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1. INTRODUCTION

If an integer is not a prime, then it can, of course, be written as the product of two integers,
say r and r + k. In the case of the Lucas numbers, Z,, it has been shown that the two factors may
differ by O (that is, , is a square) only if »=1 or 3 [1], [3], may differ by 1 only if n=0 [4], [5],
and may differ by 2 only if n =42 [6].

It is well known that I2—5F? =4(-1)", where F, is the n™ Fibonacci number, so if L, =
r(r +k), we have an equation of the form x*+2kx® +x?%k%+4 =5y%. Since the left side has 3
distinct zeros, the number of solutions of this equation is finite, by a theorem of Siegel [7];
further, by a theorem of Baker (see [2]), |x| and |y| are effectively bounded. Hence, for a given £,
the number of integers » such that L, =r(r + k) is finite, but the known bounds are extremely
large.

We shall show that, if L, =r(r + k) for £ =1,6,7,8,17,18, 19, or 24 (mod 25), the number of
solutions is bounded by one-half the number of positive divisors of [£2—8| or |k? +8|, and we
provide an algorithm for finding all solutions. In each case,

- 2log((k2 +9)/4)
log((1++/5)/2)

For certain infinite sets, e.g., ¥ =8 (mod 100), we show that no solutions exist. When £ is even,
L, =r(r+k) is equivalent to L, =x*—(k/2)?, so our results extend Robbins' result [6] on the
solutions of , = x* — 1 to the difference of two squares in infinitely many cases.

We write O for "a square," 7 is the usual "number of divisors" function, (a|b) is the Jacobi
symbol, and we will need the following familiar relations. Let g, m, n, and 7 be integers, 7 odd.

Ly,=L-2(-1)% and F,,=F,|L, €))

L—n =(- l)nLn and E—n = (_1)n+lF;” )

2L, = L,L,+5F,F, (©))

L. = 2 (mod?8) ?f3|m and u > 1, @
Z'm -1 (mod8) if 3fm and u>2,

L2g1+m = iL2g+m (mOd LZg)- (5)

2. L, AS THE PRODUCT OF TWO FACTORS DIFFERING BY &

We assume, without loss of generality, that £ is positive, and note that L, = r(r + k) for some
r implies that 41, +k* =01

Lemmal: Let L =r(r+k). If k =+11 (mod 3-25-41), then n= 0 (mod 4).
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Proof: Let k =+11 (mod 3-25-41). We find that 4L+ is a quadratic residue modulo 25
only for n=0,1,4,8,9,12, or 16 (mod 20); if 7 is odd, then n=1,9,21, or 29 (mod 40). ‘Now,
the Lucas numbers are periodic modulo 41 with period of length 40, and 4L, +k? is a quadratic
nonresidue modulo 41 for n=9, 21, and 29 (mod 40), and is a quadratic nonresidue modulo 3 for
n=1(mod 8). It follows that 4L+ 4% =0 only if n=0,4, 8,12, or 16 (mod 20); that is, only if
n=0 (mod 4).

Let

S, ={k|k=1619, or 24 (mod 25)},

S, ={k|k=7,8,17, or 18 (mod 25)},
and

S ={k |k ==£11(mod 3-25-41)}.

Theorem 1: Let k € §; U S, US;. The number of nonnegative integers » for which Z, = r(r + k)
is less than or equal to 7(k*—8)/2 if k € §;US,, and less than or equal to (k> +8)/2 if k € S,.
If L,=r(r+k), then
< 2log((k*+9)/4)
log((1++/5)/2)

Proof: Assume that I, = r(r +k); then 4, + k% = 0. The quadratic residues modulo 25 are
the integers in 7= {0, 1,4, 6,9,11, 14,16,19, 21, 24}.

We find that, for each integer & in S,, 4L, +k* = an element of 7 (mod 25), precisely when
n=0,4,8,12, or 16 (mod 20); combining this with the result of Lemma 1, we have L, =r(r +k)
for each integer k in S; U S, only when n=0 (mod 4). And, for each integer kin S, 4L, +k?=
an element of T (mod 25), precisely when n=2,6,10,14, or 18 (mod 20), i.e., only when n=2
(mod 4).

