
USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS
NEAR GROUP ORDERS

Zhenxiang Zhang*
Dept. of Math., Anhui Normal University, 241000 Wuhu, Anhui, P.R. China

e-mail: zhangzhx@mail.ahwhptt.net.cn
(Submitted March 1999-Final Revision August 1999)

Dedicated to the memory of P. Erdos (1913-1996)

1. INTRODUCTION
Factoring large integers into primes is one of the most important and most difficult problems

of computational number theory (the twin problem is primality testing [13]). Trial division, Fer-
mat's algorithm [1], [3], [8], Pollard's p-\ method [6], Williams' p + \ method [11], Lenstra's
elliptic curve method (ECM) [5], Pomerance's quadratic sieve (QS) [7], [10], and Pollard's num-
ber field sieve (NFS) [4] are commonly used methods for factorization,

Trial division and Fermat's method are two of the oldest systematic methods of factoring
integers. Although, in general, both methods are not very efficient, it is worthwhile attempting
them before other methods. Trial division consists of making trial divisions of the integer N by
the small primes; it.succeeds when

N = pq, prime/? is small. (1.1)

The practical limit for trial division to locate a prime factor of large N is about 8-10 digits.
Fermat's algorithm works in the opposite direction from trial division. It works quickly when Nis
the product of two almost equal factors, i.e.,

N - P4> \q-p\ is small. (1.2)
Integers whose largest prime factor is small are called smooth. The p-\ method succeeds

when
p-\\s smooth for some prime divisor/? of N. (1.3)

The method is based on the consequence of Fermat's Little Theorem: if M is a multiple of p-1
and if p does not divide a, then p divides gcd(iV, aM -1). • If p -1 is smooth, then we can find a
suitable M by taking the product of small primes and powers of very small primes.

In 1982, Hugh Williams [11] showed how to use the structure of Lucas sequences to factor
TV" when

p +1 is smooth for some prime divisor/? of N. (1.4)

His method is based on the following fact about Lucas sequences (Theorem 12.8, [1]). If we
choose an integer u and define a pair of Lucas sequences Un = U„(u) and Vn = Vn{u) by

fl/0 = 0, ^ = 1 , ^ = 2 , ^ = *,
[U^uU^-U^ Vn = uV^-V^2 for^>2,

and, if D = u2 -4, then, for any odd prime/?, p divides both gcd{N,UM) and gcd(N,VM -2)
whenever Mis a multiple of p-(D/p), where {Dip) is the Legendre symbol. If {Dip) - -1

* Supported by the China State Educational Commission Science Foundation and by NSF of China Grant
10071001.

228 [JUNE-JULY

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

and p + \ Is smooth, then we can find a suitable M by taking the product of small primes and
powers of very small primes.

So far, either textbooks [1], [3], [8] or survey papers [2], [12] on factorization treated the
above four methods separately. In this paper we present algorithms not only to unify but also to
enhance these four methods. We state our main results as the following two theorems.

Theorem 1: There exists an algorithm (Algorithm 1) for finding prime divisors p<q of N'm
O (log3 N + | r | log2 N) bit operations, provided

N = pq withq = k{p-l) + r and \r\ < (p-3)/2. (1.6)

Theorem 2: There exists an algorithm (Algorithm 2) for finding prime divisors p < q of N in
0(log3 N + | r | log2 N) bit operations, provided

N = pq with q = k(p + X) + r and \r\ < {p + l) 12. (1.7)

Remark LI: Clearly, Algorithm 1 finds prime factors/? and q of Nquickly when
N = pq with q = k(p -1)+r and | r | small, (1.8)

and Algorithm 2 finds prime factors/? and q of TV" quickly when
N = pq with q = k{p +1)+r and | r | small. (1.9)

We remark that condition (1.8) can be relaxed to
N = pq with q-kfd + r', \r'\ small, and (p-l)/d smooth, (1.10)

where d is a divisor of p - 1 ; whereas condition (1.9) can be relaxed to
N = pq with q = kfd + rf, \r'\ small, and (p + T)/d smooth, (1.11)

where d is a divisor of p + l. We see that conditions (1.1), (1.2), and (1.3) are contained in
condition (1.10); whereas conditions (1.1), (1.2), and (1.4) are contained in condition (1.11).
Thus, we have a unified approach for trial division, Fermat's method, and Pollard's p-\ method;
and a unified approach for trial division, Fermat's method, and Williams' p + l method.

