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1. INTRODUCTION 

We denote the set of positive integers by N. Consider a , J e N with 

a < 6 , (a,ft) = l. (1.1) 

Fibonacci, in 1202 ([8], see also [1], [7]) introduced the greedy algorithm: we take the greatest 
Egyptian fraction 1 / xx with l/xl < a/b, form the difference a/b-l/xl=:al/bl [where (ax, bx) = 
1] and, if allbl is not zero, continue similarly. It is easily seen that the sequence of numerators 
aQ: = a, al9 a2,... is strictly decreasing, from which it follows that after finitely many, say s, steps 
(s<a), the process will stop. This gives us a representation 

| = ±+...+J_, ,<„<...<,,. (,.2) 

If b is odd, the greedy odd algorithm is defined as follows: we take the greatest Egyptian 
fraction l/xl with xx odd, l/x1 < alb, and continue similarly. We have (see [4], [3], [5]) the 
interesting 

Open Problem 1.1: Does the greedy odd algorithm (for b odd) always stop after finitely many 
steps? 

In this paper, using elementary methods, we study some properties of the greedy odd algo-
rithm. In Section 2 we fix the notation and record some obvious facts. In Section 3, the main 
part of this paper, we prove some results on the possibility of occurrence of certain initial sequen-
ces of the sequence aQ: = a, ah a2,... of numerators connected with the greedy odd algorithm. We 
hope that at least some of our results are new. 

2. THE GREEDY ODD ALGORITHM 

We suppose that in (1.1) b Is odd and sometimes we write b = 2k +1, where k e N. Now, 
since only odd denominators are used in the Egyptian fractions, we agree to write x = 2n + l, 
where n G N. To start the greedy odd algorithm, we take the unique nx e N satisfying the condi-
tion 

_L_<-^<-!_ 
2»! + l 2k+ 1 2 ^ - 1 ' 

and then we write 

(2.1) 

a a ' a ' with (a1,2ifc1 + l) = l. (2.2) 
2& + 1 2«j + l , (2* + l)(2^ + l) '2A, + 1 
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Case A) If 

2£ + l 2nx + Y 2nxy 

then 0<a{<a and so 0 < ax < a (this case corresponds to the normal greedy algorithm). 
CaseB) If 

a \_l 1_ 
2& + 1 [2^ 1 '2 / i 1 - l / 

then it is easily seen that a < a[ < 2a. 
Case Bl) If d:= (a{, (2k +l)(2nx +1)) > 1, we cancel and find that 0<ax <a. (In fact, 

as dis odd, d>39 and therefore a[ = dax<2a implies that ax < 2aId < 2a13 <a.) 
Case B2) If d - 1, then ax - a{ and so a < ax < 2a. 

We find that A) and Bl) are "good" cases (numerator decreases), while B2) is a Mbadlf case 
(numerator increases). 

We form the sequence of numerators a0 : = a, ax,a2,.... If as = 0 for some s GN, then the 
greedy odd algorithm stops and we get 

h 2k +1 xx xs
 x J 

with xx = 2 ^ + 1, ...,xs = 2ns + l. It is clear that as = 0 if and only if as_x = 1. 
From (2.2), it follows immediately that 

at * ai+x (mod 2) for i = 0,1,2,.... (2.4) 

Example 2.1: The sequence of numerators aQ, ...,as_x with 5 = 19, corresponding to the greedy 
odd algorithm for the fraction 5/139, is 

5, 6, 7,8, 9,10,11,12,13,14,15,16,17,26,51,2, 3,4,1. 

Here, all cases are either Bl) (occurs two times) or B2). The reader can find more examples in 
[4] (see also Examples 3.9 below). 

Remark 2.2: Take any a e N, a > 1. Then take any J G N , A odd, such that (1.1) holds and form 
the sequence of numerators a0 : = a, al,a29... connected with the greedy odd algorithm for the 
fraction alb. The question "Does 1 occur in this sequence?" is equivalent to Open Problem 1.1 
and shows some similarity to the well-known (or "infamous" [4]) "3x + l"-problem (see, e.g., [6]). 