Let n=2¢. Now, L, = r(r + k) implies that there exists an x such that x> =4L, + k2, so, by
(1), we have x? — (2L,)* = k> —8(-1)'. Hence, there exist divisors ¢ and d of k* —8(~1)’ such that
x+2L =c and x—2I, =d, implying that L, =<<. Since, for a given pair (c,d) of divisors of
k% —8(-1)', the system has at most one solution; there exist at most z[k*—8(~1)']/2 integers n
for which L, =r(r +k). Taking ¢ even or odd for the two cases, respectively, proves the first
statement of the theorem.

It is well known that I = " + 8", where o= (1++/5)/2 and B=(1-+/5)/2. Let s=[k*-
8(—1)' —1]/4. Since a'-1/a' =o'+ = L, =<2 <s, we readily obtain a' < (s++/s>+4)/2
If k =1, it is easily seen that n=0, and if £ # 1, then &’ <[s+(s+1)]/2. One obtains a relatively
simple bound upon taking the logarithm of each side of a' <s+21, replacing # by n/2 and
replacing s by the larger of its two values.

Lemma 2: If k =0 (mod 4), then L, =r{r + k) only if  is odd.
Proof: Let k =4t, and assume that, for some m, L,,, =r(r+4k). Then
L, +4t* =r? +4rt + 442 =00,

implying ,,, =0 or 1 (mod 4), contrary to (4).
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We now exhibit several infinite sets of integers & such that L, does not have the form r(r + k)
for any n.

Theorem 2: Let S ={k|k =8,24,32,44,56,68,76,92 (mod 100)}. If k €8, then L, #r(r+k)
for any n.

Proof: Let k € § and assume, for some #>0 and some integer r, that L, =r(r+%k). By
Lemma 2, n is odd. However, each element of S is in S, .S, and, as noted in the proof of
Theorem 1, 4L, +k? is a quadratic nonresidue for 7 odd.

Corollary: There exist infinitely many primes p such that L, does not have the form r(r +4p) for
any n.

Proof: The sequence {2+25b} contains infinitely many primes p and, for p =2+25b, we
have 4p = 8 (mod 100).

3. L, AS THE DIFFERENCE OF TWO SQUARES

The proof of the following theorem is immediate upon writing x* —m? as r(r +k) with
r=x—mand k =2m.

Theorem 3: The equation L, = x* —m?
a) isimpossible forall n>0if m=4,12,16,22 28,34, 38, or 46 (mod 50),
b) has at most 7(4m”> —8)/2 solutions if 2m € §,, and
c¢) has at most t(4m? +8)/2 solutions if 2m e S, U S,

and, if L, = x> —m?, then
ne 2log(m? +9/4)
log((1+~/5)/2)"

In practice, for a given m, one may find the values of » such that L, = x* —m? by proceeding
as in the proof of Theorem 1: simply write L, , = << for all pairs (c,d), c=d (mod 4), of factors
of |4m? —8(~1)"?|, and find n. We can now readily obtain the values of » for which _=x?—m?
for all m such that 2m =k € §; U S, US,;. Notice that L_, is the difference of two squares iff L,
is the difference of two squares, since L_, =+, .

By way of example, if m=3, then 2m=6¢€S,, 4m* -8(-1)"*=28, and L,, =< for
(c,d) = (14,2); hence, L, =3, and we conclude that L, = x> 3% only when n=+4 (L,=7=
42 -3%),

It may be noted that we now know the values of n for which L, = x? —m? for m=1,3, and 4,
and can determine the n for many larger values of m. In order to close the gap between 1 and 3,
we shall prove that L, # x* — 2% for any n. Unlike the cases considered above, this case presents a
difficulty that precludes the possibility of establishing a bound on 7 for all £ =2m =4 (mod M) for
any M.

Lemma 3: 1f 3] g, then Ly 3= 5F,, (mod L,,).
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Proof: We note first that Fi; =2. By (3),
209043 = LogLia+ 5K Fin = 10F,, (mod L,,).
Since 3/ g, L,, is odd, and the lemma follows.
Lemma 4: 1f 3| g and tis odd, then (Lyy43+4 | Ly,) = 5Fy, +4| Ly,).
Proof: By (5) and Lemma 3,
(L2g1i3+4 [LZg) = (iLZgi'3+ 4 ILZg) = (SF‘Zg +4 ILZg) or (—.SF‘Zg +4 !LZg) .
We prove that these latter two Jacobi symbols are equal by showing that their product is +1:
(5Fyg +4|Lyg) (-5F;5 +4|Lyg) = (16-25F, |Ly,)
= (16—5(L22g—4) [Ly)=(36]L,)=+1
ifuisoddandm=1, or

Lemma 5: Let u=>4. Then 5Fyu, +2Lu,=~1 (mod8) 5. .
ifuisevenand m=5.