2, PROOF OF THEOREM 1
To prove Theorem 1 we need two lemmas.

Lemma 2.1: Let N = pq be the product of two primes p<q with q = k(p-l) + r, where \r \ <
(p - 3) / 2. Let M be the number of positive integers a modulo N with

gcd(a,N) = l and aNW mod#. (2.1)
Then we have M < N12.

Proof: Since p<q = k(p-l) + r and \r\< (p-3)/2, we have k >2, or k - 1 and r >2 . In
both cases, we have p - r < q -1. Thus,

gcd(N-r,q-l) = gcd(p(q-l) + p-r,q-l) = gcd(p-r,q-l)<(q-l)/2.
The number of such bases a satisfying (2.1) is the number of solutions (mod N) of the congruence
f(x) = x^"r - 1 = 0 mod N. It is well known that congruence f(x) = 0 mod p has gcd(7V" - r ,
P~ 1) -gcd((p-l)(q + k),p-l) = p-l distinct solutions (mod/?), and congruence f(x) = 0 mod

2001] 229

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

q has gcd(# - r, q -1) < (q -1) 12 distinct solutions (mod q). According to the Chinese Remain-
der Theorem, we have

M = gcd(N-r,p-l)gcd(N-r,q-l)<(p-l)(q-l)/2<N/2. •

Lemma 2.2: Let N = pq with/? prime and q = k(p-1)+r not necessarily prime. Let a > 1 with
gcd(a, #) = 1 and u = aN -ar mod # Then we have:
faj p|gcd(i#,JV);
(b) Ifq is prime and u* 0, then gcd(&, N) = p.

Proof:
(a) This follows from the fact that a* = apq =aq = ak{p~l)+r = ar mod p.
(h) Since & ̂ 0 mod#and ^ = 0 modp,u^0 mod g. Thus, we have gcd(*#, #) = p. D

Example 2.1: Let # = 26544669. Then

2^ = 19445336 mod#, and gcd(l 9445336-29,#) -2823 = 941-3.

In fact, # = 941-28209, where 941 is prime, whereas 28209 = 30(941-1)+ 9 = 3-9403 is not
prime.

Example 2.2: Let # = 8848223. Then

2N = 864787 mod #, and gcd(864787 - 23, #) = 941.

Thus, # = 941 • 9403, where both 941 and 9403 = 10(941 -1) + 3 are primes.

Example 23: Let # = 8836931. Then

2N =4892191 mod#, 2"1 s 4418466 mod#,

2~9 = 2571685 mod #, and gcd(4892191 - 2571685, #) = 941.

Thus, # = 941-9391, where both 941 and 9391 = 10(941-1)-9 are primes.

Now we are ready to prove Theorem 1.
Proof of Theorem 1: Suppose condition (1.6) holds. We present Algorithm 1 as follows:
We first select a random integer a with 1 <a < N and gcd(a, #) = 1; and do the modular

exponentiation b = aN mod # and calculate a-1 mod # via the Euclidean algorithm. Then, for
/ = 1,2,..., calculate a1 = d~la mod # and a~l = a~^~l^a~l mod # by recurrence, and calculate
gcd(b -a\ #) and gcd(h-a~\ #) via the Euclidean algorithm.

By Lemma 2.1, the probability that a random integer a modulo # satisfies
aN*ar mod# (2.2)

is at least 1 / 2. Suppose (2.2) holds for the chosen a. By Lemma 2.2, we have
gcd(a^ - ar, #) = p and q = # I p.

It is well known that it takes 0(log3 #) bit operations for modular exponentiation [9] and
0(log2#) bit operations to do a gcd with naive arithmetic (Euclidean algorithm) [3]. Thus, in
total, it takes 0(log3 # + \r | log2 #) bit operations to find prime divisors p < q of #. This com-
pletes the proof. D

230 [JUNE-JULY

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

Example 14: Let # = 89603-10198 + 5170109640" + 7457884581 (203 digits). Using Algo-
rithm 1, we obtain N = pq9 where both

p = gcd(2^ -2165
3 N) = 10" +289 (100 digits)

and
q = N/p = 89603(p -1) +165 = 89603 • 10" + 25805829 (104 digits)

are primes. Our Pascal program (with multi-precision package partially written in Assembly lan-
guage) ran about eighteen seconds on my PC 486/66 to get the desired results.

