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1. INTRODUCTION 

In this paper we prove a conjecture of Barrucand [1] concerning the highest power of 2 
dividing the coefficients of certain formal power series. We also prove a more general result, and 
we give examples involving the convolved Fibonacci numbers, the convolved generalized Fibo-
nacci numbers, and the Bernoulli numbers (of the first and second kinds) of higher order. The 
writer believes that all of the results are new. 

With the definitions of v(r) and S(n) given below (Definitions 2.1 and 2.2, respectively), the 
conjecture can be stated as follows. 

Theorem 1.1 (Barrucand's Conjecture): Let 

be a formal power series with h0 = 1, v(h^) = \ and v(hn) > 1 for n > 1. Define an by 

Then a0 = 1, and v(an) = S(n) for n>0. 

Our main result, Theorem 4.1, generalizes Theorem 1.1 to series of the form [H(2kx)J, 
where r is rational and 2k (k > 1) is the highest power of 2 dividing the denominator of r. 

A summary by sections follows. Section 2 is a preliminary section in which we state the basic 
definitions and lemmas that are needed. In Section 3 we furnish a proof of Theorem 1.1, and give 
three examples. The first example provides a new proof of a well-known formula for the highest 
power of 2 dividing n\. The second example, involving a theta function, was the original motiva-
tion for Theorem 1.1. The third example determines a formula for the highest power of 2 dividing 
the »* Catalan number. In Section 4 we prove the main result, Theorem 4.1, which generalizes 
Theorem 1.1. In Section 5 we give examples of Theorem 4.1 that involve Fibonacci numbers and 
Bernoulli numbers. 

2. PRELIMINARIES 

We use the following definitions of v(r) and S(n). 

Definition 2J: Let r = n /vbea rational number with gcd(z/, v) = 1. Define v(r) to be the expo-
nent of the highest power of 2 that divides r. That is, if v(r) > 0, then 2v(r)|| u; if v(r) < 0, then 
2~v(r)\\ v; if v(r) = 0, thee u and v are both odd. 
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Definition 2.2: Let n be a positive integer with the following base 2 representation: 
n = nQ+n{2+n222 + • • • +nk2k (each ni = 0 or 1). 

Define S(n) = n0+Wj + • • • + w ,̂ the sum of the binary digits of n. 

All infinite series in this paper are "formal11 with rational coefficients. A good reference for 
the theory of formal power series, and the properties of such series, is [5]. Of particular relevance 
for this paper is the binomial theorem (Theorem 17 in [5]), which can be stated as follows. 

Lemmm 2.1: Let r be a rational number, and let F(x) be the formal power series: 

F(x) = l + fifnx" = l + Fl(x). 
n=l 

Then 

[F(x)r=i+i(;W)]", 
where Q = r ( r - l ) * " ( r - w +!)/«!. 

We need the next lemma for Example 3.1 in the next section. 

Lemma 2.2: Let n be a positive integer, and v(n) be defined by Definition 2.1. Then v(n!) < n. 

Proof: We use induction on n. Clearly Lemma 2.2 is true for n = \ and n = 2; assume that 
v(J\) < j for j = 1,2,...,«-1. If #i is even, let n = 2m (m> 1), so 

«! = [l-3---(2m-l)][2-4---2m] = [l-3---(2/w-l)]2wni!. (2.1) 

By the induction hypothesis, v(m\) < my so by (2.1) we have v(nf) < 2m; that is, v(nf) < n. The 
proof for odd n is entirely similar. • 

3. PROOF OF BARRUCAND'S CONJECTURE 
We use the notation in the statement of Theorem 1.1. It is clear from Lemma 2.1 that a0 = 1; 

in fact, we could use the binomial theorem to determine ax and a2 as well, but the following com-
binatorial approach is more useful. Since 

(^ Y 

we have 
n 

k=0 

so that 

Thus, ax = hx and a2 = 2h2-^(al)2, and the conjecture is true for n = 0,1,2. We now use induc-
tion on n in equation (3.1). Assume v(aj) = S(J) for j - 1,..., n - 1 , and define M as follows: 

M = the minimum value of viaja^j) for j = 1,..., n -1. 
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Case 1: n = 2\ with / > 1. It Is clear that M = 2 = v(ajaj), where j = 2'"1. Thus, by (3.1), 
v(a„) = l = S(n). 