Proof: Let m>0. By (1) and (4),
E

2%m

= szu-sz2u~2 m‘Lz”"m = Lyu-,, = F2u-4m A E;m or .E;m (mod 8),

depending on whether u is even or odd, respectively. Using (4), F; =21, and F,, = 6765 proves
the lemma.

Theorem 4: No term of the sequence {L,} is of the form x* - 4.

Proof: Assume L, =x*-4. By Lemma 2, we may assume that 7 is odd. Now 0= L, +4
modulo 25 only if #=13 or 17 (mod 20), and modulo 11 only if n=5,7,9 (mod 10). It follows
that n=1 (mod 4) and n= -3 (mod 5). For n=1 (mod 4), 0= L, +4 modulo 7 and modulo 47
only if n= -3 or 13 (mod 32). However L, +4 has period of length 64 modulo 2207, and 13 and
45 are quadratic nonresidues modulo 64; hence, n=-3 (mod 32). Combining this with n= -3
(mod 5), we have n= -3 (mod 5-32).

Letn=2gr—3, withfodd, g=2"ifuis odd, and g=2"-5 ifuis even (u > 4). We shall use
(1), (4), Lemma 5, and the following observation:

2Ly, =L} ~2) =20, +50, - [, =5F} + I, (6)
By Lemma 4,
(Z’n +4 l ng) = (SF‘Zg +4 ] ng) = (SFég +2(L2g_ LZg) | L2g) = (S‘Fég + 2ng |L2g)
= (Lg | L2g)(5F:g +2Lg !LZg) = _(LZg | Lg)(_l)(L2g |5'F:g +2Lg)
= (L - 2| L)(2|5F, +2L,)(2L,, |5F, +2L,)
= (-1|L)(SF} + L% |5F, +2L,) [by (6)]
= —(45F7 —(25F; —4L}) |5F, +2L,) = —(5|5F, +2L,)
= ~(5F, +2L, 19 =~ |S)(L 19 = (L, 19).
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Since Lg=47=2 (mod 5), by (1), L=2 (mod 5), and, by induction, L,.=2 (mod 5).

Similarly, L,,=15127=2 (mod 5), implying L,.;=2 (mod 5). Hence, (L |5)=(2]|5)=-1, a
contradiction.

ACKNOWLEDGMENT

The idea for this article occurred to the author following receipt by e-mail from Richard

André-Jeannin of a much shorter proof of a theorem in my article "Pronic Lucas Numbers" [5].
André-Jeannin's proof did not involve congruences moduli L,,, where g is a function of », and
the absence of such congruences is essential to obtaining the above results. It is the necessity of
over-coming this obstacle that suggests that obtaining an analogous result for the Fibonacci
numbers may be difficult.

bl

REFERENCES

Brother U. Alfred. "On Square Lucas Numbers." The Fibonacci Quarterly 2.1 (1964):11-
12.

A. Baker. Transcendental Number Theory. Cambridge: Cambridge University Press, 1975.
J.H. E. Cohn. "Square Fibonacci Numbers, Etc." The Fibonacci Quarterly 2.2 (1964):109-
113.

Ming Luo. "Nearly Square Numbers in the Fibonacci and Lucas Sequences." Journal of
Chonggqing Teacher's College 12.4 (1995):1-5. (In Chinese.)

Wayne L. McDaniel. "Pronic Lucas Numbers." The Fibonacci Quarterly 36.1 (1998):60-
62.

N. Robbins. "Fibonacci and Lucas Numbers of the Forms w? -1, w>+1." The Fibonacci
Quarterly 19.4 (1981):369-73.

C. L. Siegel. "Uber einige Anwendungen diophantischer Approximationen" (1929), pp. 209-
266. In Collected Works. New York: Springer-Verlag, 1966.

AMS Classification Numbers: 11B39

210

[JUNE-JULY