3. COMBINED WITH POLLAMD5S|i-l METHOD

The following Extended Algorithm 1 combines Algorithm 1 presented in the proof of Theo-
rem 1 with Pollard's p-l algorithm, thus it unifies trial division, Fermafs method, and the p-l
method.

Extended Algorithm 1: We first select a random integer g with \<g<N and gcd(g, N) = l.
Then calculate a = gM mod N, where M is the product of all small primes and some powers of
very small primes. If 1 <gcd(a-1, N) < JV ? then a nontrivial factor is found (the p-l algorithm
ends up here); otherwise, calculate b = aN mod N. If condition (1.10) holds, then the prime divi-
sor p could be found quickly, since in this case we would most likely have gcd(b -ar\ N) = p.

Example 3.1: Let N =

21599677 4125459698 7880191329 6573463347 1444517931 6954707436
3533196547 4958078521 1295059800 6895461157 4586337662 0125667872
2212935015 1101826633 4121506661 8644391868 2033158453 4956423476
3200995905 4369044649 0215558908 4213065793 (218 digits).

Let a = 2M mod N? where M is the product of the first 120 primes. W e obtain N - pq, where
p = gcd(aN-a*,N) =

2912 4205259383 1345758783 9106248908 4606333874 4736995720
6878160308 4991206875 7497656678 0499080822 1052741991 (104 digits)

and q- NI p -
7416 4006262753 0801524787 1419019374 7405994078 1097519023

9058213161 4441575950 4705008092 8187116939 4073700000 0000000023
(114 digits).

The whole calculation took about twenty seconds on my PC 486. We find that

q = k(p~-l) + r = lOl5d + 23,

where (p-l)/d =2-3-5-7-11-17 is smooth, and r' = 23 is small, although r = 245...39493 (103
digits) is large.

4 PROOF OF THEOREM 2

In this section and the following section, we need the pair of Lucas sequences Un = Un{u)
and Vn = Vn(ti) to the parameter u as defined by (1.5). When there is no doubt as to the values of
the parameter i#3 we often omit it. Moreover, the U's and P s are calculated modulo N, and the

2001] 231

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

words "mod N" are often omitted, where N is the integer to be factored. We shall use both | |
and # to denote cardinality of a set, reserving the latter symbol for a set written with braces.
Legendre's symbol is denoted by (j) of (*//?) with/? an odd prime.

To prove Theorem 2 and describe Algorithm 2, we need four lemmas.

Lemma 4.1: Let N = pq, with/? an odd prime and q not necessarily prime. Then we have

{.:0"<(̂) = -.} = ̂ -£
Proof: It is well known that

M=0 P
Since

we have

#\u:0<u<pA^-^\ = 0\ = 2,

and

Thus,

#{u\0<u<py\^—^\^-l\ = {p-l)l2,

#\u:0<u<pA^—^\ = l\ = (p-3)/2.

[F\ p) J 2 p P 2 D

Lemma 4.2: (Lemma 12.15 of [1], see also Section 2 of [11].) If/? is an odd prime, /WGZ+, and
8 = (^f*)*then w e h a v e Um{P-s) = ° m o d A and Vm{p_£) = 2 mod/?.

Lemma 4.3: Let N = pq with p an odd prime and q = k(p +1) + r not necessarily prime. Let
integer u be such that (i£y1) = - 1 . Then we have UN+r = 0 mod/?, and VN+r = 2 mod/?.

Proof: Since N+r = pq + r = (p + l)(pk + r), the lemma follows by Lemma 4.2. D

In Lemma 4.4 below we investigate the number of integers u satisfying

U " 4 ' 1, £ V » ^ O m o d g , and ^ + » ^ 2 m o d g ; (4.1)

= - 1 , C/^+r(w) = 0modg, and F ^ + ^) = 2 m o d # - (4-2)

Lemma 4.4: Let TV, /?, g, A, and r be as given in Theorem 2, with k > 7,
Sl = {u\0<u<N,u satisfies (4.1)}, and S2 = {u:0<u <N,u satisfies (4.2)}.

Then we have \SX^JS2 \<N/4.

