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1. THE BASIC THEOREM 

Let G = (G, *, e) be a finite group with support G = {gx, g2,..-, gn), operation * and identity 
element gx = e. The aim of this paper is to find recurrences for the number N(T,k,a) of 
solutions of the equation x1*x2*t"*xk = a, where a eG and the variables xt are limited to 
belonging to a given subset TofG. Let 0 be the left regular representation of G extended to the 
group algebra ZG. If T c G, we pose y(T) = HgeTg e ZG. 

We begin with the following basic result. 

Theorem 1.1: Given Ta G, let A = 9(y{T)) e Matin, Z). Then 
(a) N(T,k,gJ) = AtJ. 
(b) The sequence N(T, k, gj)9 k e N, is linearly recurrent with characteristic polynomial f(x), 

where f(x) is any polynomial s.t. f{A) = 0. 

Proof: 
(a) Let T={gii,gh,...,g1m}9 then 

(r(T)f = (gh +gh + -+*>„)* = t w , K gj)8j in ZG. 

Applying 0 on both sides: 

y=l 

The first row of 0(gj) is (0,..., 1,..., 0) with 1 in the j * place and 0 elsewhere, and the result 
follows. D 

(b) By Theorem 1.6 in [3], the sequence A^- (for fixed indices i,j) is linearly recurrent with 
any polynomial f(x) s.t. f(A) - 0 and initial values Ay, 4y,..., A™~1 [if deg(/(x)) = m\ D 

Example 1.2: Let G = ^ (the symmetric group of degree n), T= {n-cycles}, a eT. By Corol-
lary 4.2 of [5], 

N(T, k, a) = nV\n -1)1* x W ( M ) ( \ T * ' & 

We know from Theorem 1.1 that this sequence is recurrent. We now find a characteristic poly-
nomial. If n is odd, collecting some terms, we can rewrite (1) as 
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N(T> k>a) = JlCh[(-lfh\{n-h-l)\f-\ (2) 

where the coefficients Ch are rational numbers. From equation (2) and Theorem C.l. of [6], we 
see that the sequence N(T9 k,a) is recurrent with characteristic polynomial of degree n^\ 

n-\ 

fod6(n) = tl(x-(-lfh\(n-h-\)\). 
h=0 

For example, if n = 79 N(T9k9a) is linearly recurrent of fourth degree with characteristic 
polynomial x4 - 612x3 - 80928x2 + 2073600x +149299200 and initial values 

{1,180,153072,106173504}. 

Let us suppose now that n is even. Of course, in this case, when k is even, N(T, k,a) = 0. 
We consider the subsequence formed by the terms with k odd, k = 2s+l. From equation (1), we 
obtain 

N(T, 25+1, a) = § A [[(-l)hh\(n-h-l)\fY, 

which can be rewritten as 

N(T,2s+\,a) = YdDh({h\(n-h-m2y. 

Then the subsequence N(T9 2s +1, a), s = 0,1,..., is recurrent with characteristic polynomial 

feven(n) = fl(x-(hKn-h-W) 
h=0 

of degree y. For example, if n = 6, N(T, 2s +1, a) is recurrent of third degree with characteristic 
polynomial x3 -15120x2 +10450944* -1194393600 and initial values 

{1,5040,69237504}. 

2. SMALLER DEGREE OF RECURRENCE 

As we have seen, the sequence N(T9 k, a) is always linearly recurrent with degree at most 
w = |G| for any subset Tin which we confine the variables xl5 x2,..., xk. 

Sometimes we can find recurrences of lower degree. 

Definition 11: A partition 2T= {Th Tl9 ...9TJ of G is said to be closed if V/i, k e {1,..., m) the 
set-product Th * Tk is a disjoint union of elements of 9". 

We can write 
r(Th)*r(Tk) = i:As

hkr(Ts) 

in the algebra ZG, where Xfhk is the number of solutions of the equation x * y = g9 where x e Th9 

y eTk, g GTS. This number does not depend on g itself but only on the fact that g GTS. Then 
xhh = N(Th> 2

? g) w i t h g G Ts- Of course, 
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r(Th)*r(Th)*-*r(Th) = XN(Th,k,gs)Ts,whetegsGTs. 
K. _ _ ^ _ / 

k times 

We abbreviate N{Th, k, gs) to N(h9 k, $). 
Now let Ah = 0{y (Th))9 A = 1,..., m. Then the set si = {Ah :h = l,...,m} satisfies 

m 
^Ah = J where J is the all one matrix. (3) 
h=\ 

There exist natural numbers Xs
hk s.t. 

m 

4=5>»4- (4) 
s=l 

The numbers Xs
hk are those we are searching for, that is, 

m 

4* = 5>(/r,MH- (5) 
5=1 

If we compute A%, the kth power of Ah, the number N(h, k9 s) appears in the places of the first 
row of A%, where As has ones. 

