5 t o V n „ B\, m n 
V fc(a-l)a" _ k(am-l) ^ 5 ) 

Proof: Just put / (») = Aa" in Theorem 1. 

Remark 4: In the case a = 2 and (w„} = {«„}, (15) becomes 

»=1 BkT _ tfu^^ 

« = 0 Mjfc2"+1 UkUk2m 

(16) 

This was obtained by Melham and Shannon [5] in the case B = l and k > 0. In the case a = 3 and 
{wj = {v„}, (15) turns out to be 

m-l r>k3" Jpu 

w = 0 KAr3"+1 ^ fc3m 

since w^ = w ^ for A e Z. 

Theorem 7: Let £ be an integer and m a positive integer. If wJt(2
n-i) * ° ^or e a c ' 1 « = 0,1,..., m, 

then 

w=0 W ^(2"- l ) W fc(2 n + 1 - l ) W 0 W ^ ( 2 ' " - l ) 

Proof: Just apply Theorem 1 with / («) = *(2'f -1). 
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3. PROOFS OF THEOREMS 1 AND 2 
Lemma 1: For kj,m e Z, we have 

and 

Proof: (i) Fix fc, I e Z. Observe that 

(19) 

(20) 

w 
>4i+i 

wt k _ w^ wk_x)( A 1 
wz ui-\ -B 0 

A l v 

-B 0 

Taking the determinants, we then get that 
W: k+1 Wfr w. fc-z+1 wk-l 

1 0 
4 1 

-B 0 

i.e., Wfcf//+1 - Wk+iui ~ ^wk-i • Thus, (19) holds for m = 0,1 
Each side of (19) can be viewed as a sequence in ££(A, B) with respect to the index m. By 

induction, (19) is valid for every m- 0,1,2,...; also (19) holds for each m- - 1 , - 2 , - 3 , . . . . Thus, 
(19) holds for any msZ. 

(ii) By induction on /, we find that wl+l - awl = (wx - aw^/31. Clearly, both sides of (20) lie 
in £(A9 B) with respect to the index k. Note that, if k = /, then both sides of (20) are zero. As 

(wx - aw0)Bl = (wx - aw0)j3lQl = (wM - aw^a1 = alwl+l - al+lwh 

(20) also holds for k = / +1. Therefore, (20) is always valid and we are done. 
Proof of Theorem 1: Let d e Z. In view of Lemma 1, for n - 0,1,..., m — 1, we have 

% + / ( w + l ) Ud+f(n) _ Ud+f(n+l)Wf(n) ~ Ud+f(n)Wf(n+l) 

W / (n+1) W /(«) Wf{n)Wf(n+\) 

Wf(n)Ud+f(n)+Af(n) ~ Wf(n)+Af(n)Ud+f(n) _ B " W-dU£f(n) 

Wf(n)Wf(n+l) Wf{n)Wf(n+l) 

It follows that 

and that 
m-l 

«-i Bd+mw_,u, 
n=0 Wf(n)Wf(n+l) 

m-l 
du£f(n) _ y> U, ld+f(n+l) ud+f(n) UA 

\ 

\ Wf(n+l) W /(«) 

Ud+f(m) Ud+f(0) 

W f(m) W /(0) 

Rd+f(n)w 11 rn-\ f ii 11 
V (_1)«+1 W~dUAf(n) = y , ^ 1 *W(ft+l) + / jy, tfi/+/(w) 
w=0 W/(«)W/(»+l) 

m-l 

W / ( »+ l ) W /(») y 

= 2 Y (-l)w Ud+f(n) + (-l)m Ud+fW _ (_i)0 *W(°) 
„_n W/v„\ W/-/w\ W/vm «=0 /(«) / ( H I ) /(0) 

Putting d = - / ( 0 ) , we then obtain (5) and 
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m-l 

2<-i> n+U 
Bmu, m-l BfW. BK%< 

V(0) 
»=0 r r / (« ) r r / (w+l ) «=0 ^ / ( » ) "'/(ifi) 

Now suppose that wx * aw0. By Lemma 1, for each w = 0,1,..., m, 

i.e., 

Thus, 

a'<°>ff / (w ) - / ( 0 ) a/(w)w / (0 ) CT / (0 ) 

w / (a) ( ^ l - ^ o ) W / ( W ) WI-CMQ' 

m-l 

w / ( 0 ) 
w=0 w / ( » ) w / ( » + l ) 

« - l f 
=2i;(-i)" 

H=0 

*V(0)<* /(«) 
a-/ ( 0 ) 

(Wi-aw0)w/(/l) w r w 0 
+Hy 

W / ( 0 ) a a / ( 0 ) ^ 

( w j - a w o ) ^ ^ wx-awQ 

and hence 
W - l / -i\/l (-1)" 
« = 0 W / ( » ) 

2am B^\f(n)) 
w* - awa w 

m-l 

0 vf(n+l) 

f/y/(°) /y/W 
wx-aw0^ wm wx-aw0 

a aJ 

y W m Wf(mK 

1 f 
I ^ - O W Q 

a' / ( 0 ) 

Kwm 
-i-iy 

yfW \ 

w f{m)J 
This proves (6). 

Lemma 2: Let 4 5 e R* and A = A2 -4B > 0. Then 

11m — - 0 
77-»+oO W „ 

and 
hm —— = — for any me£. 

(21) 

(22) 

Proof: When A = 0 (i.e., a = /?)* by induction ww = «(^/2)w-1 for all /? e Z; thus, ww * 0 for 
w = ±l,±2,±3,. . . , 

lim — = lim ; j , l~j = 0 

and 

iim ^= Mm ( » ^ / 2 r 1
= r j r r 

In the case A > 0, | a | < |/? |; hence, un = (an - j3n) I {a~ p) is zero if and only if n = 0. Thus, 

lim — = (a - (3) lim = 0. 
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Also 

lim [**-„)= lim ^ - ^ - P { a " - n = H m _«zA_ = 0 . 

Ifm<E{0,1,2,...}, then 
l i H L ^ L = Uf? I I ^fn±L = pm 

and 
^ + 0 0 U„ "-*+»Q<k<m % + „ 

lim ^»=2L= lim J^ = @-™. 

In view of the above, (21) always holds and l im^.^ um+n/un = pm for all m e Z. 
By Lemma 1, w^-w^ = i ^ w ^ for « e Z. Therefore, 

and hence (22) is valid. 
Proof of Theorem 2: Assume that wt & awQ. In view of Lemma 2, 

lim * / ( 0 V o - / ( Q ) = i ? ^ /r / ( 0 )
 = g/(0) 

and 

lim — = lim — x lim -^- = 0. 

Applying Theorem 1, we immediately get (7). 
Remark 5: On the condition of Theorem 2, if wt = aw0, then by checking the proof of Theorem 
2 we find that 

„=o W/X«)W/(H+I) 
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