232 [JUNE-JULY

9
or satisfying

V-4

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

Proof: It is easy to see that condition (4.1) is equivalent to

V-4^ = 1, there exists a w e GF*(q) with w2 - uw +1 = 0 and wN+r = 1, (4.1 *)

and condition (4.2) is equivalent to
2 _ _

= - 1 , there exists a £ e GF*(g2) with £2 - u £ + 1 = 0 and g*+r = 1. (4.2')

Since qr = Ar(/? + l) + r >(*-l /2)(/? + l), we have P + l<-^72".
In the group GF*(q), the number of solutions of the equation xN+r = 1 is

gcd(iVr + r , 9 - l) = gcd(>H-r?^-l)<jp + r<3(>-f l) /2<3^/(2A:- l)<^/4 .

Since every u (mod g) of the set Sx corresponds to two different w's, and different u (mod g)'s
correspond to different pairs of w's, we have

\Sl\<(l/2)-(q/4).(N/q) = N/$.
In the group GF*(q2), if £ is such that

4*-w£+l = 0with| frH
then ^ + 1 = 1. The number of solutions of the system of equations

|x«+1 = 1,
\xN+r = l,

is
gcd(N + r,q + l) = gcd(p-r,q + 1)<p-r <3(p + l)/2<q/4.

Since every u (mod g) of the set S2 corresponds to two different £'s, and different ^ (mod g)'s
correspond to different pairs of £ 's, we have

| A S ' 2 |< (l /2) - (g /4) . (# /g) -# /8 .

Therefore, we have |5iuiS2| < (N/S) + (N/$) = N/4. D

Now we are ready to prove Theorem 2.
Proof of Theorem 2: Suppose condition (1.7) holds. We present Algorithm 2 as follows:
Select a random integer u with 0<u<N, u^2, u^N -2 and

gcd(w, #) = 1 and gcd(Z>, JV) = 1, where D = u2 - 4. (4.3)

If (4.3) does not hold, then a nontrivial factor of TV is found. Suppose (4.3) holds.
By Lemma 4.1, for a random integer u, the probability that (Dlp) - -1 is about 1/2. Sup-

pose (Dip) = -1 with the chosen u.
We first calculate the pair UN and VN via the formulas (cf. Lemma 12.5 of [1]):

u2i = uy, v2i=v?-i,
u2i+1 = ui+y-i, v2i+l = vi+y-u.

2001] 233

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

(This is something like doing modular exponentiation in Algorithm 1.) Then calculate
UN+l = (uUN+VN)/29 VN+l = (uVN+DUN)/29

UN_X = uUN - UN+l9 VN_X = uVN - VN+l.

For / = 2,3,..., calculate by recurrence,
UN+i = uUN+i__x -UN+i_2, VN+j = uVN+i_x -VN+i_29

UN_j = uuN_i+l - UN_i+2, VN_j = uVN_M ~ VN_j+2.
By Lemma 4.3, we have p \ UN+r and p | (VN+r - 2).
Suppose k>l. (If k <7, then N = pq with q = k(p + T)+r = k(p-l) + 2k+r can be easily

factored by Algorithm 1.) By Lemma 4.4, for a random u9 the probability that

q\UN+r(u) and q\(VN+r(u)-2) (4.4)
is less than 1 /4. Suppose (4.4) does not hold for the chosen u. Then we have gcd(UN+r9 N) = p
and/or gcd(yN+r -29N) = p9 and N/p = q.

The time taken by computer for the calculation of UN (mod N) and VN (mod N) as explained
above and for the calculation of aN (mod N) are the same order of magnitude for large values of
N. So, as analyzed in Theorem 1, bit operations used here is also 0(!og3 N + \r \ log2 N)9 but with
a larger constant related to the big 0-notation than that in Theorem 1. D

Example 4.1: Let N = 525837811, w = 6, and D = u2 - 4 = 32. Then
UN = 128529829, VN =365916885, UN_9 = 154978947, and VN_9 =215276907.

We have N - pq9 where
p = gcd{UN_„99N) = gcd(VN„9~~29N) = l62\ and q = N/p = 32A39l.

We find that q = 200(p + l) - 9 , •(£>//?) = - 1 , and (Dlq) = 1.

Example 42: Let tf = 262940789, it = 6, and D - f#2 - 4 = 32. Then
[7^ = 90848206, ^=211151910, [7 ^ = 256455168, and VN+9 = 78409393.