Let us define the set of matrices 28, SB = {Bh : h = 1,..., m}, where (B^y = Xj
hi. By the fol-

lowing theorem, we obtain recurrences of degree lower than \G\ when J is an element of a closed 
partition. 

Theorem 2.2: Let Th c G be an element of a closed partition JT. Then the sequence N(Th, k, g), 
g e G, satisfies a recurrence of degree at most m- |2T| with characteristic polynomial any poly-
nomial f(x) s.t. f(Bh) = 0, where the matrix j?A is defined by (B^- = XJ

hi. 

Proof: Again by Theorem 1.6 of [3], it is enough to prove that N(Th, n + \g) = (B%)ht for 
every h = l,...,m and n > 1, with g eTt. We prove this by induction. 

For w = l, N(h,2,t) = X!hh = (Bh)hr 

Let us suppose that N(h, n, i) - (B%~l)ht. Then 

and 
(4)"+1 = Z {Bl~\tAhAt = ^(B"h-%^htAs 

t t,S 

=Z(BrX(Bh\A-j:(Bn
h\sA-

t,s s 

It follows that (BjDfa = N(h, n + l,$) by equation (5) and the independence of the As. • 

Corollary 23: Let G and H be, respectively, a finite group and an automorphism group of G. 
Let €= {Oh02,...,Om} be the set of orbits and let N(h,k,t) be the number of solutions of 
Xj * x2 * • • • * xk - g, with xt e Oh and geOr Then N(h, k, i) is linearly recurrent with charac-
teristic polynomial of degree at most m. 

Proof: The proof follows from Theorem 2.2 and the fact that 0 is a closed partition. D 
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Remark 2.4: 
(a) In the case of Corollary 2.3, the matrices Ah form an association scheme (see [1]), where 

A^ = Av and Av is the matrix corresponding to the orbit Ov = O^1. 
(b) The characteristic polynomial can be computed as the minimum polynomial of the matrix Bh. 
(c) The set of conjugacy classes is a well-known example with H-Inn{G). The example 1.2 

falls in this case, where conjugacy classes are those of w-cycles and transposition. Let us 
observe that, from Theorem 1.1, we could only suppose a recurrence of degree nl = \Sn\. 
Instead, from Theorem 2.2 and Corollary 2.3, we know that the recurrence degree for equa-
tions in Sn with variables constrained in conjugacy classes is at most equal to the number of 
partitions of n. 

3. CYCLIC GROUPS AND RANDOM WALKS ON THE CIRCLE 

Let Zn be the additive cyclic group Zn = (0,1,..., n -1} and Z* = Aut(Zn). If H < Z* acts on 
Zw, we get m orbits: 

O0 - O(0), Ol - 0(l) = H9...,0, = 0(gt), G<? < w - l , 

with a set of representatives 2H = {g0 = 0, gt = 1, g2,..., gm_t}. We know that ?f= {0(gfX 0 < i < 
m-l) is a closed partition. 

Let us now consider the special ease H = {±1}. 
If n is odd, we have ^ orbits with 2Hodd = {0,1,..., 32^}; if n is even, we have - ^ orbits with 

Let z be the n xn circulant matrix with first row [0,0,..., 0,1], that is, the permutation matrix 
corresponding to the «-cycle (1,2,...,«). 

The adjacency matrices of the well-known "polygon scheme88 determined by the action of if 
are: 

(a) ifr is odd, 

4 =/„, 4 = z * + r * forl<£<^±i; 
(b) ifr is even, 

A, = In, A„n = z"'2,Ak=zk+z-k f o r l < * < ^ . 

We divide the circle in n equal parts labeled 0,1,.. . ,«-1. 
Let P(k, a) be the probability that we get the vertex a starting from 0 and flipping a coin k 

times to decide whether to move one step clockwise or counterclockwise. Of course, 

pM = ™ . 
Theorem 3.1: Let g(x) = xm + ̂ x^"1 + • • • + bm be the characteristic polynomial of J5|. 

The sequence P(0, a), P(\ a),..., P(k9 a),... is recurrent with polynomial 
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Proof: From the proof of Theorem 2.2, we know that we find P(k, a) in the first row of 
( i BiT- The result follows because, if g(x) is the characteristic polynomial of 51? then f(x) is 
the characteristic polynomial of j Bx. D 

Example 3.2: Let n-1. The matrix \AX is the double stochastic transition matrix of the 
Markov chain associated with this random walk (see [4], p. 82). 

