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1. INTRODUCTION

Let Z and R (C) denote the ring of the integers and the field of real (complex) numbers,
respectively. For a field F, we put F* = F\{0}. Fix 4 € C and B € C*, and let £(4, B) consist
of all those second-order recurrent sequences {w,},.y of complex numbers satisfying the recur-
sion:

W =Aw,—Bw,_, (ie, Bw,_ = Aw,-w,,,) forn=0+1,%2, ... )

For sequences in $(4, B), the corresponding characteristic equation is x? — Ax+ B =0, whose
roots (A++ A*—~4B)/2 are denoted by czand 5. If 4 € R* and A = 4>~ 4B >0, then we let

_ A-sg(HVA A+sg(AVA
2 2

and f= 2

where sg(A)=1 if A>0, and sg(4)=-1 if 4<0. In the case w, = aw,, it is easy to see that
w, = a"w, for any integer n. If 4=0, then w,, =(-B)"w, and w,,; = (-B)"w, for all neZ.
The Lucas sequences {u,},.7 and {v,},.7 in L(4, B) take special values at n =0, 1, namely,
=0, =1, vy=2,v,=4. 3)
It is well known that
(a-Pu,=a"-p" and v,=a"+p" fornel. €
If A=1 and B =-1, then those F, =u, and L, =v, are called Fibonacci numbers and Lucas num-

bers, respectively.
Let m be a positive integer. In 1974, L. J. Good [2] showed that

i 1 _ 3~——Fz"'*‘ ie. mz—l———(ﬁl)y = Py
n=0 F;n P;,,, n=0 F‘2n+1 F‘Zm

V. E. Hoggatt, Jr., and M. Bicknell [4] extended this by evaluating >, Fk”;,, , where k is a posi-

tive integer. In 1977, W. E. Greig [3] was able to determine the sum 2], u]:;,, with B=-1; in
1995, R. S. Melham and A. G. Shannon [5] gave analogous results in the case B=1. In 1990,
R. André-Jeannin [1] calculated X, 1/ (uy,,¢,41y) and X711/ (Ve (nery) in the case B=-1 and
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2k, using the Lambert series L(x) =2, x"/(1-x") (|x|<1); in 1995, Melham and Shannon
[5] computed the sums in the case B =1, in terms of « and S.

In the present paper we obtain the following theorems that imply all of the above.

Theorem 1: Let m be a positive integer, and f a function such that f(#) € Z and w 7y = 0 for all
n=0,1,...,m. Then
-1 RS f(0)
B Uy _ B -1

W, W W W ? ®)
m=0 WrmWr(n+1) F@Yf(m)
where Af (n) = f(n+1)— f(n). If w, # aw,, then
ey 220 By 1 (o0 aaf®) ©)
=0 Wrmy \ W1~ o Wy W1 = OWo\ Wy (o) W (m)

Theorem 2: Suppose that A, BeR" and A= A4*-4B>0. Let f:{0,1,2,..} > {keZ:w, #0}
be a function such that lim,_, ., f(n) =+0. If w; # aw,, then we have

) f(n)
$ B Puyy _ af©
=0 WrmWr(n+1) (W1"awo)wf(0) )
_ [ 207 B Puy,
n=0 Wr(m \ W1~ QW We(n+1)

In the next section we will derive several results from these theorems. Theorems 1 and 2 are
proved in Section 3.

2. CONSEQUENCES OF THEOREMS 1 AND 2
Theorem 3: Let k and / be integers such that w,,,, #0 forall #=0,1,2,.... Then

m-1 Bkn u
wy =—Mm _ forallm=1,2,3,.... ®)
1=0 WinttWkne)+t  WiWim+i
If A,BeR", A>>4B, k>0, and w, # aw,, then

© uk Bkn+l B al

= ©)
20 WenstWrmeys (W1 — W)W,
and
© k\n k\n
- -B 1
> (255 - g p L |- (10)
7=0 Winti Wine Wi (n+1)+1 W,

Proof: Simply apply Theorems 1 and 2 with f(n) =kn+1.

Remark 1: When B=1, I=k, and {w,} ={u,} or {v,}, Melham and Shannon [5] obtained (8)
with the right-hand side replaced by a complicated expression in terms of « and /.