We have N - pq9 where
/> = gcd(UN^9 N) = gcd(F^+9 - 2, N) = 1621, and q = N/p = 162209.

We find that g = 100(p + l) + 9, (£)//?)' = - 1 , and (D/?) = 1.

Remark 4.1: In Algorithm 2, if the integer u happens to be selected with (D/p) = l (with proba-
bility about 1/2), then p\Up_x and p | (F ^ - 2), instead of p\Up+i and p\(Vp+l-2). If k in
(1.7) is small or condition (1.6) holds, we would have gcd(UN_r9N)=gcd(VN_r~29N) = p9

where r satisfies (1.6). In this case, Algorithm 2 acts essentially as Algorithm 1 does.

Example4.3: Let N = 13157657, u = 6, and Z> = i/2-4 = 32. Then
£/„ =2945491, F^ = 1183255,

[/^+7 = 3350607, J^+7 = 6668796.
We have N = pq9 where

/? = gcd(C/iV+7,#) = gcd(Fis,+7-2,#) = 1621, and q = N/p=*M.

234 [JUNE-JULY

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

We find that q = 5(p + l) + 7? {Dip) = (D/q) = - 1 .
If M = 3 is selected, then D = u2 - 4 = 5 and

UN = 6604163, VN = 281690,
UN_l7 = 12418481, VN_l7 = 3076660.

We have N = pq, where

p = gcd(UN_l7,N)=:gcd(VN_l7~2,N) = l62l and q = N/p = Ul7.

We find that g = 5(p -1) +17, (D/p) = l, and (D/q) = -l. This example explains Remark 4.1.

Example 4.4: Let

= 10224 + 6740198 + 579.10125 + 3905240"+8381-1027 + 5690121 (225 digits),

M = 4, and D = w2 - 4 = 12. Then we have N = pq, where
p = gcd(UN+259, N) = gcd(^+259 - 2, N) = 10" + 289

and
q = N/p = 10125 + 6 7 4 0 " + 29-1027 +19689.

The entire calculation took about forty seconds on my PC 486. We find that

q = (l026 + 67)(p + l) + 259, (D/p) = -\ and (D/q) = l

Remark 4.2: One may calculate only the Ffs using Algorithm 8.3 of [1]. It takes a little less time
than calculating both t/'s and F's. However, it might happen that gcd(N,VN+r-2) = N, but
gcd(Ny UN+r) = p (cf. Lemma 4.4). So we prefer to calculate both t/'s and P s .

5, COMBINED WITH WILLIAMS5 p + l METHOD

The following Extended Algorithm 2 combines Algorithm 2 presented in the proof of Theo-
rem 2 with Williams' p + l method, thus it unifies trial division, Fermat's method, and the p + l
method.

Extended Algorithm 2: Let u, D be as given in the proof of Theorem 2. Calculate a = UM{u)
and b - VM(u), where Mis the product of all small primes and some powers of very small primes.
If 1 <gcd(a,N)<N or 1 <gcd(b-2,N)<N, then a nontrivial factor of N is found (the p + l
algorithm ends up here). Otherwise, calculate (cf. Lemma 12.14 of [1]) UMN{u) = a-UN(b) and
VMN(u) = VN (b). Then, for / = 1,2,..., calculate

UM(N-o(u) = Ub

If condition (1.11) holds, even though

UM(N+i-i)(»)+a • F j ^ «_i)(«)),

VM(NM-\)^) + D-a- £/W(W+,_i)(w)),

VM{N-M){u) -Da- UM(N_i+l)(u)).

r\ in (1.9) is large, the prime divisor p could be found
quickly, since in this case we would most likely have

8«K£W+r)(«),N^ = P a n d / o r Scd(VM(N+r)(u)-2,N) = p.

2001] 235

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

Example 5.1: Let
N = 3041465128 • 10219 + 355851419976-10198 + 1757966843983 • 10120

+ 206120091724443• 10" + 254026208955399000029847640060548387 (229 digits),

u=9, and D = u2-4 = 77. Let

M= n pmp-
p prime, pmp< 32768

Then we have N = pq, where

P = &d(UMiN+lA4)(!i), N) = gcd(VM(N+m(u) -2,N)

= 3041465128-10" +878983421991 (109 digits)

and

g = 7Vr//? = 10120 + 117-10" + 289.1021 + 33957 (121 digits).