If the greedy odd algorithm for the fraction a /Estops with as = 0, we write 

J>) Uifc + 1 
for the number of steps. Otherwise, we write 

a 
,2* + l, 

If h(a Ib) < oo, then a trivial consequence of (2.3) is that 

h(alb)^a (mod 2). (2.5) 
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Theorem 2.3: Suppose that s e N is given. There are infinitely many fractions alb, b odd, satis-
fying (1.1) such that 

h(a/b) = s. (2.6) 

Proof: Take any sequence xl9...,xs satisfying 

xi>l, xi+l>xf-xt+l, i = l,...,$-l, (2.7) 

such that xt is odd for i = 1,..., s. (For example, we can take xl := 2n + l for « E N and then 
define xi+1 := JC* -*,. +1 for / = 1,..., J - 1.) According to a result of J. J. Sylvester [9], the right-
hand side of the definition alb := 1/j^ H i-l/jc,-is the result of applying the normal greedy 
algorithm to the fraction alb. Note that b is odd since xl9..., xs are all odd. (We take, of course, 
(a, b) = 1.) Moreover, a < b. (We have, in fact, alb < 112, see (2.9) below.) But it is obvious 
that, if the normal greedy algorithm produces only odd denominators xh...,xs, then the greedy 
odd algorithm, applied to alb, is identical to the normal greedy algorithm (all cases are A)), and 
so h(a/b) = s. Since different sequences xt,.,.,xs satisfying (2.7) produce different fractions 
alb, and since we have indicated how to choose infinitely many such sequences (with all xt odd), 
the theorem follows. • 

We close this section with two remarks. 

Remark 2.4: We saw in (1.2) that x2 > xx for the normal greedy algorithm (supposing, of course, 
that a > 1). It is easily seen that, in the case of the greedy odd algorithm for the fraction alb, b 
odd, satisfying (1.1), the only possibility for x2 = xx is xt = x2 = 3, and it occurs if and only if 

M <28> 
For example, the greedy odd algorithm gives 

1 = 1+1 i = I+I+! + JL A = I+I+_L A i = I + i + I + _ L 
3 3 3 ' 5 3 3 9 45' 7 3 3 21 ' m l 3 3 7 21' 

Remark 2.5: If (1.1) holds and b is even, then it is clear that the greedy odd algorithm never 
stops. It is easily seen, for example, that 

lrh~=U- <29) J U I + 1 • l 

2 3 , -^ i=l ^ 
where xx:=3, xi+l: = xf - xt +1 for i = 1,2,..., is the result of applying the greedy odd algorithm 
to the fraction 1/2. The equation (2.9) is, of course, well known (indeed, "famous" [2]). 

3. ON SOME INITIAL SEQUENCES OF NUMERATORS 

We are interested in the case B) of the greedy odd algorithm (see the beginning of Section 2). 
We suppose that a > 1 and a<c<2a with C G N . We search for odd b = 2k + l, such that in the 
first step of the greedy odd algorithm for the fraction alb, we have c - a[ (see (2.2)). Here we 
must suppose that a^c (mod 2) (see (2.4)). 
Theorem 3.1: Let a>\ and a<c<2a, where l-hc-a:=2t (t E N ) . Let i e N satisfy k + t = 0 
(mod a) and (a, 2k + l) = l. Take nt: = (k +1) I a e N. Then a < 2k +1, and in the first step of the 
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greedy odd algorithm for the fraction a/(2k + l), we have the case B). Moreover, xt = 2nx +1, 
and 

- 2 ! _ = £ (3 1) 
2£ + l 2^ + 1 (2*+ 1X21̂  + 1)' l ' ' 

Proof: We have, by assumption, 
2r = l + c - a < l + 2 a - a = l + a . (3.2) 

Since A: + r = 0 (mod a), we have k-\-t>ay implying by (3.2) that k>a-t>a-(a + l)/2 = 
(a -1) 12. Therefore, a < 2k +1. 

We prove next that 
^ ^ ] = 2nl, (3.3) 

from which it immediately follows that x\ = 2nx +1. 
We have 2n1 = (2k + 2t)/a = (2k + T)/a + (2t-l)/a, where, by (3.2), 0 < ( 2 f - l ) / a < l . 

This proves (3.3). 
A simple calculation shows that (3.1) holds. Since a( = c > a , w e must have the case B). • 

Remark 3.2: In some cases, it is impossible to satisfy the condition (a,2£ + l) = 1 in Theorem 
3.1. Take, for example, a:= 6 and c:= 9. Now l + c-a = 1 + 9 - 6 = 4 =:2f, so that f = 2. If 
^ + 2 = 0 (mod 6), then 2k +1 = 3 (mod 6), and so (a,2* + l) = 3. 

Corollary 33: Let a > 1 and c := a +1. If £ +1 = 0 (mod a), then (a, 2A +1) = 1 and, for nx : = 
(A: +1) /a , the conclusions of Theorem 3.1 hold. 