Case 2% n = 2ei +2*2 +>-+2et, with 0<el<e2 <•••<£„ and n^2&t. It is clear from the induction 
hypothesis that Mis at least equal to t. In fact, it is clear (because of no "carries11) that M occurs 
when 

j = cx2ei + c22*2 + • • • + ct2e< (each ct = 0 or 1). 

There are 2f - 2 such terms (the -2 represents the cases ct = 0 for all / and q = 1 for all i). Thus, 
M = 5(/) + a'(yi-/) = 5(ii), 

and by (3.1), 
2 " ^ - 1 ( 2 ' - 2 ) ^ 1 (mod 2); 

that is, v(aw) = S(n). This completes the proof. • 

The following examples provide some motivation for Theorem 1.1. The first example is a 
new proof of a well-known and useful formula for v(n\). 

Example 3.1: Let 

H(x) = e2x = l + 2x + J^^xn. 

By Lemma 2.2, we know that v(2n/n\)>\ for n>\, so we can apply Theorem 1.1 to H(x). 
Since [H(2x)f2 = e2\ Theorem 1.1 says that v(2n/n\) = S(n) for n > 1; that is, v(n\) = n-S(n). 

The second example was the original motivation for Theorem 1.1. It involves the theta func-
tion (see [7], Chapter 20): 

0(x) = l + 2^x"2. (3.2) 

Example 3.2: Let 0(x) be defined by (3.2). Theorem 1.1 says that 

[0(2x)]l/2 = l + fj2s^Inxn, 

where /„ is rational and v(In) = 0. In fact, by Lemma 2.1, In is an odd integer. 

Barrucand [1] has pointed out that 0{x) is a modular form, and it is very striking that the 
determination of the 2-valuation for ^0(2x) is so simple. 

Example 3.3: Let Cn = 7^7(2„"), the /2th Catalan number, with generating function (see [8], p. 82): 

If we let H(x) = 1 - 2x, then 

[H(2x)f2 = l-f^2C„xr!+\ 

and Theorem 1.1 says that 2S{n+l)~l is the highest power of 2 dividing C„. 
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4. GENERALIZATION OF BARRUCAND'S CONJECTURE 
Throughout this section we assume H(x) is defined by 

with hQ = 1, v(ht) = 1, and v(hn) > 1 for n > 1. 
The proof of the main result, Theorem 4.1, depends on the following two lemmas. 

Lemma 4.1: For k > 1, define h^k by 

[H(2kx)f~k =fdh^x". 

Then /i0> ̂  = 1, and v(hn^ k) = ̂ (/i) for w > 1. 

Proof: The proof is by induction on k. By Theorem 1.1, we know the lemma is true for 
k-\. Assume it is true for a fixed k > 1, so that h0ik=l and v(h„t k) = S(n) for n > 1. Therefore, 
v ( \ ) t ) ~ I? anc^ v(K,k) - 1 for w > 1. Now we can use Theorem 1.1 again, starting with 

[#(2*x)r*=!>„,**" 
instead of iif(x), to get /I0J ̂ +1 = 1 and v(h„t k+l) = S(n). This completes the proof. D 

Lemma 4.2: Let r, = -^, where u and w are odd integers with gcd(w, w) = l. Define h^ by 
CO 

[H(x)]r = £ # > * " • (41> 
n=Q 

Then /#> = 1, v(h[r)) = 1, and v(^„r)) > 1 for « > 1. 

Proof: We first consider the case when w = 1. Since u is an odd integer (positive or nega-
tive), it is clear from Lemma 2.1 that h^ = 1, vQfp) = v(uh^ = 1, and vQf$) > 1 for n > 1. 

Barrucand [1] has pointed out that it is possible to use Lemma 2.1 to get the desired result 
for r = — (w > 1). However, we present here a simple combinatorial proof. Suppose w > 1, and 
let Hl(x)=[H(x)]u. For convenience, and to make the rest of the proof more readable, we will 
use the notation gn = h^lw). Thus, we can write 

00 

and 

^iW = [ l ^ " ] W - (4-2) 
We see that 1 = (g0)w, which implies g0 = 1. By (4.2), we also have h^ = wgh which implies 
v(gj) = v(h[u)) = 1. For n > 1, we have, by (4.2), 

h^^g^-g^, (4.3) 
where the summation is over all «1?%...,«w such that 0<nt <n (i = 1,...,w), and nl+w2 + '-' + 
nw = n. We rewrite (4.3) in the form 
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% ^n ^ SnxSn2 • •• Snw> 

with 0<ni <n (i = 1,...,w). It is now dear that we can use Induction on n to prove that 2\gn9 

for n > 1. Thus, v(gn) > 1 for n > 1. This completes the proof • 

Theorem 4.1: Let 

with h0 = l9 *u(/*j) = l, and v(/rw)>l for «>1 . Let r = u/v be a rational number with gcd 
(u9 v) = 1, and suppose 2* || v, with £ > 1. Define h^\ by 

Then ti$k = 1, and v(/££) = % ) for TI > 1. 