The entire calculation took about twenty minutes on my PC 486. We found that
q = k(p + l)+r = (l02l + ll7)d + U4 and (Dip) = (Dlq) = - 1 ,

where rf=1099+289, (p + l)/d = 23-13-19-47-32749, which is smooth and divides M, and
r} = 144 is small, whereas \r\ = -r - 1369...51187 (109 digits) is large.

Remark 5.1: As mentioned in Remark 4.1, if the integer u happens to be selected with (Dip) = 1,
then Extended Algorithm 2 acts essentially as Extended Algorithm 1 does. Thus, Extended Algo-
rithm 2 not only unifies trial division, Fermat's method, Pollard's p-\ method, and Williams'
p +1 method, but also enhances these four methods.

6. CONCLUSIONS

The algorithms we have presented each operate in an Abelian group. Algorithm 1 uses the
multiplicative group GF*(p) of nonzero elements of GF(p). The work on Lucas sequences in
Algorithm 2 is really arithmetic done in a subgroup, with order p + l, of the multiplicative group
GF*(p2) of nonzero elements of GF(p2). The prime factor/? of N can be found quickly when
N - pq satisfies one of the four conditions (1.8), (1.9), (1.10), and (1.11) or, in other words,
when N = pq is near the related group orders p±\. Moreover, it is easy to see that the "factor-
ing large integers near group orders" idea can be used to Lenstra's Elliptic Curve Method [5] to
enhance the ability of ECM for factoring more large integers near the order dp of the group Ep,
elliptic curve E modulo p.

Our algorithms not only unify trial division, Fermat's method, Pollard's p-\ method, and
Williams' p +1 method, but also can quickly factor a class of large integers, which could not be
factored by other available methods (such as QS or NFS) within a reasonable amount of time.
Thus, such integers should be excluded from RS A moduli candidates.

ACKNOWLEDGMENTS

I thank Professors D. M. Bressoud, R. K. Guy, A. K. Lenstra, H. W. Lenstra, Jr., C. Pomer-
ance, G. Robin, S. S. Wagstaff, Jr., and H. C. Williams for their sending me reprints concerning

236 [JUNE-JULY

USING LUCAS SEQUENCES TO FACTOR LARGE INTEGERS NEAR GROUP ORDERS

this subject or other topics in computational number theory. Special thanks go to the editors and
the referees for kind and helpful comments that improved the presentation of this paper.

REFERENCES

1. D. M. Bressoud. Factorization andPrimalify Testing. New York: Springer-Verlag, 1989.
2. John D. Dixon. "Factorization and Primality Tests." Amer. Math Monthly 91 (1984):333-

352.
3. D. E. Knuth. The Art of 'Computer Programming: Semi-Numerical Algorithms. Vol. 2. 2nd

ed. Reading, MA: Addison-Wesley, 1981.
4. A. K. Lenstra & H. W. Lenstra, Jr. The Development of the Number Field Sieve. Lecture

Notes in Math., 1554. Berlin: Springer-Verlag, 1993.
5. H. W. Lenstra, Jr. "Factoring Integers with Elliptic Curves." Ann. of Math. 126 (1987):649-

673.
6. J. M. Pollard. "Theorems on Factorization and Primality Testing." Proc. Cambridge Philos.

Soc. 76 (1974):521-28.
7. C.Pomerance. "Factoring." Proc. SIAM42 (1990):27-47.
8. H. Riesel. Prime Numbers and Computer Methods for Factorization. Boston: Birkhaiiser,

1985.
9. K. H. Rosen. Elementary Number Theory and Its Applications. Reading, MA: Addison-

Wesley, 1984.
10. R. D. Silverman. "The Multiple Polynomial Quadratic Sieve." Math. Comp. 48 (1987):329-

39.
11. H. C. Williams. "A p + l Method of Factoring." Math. Comp. 39 (1982):225-34.
12. H. C. Williams & J. O. Shallit. "Factoring Integers before Computers." Proc. of Symposia

in Applied Mathematics 48 (1994):481-531.
13. Zhenxiang Zhang. "Finding Strong Pseudoprimes to Several Bases." Math. Comp. 70 (2001):

863-72.
AMS Classification Numbers: 11Y05, 11A51, 11B39

2001] 237