Proof: In this case, l + c - a = 2=:2^, so that t-l. We need only prove that (a,2k + l) = 1. 
This follows immediately from 2k +1 = 2(nxa -1) +1 = 2j\a -1. • 

For the rest of this paper, we consider the following problem. Let a > 1 be given. We search 
for such numbers k G~N that the greedy odd algorithm, applied to the fraction a/(2k + l)9 starts 
with some cases B2) in such a way that the sequence of numerators aQ: = a,al7a2,... starts with 
a, a + 1, a + 2,.... Our main tool is Corollary 3.3 and our main achievement (see Theorem 3.7) is 
the following. For any a> 1, we give explicitly infinitely many numbers k such that the greedy 
odd algorithm for the fraction a I (2k +1) starts with two cases B2), the numerator increasing by 
one in both steps. 

Suppose now that we have used Corollary 3.3 once and that the first step corresponded to 
the case B2). We consider the fraction 

~v^—^h 7T = • ^, l ,, where a,: = a +1, 
(2A + l)(2w1 + l) 2 ^ + 1' l 

and use Corollary 3.3 again. Now, 
(2* + l)(2„1 + l ) - l = 4fa ,+2* + 2 . 

1 2 2 1 l 

so that we should have 
2knx + £ + ^ + 1 = 0 (mod a +1). (3.4) 
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But 2Aw1 + £+w1 + l = 2(^a-l)w1 + (w1a-l)+^ and 2nxa + 
a-l = (a + l) + 2k, so that (3.4) will be satisfied if k = 0 (mod a + 1). We use the Chinese 
Remainder Theorem to solve the pair of simultaneous congruences 

(k = -1 (mod a) 
\k = 0 (mod a + 1) 

and get the (unique) solution k = ~{a +1) (mod a(a +1)). Now let r^ : = (kt +1) / (a +1). Then 
both steps correspond to the case B2) if and only if the conditions 

(I) (a +1, (2k + l)(2w1 +1)) = 1 and 
(II) (a + 2, (2*i + 1 ) ^ +1)) = 1 

hold. 

Lemma 3.4: Let A : = -(a +1) + ja(a +1) with j G N. Condition (I) holds for every j G N. 

Proof: We have 2* +1 = (a + 1)(2 j a - 2 ) +1 (of course, 2k +1 = 1 (mod a + 1) since k = 0 
(mod a +1)) and therefore (a +1,2* +1) = 1. We have nl = (k + l)/a = j(a +1) -1 , so 2nx +1 = 
2 y(a +1)-1 and therefore (a +1,2wt +1) = 1. It follows that (I) holds for every ; e N . • 

We have 2* + l = (a + 2)(2ja-2~2j) + 4j + 3? 2^ + 1 = (a + 2)2 j - (2 j + l), and 

2W2 + l = (a + 2 ) ( 4 / a - 4 / - 6 j ) + (2j + l)(4j + 3)9 (3.5) 

from which it follows, since 2kt +1 = (2* + T)(2nl +1), that 

(II) holds if and only if (a + 2, (2j +1)(4/ + 3)) = 1. (3.6) 

Theorem 3.5: Let a > 1 and define A by k:= -(a +1) + ya(a +1), j G N. A necessary and suffi-
cient condition for the greedy odd algorithm for all the fractions a / (2^ + 1), j = 1,2,..., to start 
with two cases B2), the numerators increasing by one, is that a - 2r - 2, r > 2. 

Proof: 1° Suppose that a = 2 r - 2 for some r e N , r > 2 . By Lemma 3.4, (I) holds for 
every j G N. Condition (II) is now trivially satisfied, since a + 2 = 2r and (2^ +1)(2«2 +1) is odd. 

2° Suppose that a £ {2r - 2: r G N, r > 2}. Then there exists an odd prime p such that 
p | (a + 2). Let j be such that /? = 2} +1. Then p\(a + 2, (2j +1)(4 j + 3)), so that, by (3.6), (II) is 
not valid. D 

By a similar argument, we can show the existence of certain short sequences of numerators of 
the form a, a +1,1, where one case B2) and one case Bl) are involved. More precisely, we have 
Theorem 3.6: Let a > 1 be odd. Let 

fa3 + 4a2+5a + 2" * : = - + /rar(a + l)(a + 2), where h = l,2,.... (3.7) 

Then the sequence of numerators, corresponding to the greedy odd algorithm for all the fractions 
a/(2k + l), is a,a + l, 1. 