A-

o i 
2 

0 0 
0 0 

1 \ 
2 

0 0 0 0 
1 
2 
0 

0 0 0 0 
1 
2 
0 

0 0 0 0 

0 0 0 
1 0 0 

I 
2 
0 
± o 

1 
^2 

0 0 0 0 0 

C = \BX is the stochastic matrix 

C = 

0 i 
1 0 

0 0 
i o 

o i o i 
0 0 i- I 

We find P(&, 0), that is, the probability that we come back to the origin 0 after k steps, in the 
place (1,1) of Ck. 

1 v 3 

x2+± 
From Theorem 3.1, the sequence P{k,0), k eN, is recurrent with polynomial x4 

8 x +1 and initial values {l, 0, y, 0}. 
This recurrence sequence is convergent to j ; in general, the first row of Ck converges to 

I 1 

x -

- j , that is, V a l i m ^ P(k, a) = - . 

The polygon scheme is a particular polynomial scheme. Then the matrix Bx is tridiagonal and 
has the form 

for n odd, and 

A=< 
r * 
0 
2 

[* 
A= o 

2 

1 . 
0 . 
1 . 

1 . 
0 . 
1 . 

.. 1 
. 0 

.. 1 

. 1 

. 0 

. 1 

1 
1 
* 

2 
0 
* 

(6) 

(7) 

for n even (see [1] for notation). 
Let B^ be the tridiagonal matrix of the polygon scheme with n vertices, and gn(x) be its 

minimum polynomial. Then 

gn = Yl(x-2coS2f-\ (8) 
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We now see that gn can be computed easily using recurrence. 

Theorem 33: The sequence gn(x) is recurrent with polynomial 

j / 4 -xy 2 + l (9) 

and initial values {g0(x\ gfa), g2(x), g3(x)} = {0, x - 2, x2 - 4, x2 - x - 2}. 
Proof: 

* c, a r " H ^2 ••• ^d-l ^d 
B[n) =<0 ax a2 ... ad_x ad 

[k \ b2 ... bd_t * 
(10) 

where <\ = c2 - - - = cd_x = 1, al=a2 = -*- =^d-i ~ ®> and k = 2, bl = b2=--= bd_x - 1; also, for n 
odd,c^ = 1, ad = 1, n = 2d + l, andforweven, cd = 2, ad = 0, n = 2d. 

Let us consider the sequence 
F0(x) = 1, Fx(x) = x + 1, Ft(x) = (x-k + b^ +ci)Fi_1(x)-bi_lci_lFi_2(x). 

Then (see [1], p. 202), (x - 2)Fd(x) = gn(x). 
If n is odd, we have 

/? = x^_1(x)-iv_2(x) (11) 
Vi, 2<i<d, which implies immediately that 

«,(*) = %-2 W - &-4(*)> (12) 
and (9) is proved. 

If n is even, (11) holds true Vi, 2 </ <d, but i^ = (x + l)Fd_l - Fd_2 = xFd_x +Fd_t-Fd_2. 
Then (x - 2)Fd =(x- 2)(xFd_l - F^„2) + (x - 2)Fd_x > that is, 

Sn(X) = gn+l(X) + gn-l(X) (13) 
with n = 2d. Hence, 

S&-2 - g-„_4 = X(^_! + ̂ _3) - (gn_3 + ̂ _5) = ̂ „+1 + ̂  = g, (14) 

by (13) and (12). D 
Of course, the sequence gk(x) has a geometrical meaning only if k > 3; we have extended it 

adding go(jc), &(*), and g"2(x) by computing the recurrence backward. 

Remark 3.4: Let 
F;ven=-^L a n d i7odd=^k±L 

rf (x-2) d (x-2) 
Theorem 3.3 is equivalent to saying that the sequence F0

evee, F?*", ... and F0
odd, Ff**, ... are both 

recurrent with characteristic polynomial y1 -xy + 1, with initial values, respectively, {1, x + 1} and 
{0,x + 2}„ 

Theorem 3.5: Let C be the matrix 

(*_y *+2} (is) 
Then the first row of Cd is [Ffd, FJven] W > 0. 
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Proof: The characteristic polynomial of C is y2 - xy +1 which is, by Theorem 3.3, the recur-
rence polynomial of both F£dd and FJven. Then the result follows from Remark 3.4 and Theorem 
2.5 of [2], where the ring R is Z[x]. D 

Corollary 3,6: The first row of (x-2)Cd is [g2d+l(x), g2d(x)] W > 0. 

4. DIHEBMAL GROUP 

Let Dn be the group of symmetries of a regular polygon Dw = {//, T / / , k = 0,1,..., n-1}, 
where n is the number of sides of the polygon, p is a rotation of2KIn, and r is a reflection. 