Theorem 4: Let A, B cR* and A= A*>—4B>0. Then, for any positive integer k, we have
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& (-BYy JA o 2%
z=: Uiy (nv1) Z +se(4) _(4L (B”‘ ) 2L (01;_")) (11)
and
S _(___Eklf_ _sg(4) 8k ot el
nz=1 VinVk(n+1) - JA (u2k u, (4L(B4k) 4L (BZk )+ L( )D (12)

Proof: Clearly, |a|<|B| and B-a =sg(AWA. Thus, u,=(f"-a")/(f~a) and v, =
a” + " are nonzero for all ne Z\{0}. Obviously 4, —auy=1 and vj—avy=A-2a=pf-a=
sg(A)VA . Applying Theorem 3 with /= k and Wotnez = {U,} ez OF {V,},e7, We then obtain |

i (u (_Bk)n 2(__ak)n):gli

m=1 \ Utk (nan) Ui L
and
i(u (-Bty" 2 (- )Jz A
n=1 ¢ VienVk(n+1) sg(A)JK Vin sg(A)\/K
Clearly, :
S (a = a) _ (@HCTT)
I I e e T
_ (a/p)” (alp)”
e ? Ty ey
ol el 45)
Ifjx| <1, then
o0 n n xn
;(—1) 1+ Z 1+x*" ; 1+x"
x4n 0 x" 2x2n
—22(1 ¥ 1-x* )_El(l—x”_l—xz")
=2L(x?) - 4L(x*) - L(x) + 2 L(x?) = -4 L(x*) + 4 L(x*) - L(x).
Thus, Z( &Y S ety ié])" @/ By
n xak”+ﬂ’°" o 1+(a/py*

4k 2k ak
-ar{ e Jear{ )15
8 4k 2k
4L(B4k)+4L(B2k) L(%—k).

Combining the above and noting that #,v, = u,, , we then obtain the desired (11) and (12).
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Remark 2: 1f |x| <1 then

o 2n 0 n 0 2n
L) =S X" 3 X S x
) nzdl—xz" ,,Z=11+x” ,;11+x2"

= L(x*) = (L(x) - 2L(x*)) + (L(x*) - 2L(x*)) = -2 L(x*) + 4L(x?) - L(x).

Thus, Theorem 2 of André-Jeannin [1] is essentially our (11) and (12) in the special case B = —1
and 2/k.

Theorem 5: Letk,l meZ andl, m>0. Ifw(ky,.) #0 foralln=0,1,...,m, then

me1 B("T")u(m B(f)u(
1 —

i Fm-(h

m=0 Wiy Wi Wikim)

(13)

Proof: Let f(n)=(*") for neZ. 1t is well known that Af(n) = (**7*1)— (/") = (¥*"). So
Theorem 5 follows from Theorem 1.

Remark 3: Inthe case £ =0 and /=2, (13) says that

m—1 uan(n—l)/2

— _Ymem-n2 (14)
1=0 Wnin-012Wney2  WoWmm-1y/2

Theorem 6: Let a, k be integers, and m a positive integer. Suppose that w, , # 0 for each n=0,
1,...,m. Then

ka" k
-1
wl B Uatyan B Ueam-y (15)
n=0 wka"‘vka"+l wkwka"’

Proof: Just put f(n)=ka” in Theorem 1.
Remark 4: Inthe case a=2 and {w,} = {u,}, (15) becomes

m1 gkt Blu

m_
k@r-1) (16)
n=0 uk2n+l ukuk2"'

This was obtained by Melham and Shannon [5] in the case B=1and k¥ >0. In the case a=3 and
{w,} ={v,}, (15) turns out to be

-1 Rk3" k

By Bt 17
v R an

n=0 k3n+| k k3™

since u,, =u,v, forhe Z.

Theorem 7: Let k be an integer and m a positive integer. If wy,»_;) # 0 for each n=0,1,..., m,
then

n_
m—-1 Bk(z l)uk2" ~ uk(2”‘—1)

(18)

n=0 wk(z"—l)wk(z"“—l) wOWk(z'"—l)

Proof: Just apply Theorem 1 with f(n) = k(2" -1).
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3. PROOFS OF THEOREMS 1 AND 2
Lemma 1: For k,I,m € Z, we have
Willyy = Wity = BW,_ju,, (19

and
wya! —wat = (w, - awy)Bu,_,. (20)

Proof: (i) Fix k,l € Z. Observe that
(Wk+l wk):(wk wk—l)(A 1)
Uy Y w wy \-B 0
_(Wer Wi \( A AV (W Wi (4 1Y
Ny, w, \-B 0) T T y u, \-B 0)"
Taking the determinants, we then get that

I
Wit1 Wi

Uy U

xAl
-B 0

Wit Wi
1 0

b

i.e., Wy, —w,, 4 = B'w,_,. Thus, (19) holds for m=0, 1.

Each side of (19) can be viewed as a sequence in £(A4, B) with respect to the index m. By
induction, (19) is valid for every m=0,1,2, ...; also (19) holds for each m=-1,-2,-3,.... Thus,
(19) holds for any me Z.