Proof: We write k : = -(a +1) + ja(a +1) with j G N as before. By Lemma 3.4, (I) holds for 
every j G N . By assumption, a + 2 is odd, so we can find j0 G N such that 2j0 + l: = a + 2. If 
j = j0 (mod a + 2), then 2y + l = 0 (mod a + 2), and so, by (3.5), 2/^ + 1 = 0 (mod a + 2). It 
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follows that (a + 2, (2kx +1)(2^2 +1)) = a + 2, implying a2 = 1, for all such j . Writing j : = jQ + 
(/i-l)(a + 2),weget(3.7). D 

Theorem 3.5 gives, for some special numbers a, infinitely many numbers k such that the 
greedy odd algorithm, applied to the fraction a/(2& + l), behaves in a certain manner. The first 
part of the next theorem is completely general, but the form of the numbers k is slightly more 
complicated. 

Theorem 3.7: Let a>\ and define k by k :=-(a + l)2+ha(a + l)(a + 2), /r = 1,2, Then the 
greedy odd algorithm for all the fractions a I (2k +1) starts with two cases B2), the numerators 
increasing by one. Moreover, if a = 2r - 3 (r > 3), then the same holds for the third step. 

Proof: We consider k :=-(a + l) + ya(a + l), J E N . By Lemma 3.4, (I) holds for every 
j G N . If J = - 1 (mod a + 2), then 2j + l = 4/ + 3 = - l (mod a + 2), and therefore, by (3.6), 
condition (II) holds. Writing j := -l+/?(a + 2) with A e N, we get the first part of the theorem. 

Consider now the third step. Defining (2kx +1)(2?^ +1) =: 2k2 +1, we should have 

&2+l = 0 (moda + 2) (3.8) 

and then we will take n^ : = (k2 +1) / (a + 2). By a straightforward calculation, 

^ ^ = (-l + h+ah)-(-l-2a + 4ah + 2a2h)-(4 + l5a^ 

- 60a2h~3%a3h-$a4h + l6ah2 +4$a2h2 +52a3h2 +24a4h2 +4a5h2), 

proving (3.8). The last part of the theorem follows now exactly as in the proof of Theorem 
3.5. • 

Taking a\- 2, starting from Theorem 3.5, and using Corollary 3.3 two times, we obtained 
the following result. 
Theorem 3.8: Let k := 180^-51, g = 1,2,.... The greedy odd algorithm for all the fractions 
2 / (2k +1) starts with four cases B2), the numerators increasing by one. 

Since we have suppressed the "dirty" details, we would like to give some examples of 
Theorem 3.8. 
Examples 3.9: Using ten smallest values of g in Theorem 3.8, we get the following fractions with 
corresponding sequences of numerators (which should all start with 2,3,4,5,6). 

J ^ ; 2,3,4,5,6,1. ^ ; 2,3,4,5,6,7,8,9,2,3,4,1. 

2 -; 2,3,4,5,6,7,8,9,2,3,4,1. - £ - ; 2,3,4, 5,6, 7,2,1. 

^ ; 2,3,4,5, 6,7,8,9,10,1. ^ ; 2,3,4,5,6,7,8,9,10,11,12,13,2,1. 

;2.3,4,5,6.1. - J - ; 2 , 3 4 5,6,1. , Arf, ~ * , » , ^ , V , J.. ^ — — ^ , < « , -"•, " , ^ , W , 2419' ' ' ' ' ' 2779 
^ ; 2,3,4,5, 6,7,8,9,10,11,12,1. ^ ; 2,3,4,5,6,7,8, 9,10,11,12,1. 
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Using g:= 19, we get 
2 

6739 ; 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1. 

We notice here that different fractions may have the same sequence of numerators connected 
with the greedy odd algorithm. The corresponding representations (2.3) are, of course, all 
different. Here, in the case of Theorem 3.8, we may note that, according to Corollary 3.3, xx = 
k + 2. The first fraction 2/259, for example, has the representation (2.3) with 5 = 6, where 

jq = 131, 
x2 = 11311, 
x3 = 95942731, 
x4 = 7364006009447959, 
x5 =45190487089321370649970598273443, 
x6 = 1750440105745818416860853998376462544613686713278571057343790199. 

We remark, finally, that the sequence of numerators 2,3,4,5,6,1 occurs whenever g-=09l 
(mod 7) in Theorem 3.8. 
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