Proof: Let v = 2^w, so w is an odd integer. By Lemma 4.2, we know that the numbers gn 

defined by 

have the properties gQ = l, v(gx) - 1, and v(gn) > 1 for n > 1. Thus, if we use [if(x)]M/M; instead 
of If (x) in Lemma 4.1, the proof of Theorem 4.1 follows immediately. D 

5. EXAMPLES 

In all of the examples, we assume r is defined as follows: 

r = — is a rational number (positive or neg ative); gcd(w, v) = 1; 2k || v for * > 1. (5.1) 

Example 5.1 (Convolved Fibonacci Numbers): Let 

l~2x-4x2 ^J 
where i^+1 is the Fibonacci number. Note that i*j = 1, v(2F2) = 1, and #u(2wi^+1) > 1 for w > 1. 
Thus, we can apply Theorem 4.1 to H(x) to get results for the Sfconvolved!S Fibonacci numbers of 
rational order, F^H (see [8], p. 89). These numbers are defined by 

and Theorem 4.1 gives the following result for n > 1 and r defined by (5.1): 

v(F£i) = S(n)-(k + l)n. 

Example 5.2 (Generalized Convolved Fibonacci Numbers): Let/?, q9 and b be rational numbers 
such that v(p) > 0, v(q) > 0, and v(b) = 0. That is, p and q are 2-integral, and b is the quotient 
of two odd integers. Consider the following generalization of the Fibonacci numbers. Let wt = 1, 
w2 =b, and, for w>3, 
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We define the generalized convolved Fibonacci numbers, w{^h by means of 

l-px + qx2) ^ w%lX". 

To the writer's knowledge, these numbers have not been studied before. Note that w^\ = wn+1; 
also, if p = 1, q = - 1 , and b = 1, then wn+l = Fn+1. More generally, we see that wi = l, v(2w2) = 1, 
and, by recurrence (5.2), it is clear that v(2"wn+l) > 1 for n > 1. Thus, we can start with 

and apply Theorem 4.1 to get the following result for n > 1 and r defined by (5.1): 
v(w£l) = S(n)-(k + l)n. 

Example 5.3 (Bernoulli Numbers of Higher Order): The Bernoulli number of higher (rational) 
order, B(J\ may be defined by means of 

-Y=f>^): 

These numbers were evidently first introduced by Norlund (see [6], Ch. 6), and they have been the 
subject of many papers (for integer j especially). The numbers Bn = Bjp are the ordinary Bernoulli 
numbers, and the following facts are well known: B0 = 1, ^ = -1 /2 , Bn = 0 if n is odd {n > 1), 
and v(B2n) = -1 if n > 1. Thus, we can start with 

Ax A xn 

and apply Theorem 4.1 to get the following result for n > 1 and r defined by (5.1): 
v(B^) = -(k + l)n. 

We note that this is a special case of a theorem of Carlitz [2] for the Norlund polynomial B^x). 

Example 5.4 (Higher-Order Bernoulli Numbers of the Second Kind): The higher-order Ber-
noulli number of the second kind, b{

n
J\ can be defined by 

V °° 

log(l + x)J {£**• 
The numbers b® = bn are the Bernoulli numbers of the second kind defined by Jordan [4]. It is 
known [3] that *0 = 1, bx = 1 /2 , and v(b„) = -n for n > 1. To the author's knowledge, the numbers 
b^ for j * 1 have not been studied. If we start with 

1 ' log(l + 4x) ~ n 

and apply Theorem 4.1, we get the following result for n > 1 and r defined by (5.1): 
v(b^) = S(n)^-(k + 2)n. 
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6. FINAL COMMENTS 

The writer thanks P. Bamicand for his many Insights and suggestions. 

The simple combinatorial methods of this paper do not seem to work for primes other than 2. 
Thus, the problem of determining the highest power of 3 (or any other odd prime) dividing num-
bers generated by a rational power of a generating function is, in general, difficult, and it will 
probably require a different approach. 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://probIems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my-deja.com 

3 6 4 [AUG. 