(ii) By induction on /, we find that w,,, — aw, = (w, —aw,)f'. Clearly, both sides of (20) lie
in £(A, B) with respect to the index k. Note that, if £ =/, then both sides of (20) are zero. As

(W~ aw)B' = (w, —awp)f'a’ = (W, —aw)a’ = a'w,, - a'*'w,,
(20) also holds for £ =/+1. Therefore, (20) is always valid and we are done.

Proof of Theorem 1: Let d € Z. Inview of Lemma 1, for n=0,1,..., m—1, we have

Yarfoner) _Yarsmy _ UarsounWre ~ Uars o romn

Wr(n+1) Wemy WrmW r(n+n)

d
_ Y rotharsoyearey = Wroparmtarson _ BT W ity )

YrmWr o+ WrmW ron
It follows that
S R O {ud+f(n+l) _ ud+f(n)J _Yaigom _ Yarr)
n=0  WrmWrm+ n=0 \ Wre+y — Wrem Yrom  Yr©
and that
Sy B Ow_ i) _ $ ((_ py+ Bst o) | pyo "d+f(n)]
n=0 WrmWrms  n=0 Wrnn) Wi

_ 2""21(_ 1y Yarren 1" Uarrom _ (-1)° Yarr©)
=0 Wrm W (m Yr

Putting d = —f(0), we then obtain (5) and
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Bf(n)y, -1 7(0) 7 (0).
Z(‘l) ntly,, Unreny '"Z(_l)n B s pym BT Uron-r)
TOw_  w w =D '
=0 FeWrm o £ Wi (my
Now suppose that w, # aw,. By Lemma 1, for each n=0, 1, . ,
@
& Ow iy = al Owp gy = Wy —aw) B Cugey_ o),
ie,
1 (0). f(n)
B0 g a®
Wemy (w, - awO)wf(n) W) —aw,
Thus,
Dy
W l)n Af (n)
110)223( I
WrmW )
-1 f(n) S (m)
_ ZmZ -1y W& B al©® LDy W& al©
=0 (W —awp)wpy Wi—aw, (W —aweW s,y Wi —aw,
and hence
w20/ B Puy,
=0 Wrmy \W1—CWy  Wray
m QO] J(m)
Z (-1y" a’ ( 1) "V «a
AW =0 wf(O) AW\ Wry Wrom
1) S (m)
=1 _Ja e
W= aWo Wr(o) W (m)
This proves (6).

Lemma 2: Let A,B <R and A= A>~4B>0. Then

n

.a
lim =—=0
n—>+e0 U,
and
.w W, —aw,
lim —2-=—1_—"2 foranyme Z.
n—>+oollm+n ﬂm

21

(22)

Proof: When A=0 (i.e., @ = f8), by induction u, = n(4/2)"" for all n € Z; thus, u, # 0 for

n==x1,%+2,+3 ..,
lim %= = lim —-———~—(A/2)_ =
4o U, n—>+°on(A/2)"
and

U, (m+n)(A/2)m+"-1_(4_)m: .
A u, = m n(4/2)~t 2 £

In the case A> 0, || < |f]; hence, u, = (a" — ")/ (@ — p) is zero if and only if n =

n‘i‘?wu_“(“ P im ey (ﬁ/ ay

2001]
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Also

lim (yﬁl —ﬂ) = lim & - - pla” ﬂn) _a-p
n—>+to\ U, n—+w o ﬂ" n—>+oo] (,B/a)"

Ifme{0,1,2,...}, then

lim Uprin = lim H Yernr _ ﬂm

n—>+wo u,, "_>+°°0<k<m uk+n
and
.ou,_
lim 2= = =g
n—>+wo un n—>+wo u

In view of the above, (21) always holds and lim,, yico Uy [, = " forallme Z.

By Lemma 1, wyu, —w,u, = Bwyu,_, for n € Z. Therefore,

lim Bw, Bw,

im 2=w-——————=w—-—2=w,—aw,,
>+ U, lim,  u,/u,, B

and hence (22) is valid.

Proof of Theorem 2: Assume that w, # aw,. In view of Lemma 2,

7 (0)
im 210 _ groy B0 _ /@
m—>+c0 wf(m) W —aw, W, —aw,

and
m m
. .« . u
lim —= lim —x lim 2 =0.
m—>+0 Wm m—>+o0 um m—>+0 Wm

Applying Theorem 1, we immediately get (7).

Remark 5: On the condition of Theorem 2, if w, = aw,, then by checking the proof of Theorem
2 we find that

$ 5 My g, 23)
n=0 WrmWsn+)
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