When n is odd, the regular representation 9 is a direct sum of irreducible representations: 

2 

where y/l is the trivial representation, y/2 is the alternating representation, and $t is the two™ 
dimensional representation such that 

alk 0 
+ti*H0 „-ut\Mv*) = 

( A „-lk 0 a'**] 2m 
ar* 0 ) n 

Ifn is even, 
$= y/1 + y/2 + y/3 + y/4 + 2<f>l + 2</>2 + --+20IL:;L, 

2 

where y3(jt) = y4(/0*) = (-1)* and ^(V/ / ) = (-1)*, ys4(Tpk) = (-1)*+1. 
Let us now consider the case of two reflections which generates Dn,r, and rp, that is, 

suppose T- {T, rp} and a GD„. 

Theorem 4.1: 
(a) The sequence N(T, k, a) is recurrent with polynomial 

ftW = ̂ - (16) 

(6) The sequence pn(x) for w = 1,2,... is recurrent with polynomial 

/ - J V + ( 2 X 2 - 2 ) / - X 2 J + 1 (17) 

and initial values {x2-4, x4-4x2, -4 + 9x2-6x4 + x6, -16x2 + 20x4-8x6 + x8, -4+25x2-50x4+ 
35x6-10x8 + x10}. 

Proof: 
(a) From the decomposition of 9, if n is even, 

\2 

and if w is odd, 

p„(x) = x\x- 2)(x + 2 ) n ( x 2 - 4 cos2 M J , (18) 

pn(x) = (x-2)(x + 2)f[(xi - 4cos 2 ^ J . (19) 

Collecting appropriate terms and using equation (8), we find (16). D 
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(b) By remark 3.4, pn(x) = ^ f (F;ven(x))2. In the ring Z(x)^§ Is constant and the sequence 
pn(x) is recurrent with the same recurrence of (F*vm(x))2. By the same remark F*Ym(x) is 
recurrent with polynomial y2 ~ xy +1 whose companion matrix is 

ro - r 

if n is odd, and 

C"U x 
By Theorem 2.6 of [2], (Fw

even(x))2 is recurrent with the characteristic polynomial of the 
Kronecker product C®C, that is, y4 -y3x2 + (2x2 -2)y2 -x2y +1. D 

For example, if « = 7, the sequence N(T,k,e) is recurrent with polynomial -4 + 49x 2 -
196x4 + 294x6 - 21 Ox8 + 77x10 - 14x12 + x14 and initial values 

{0,2,0,6,0,20,0,70,0,252,0,924,0,3434}. 
We now consider the case of the basic rotation p and the reflection T, that is, T - {p, r) and 

Theorem 4.2: 
(a) The sequence N(T, k, a) is recurrent with polynomial 

P : " ( I ) = M " " <2O> 

if n is even. 
(b) The subsequences p^+i an(l PiT* a r e recurrent with polynomial 

/ - j 3 x4 + (2x6 - 2x4) y2 - x8j + x8 (22) 

and initial values, respectively, 
{x 2 -2x , -2x 3 -3x 4 + x6,-2x5+5x6-5x8 + x1 0 , -2x7-7x8 + 14x10-7x12 + x14} 

and 
{-4x6 + x8, - 4x6 + 9x8 - 6x10 + x12, -16x10 + 20x12 - 8x14 + x16, 

-4x10+25x12-50x14+35x16-10x18 + x20}. 
Proof: 
(a) From the decomposition of 0, we find 

p*vm(x)= x(x-2)(x + 2 ) f l ^ 2 x - 2 c o s - ^ (23) 
h=\ V n ) 

and 

P? (x) = x\x-2) f l x 2 f x - 2 c o s ^ J . (24) 
h=l 

Equations (20) and (21) follow from (8). D 
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(h) In the ring Z[x], p^dd
x(x) is equal to x(x - 2) multiplied by (Fs

odd (x))2x2s. Furthermore, 
(Fs

odd (x))2 is recurrent by characteristic polynomial y4 - y3x2 + (2x2 - 2)y2 - x2y + 1 = u(x) and 
x2s by y - x2. We again use Theorem 2.6 of [2]: the characteristic polynomial of x2U, where U 
is the companion matrix of u(x), is precisely y4 - y3x4 + (2x6 - 2x4)y2 - x*y + x8. 

The same holds for p^(x). D 

For example, if n-1, the sequence N(T,k,e) is recurrent with polynomial -2x 7 -7x 8 + 
14x10 - 7x12 + x14 and initial values 

{0,1,0,3,0,10,1,35,9,126,55,462,286,1717}. 

If n - 8, the sequence N(T, k, e) is recurrent with polynomial -16x10 +20x12 -8x14 + x16 and 
initial values 

{0,1,0,1,0,3,0,10,0,36,0,136,0,528,0,2080,0,8256}. 
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