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INTRODUCTION

The upper symbiotic number U(R,, R,) of two linearly-ordered sets R, and R, is here intro-
duced as the greatest number of elements of R, that lie strictly between consecutive elements of
R,. Similarly, the lower symbiotic number 2(R,, R,) is the least number of elements of R, that
lie strictly between consecutive elements of R,. Henceforth in this paper, we shall consider only
upper symbiotic numbers. We are interested in pairs of positive irrational numbers « and y for
which #(R,,R,) is finite, where R,={i+ ja:i, j€Z*}, Rij=R,+y, and Z* denotes the non-
negative integers.

Let s, =i, + j,a be the sequence obtained by arranging the elements of R, in increasing
order. The main objective of this study can now be indicated specifically by this question: If y is
rationally independent of &, what is the greatest number of numbers of the form 7 + ja +y that lie
between consecutive numbers i, + j,& and i,,;+ j,,,@? The special case a = (1++/5)/2, along
with some possibly new appearances of Fibonacci numbers, are considered in Example 1 and just
after Theorem 3.

1. CONVERGENTS AND THE SEQUENCE s
First, we recall the notation of continued fractions: Write a =[a,, a;, a,, ...],

P,=0, p, =1 p=ap_,+p,,
and
9,=1 ¢,=0, g=aq,_,+q,_,,

for i >0. The numbers a;, for i >0, are the partial quotients of ¢, and the rational numbers
p; /q;, for i =2, are the principal convergents of a. For all nonnegative integers / and j, define

b= Jpintp, and U JGin*4;- M

The fractions p, ;/q, ;, for 1< j<a,,, ~1, are the i intermediate convergents of a, and for
1<j<a,,-2,

w<Bio P P Pua .. og ifiiseven )
g 9,; 9+ Gis2
and
s By S P P Paa g ifis odd. 3)
9 9,; 91 Gi+2

Note that, if j =a,,, in (1), then p, ; = p,,, and g, ; =¢;,,. This extension of the range of j will
enable certain proofs to cover simultaneously the two cases, 1< j<a,,, -1 and j=a,,.

Let s denote the sequence whose terms, s, =i, + j,&, for n=0,1,2, ..., are as given in the
Introduction. A difference |p —qa| first occurs at s, if
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S =81 =|p—qe| and s,-s,,#|p-qa| “)
for all m < n, and last occurs at s, if conditions (4) hold for all m> n. (In these definitions, p/q
need not be a convergent to @.)

Define A, =5 —s). Let n, be the least # such that 5, —s, ; # A, and let A, =, —s5,, .
Continue inductively, so that #, is, for each s > 2, the least » such that s, —s,_; is not among the
numbers A, Ay, ..., A, ,and A, =5, 5, .

It will be helpful to provide single indexing for the doubly-indexed numbers p; and g, as
follows. Let P,=p, ; and O, =¢q, ; for j=0,1,...,a,—-1,and forw=1,2,..., let

Bzz+a3+m+aw+,+j =Dy, and Qa2+a3+'~-+aw+,+j =4y, ;
for j=0,1,...,a,,, —1. Below, | x] represents the greatest integer < x, and the fractional part of
x is given by ((x)) =x —|x].
Lemma 1: Suppose i is even, 0< j<a,,—1, and p and g are nonnegative integers such that
O<-p+qga<-p;+qa; then g2¢q; ,,, if j<a,,-1,and g>gq,, if j=a,,—1. Suppose i is
odd, 0< j<a,,—1, and p and g are nonnegative integers such that 0< p—ga < p; —g,c; then
p=2 b, j+1 ifj <dy, -1, and P2 P ifj =a,, L

Proof: In case i is even, p;/q; is a best lower approximate to a, as proved in [1], so that
q>q;. There are two cases:

Case 1: j<a,,-1. Here, p, ;,;1/q, ;. is a best lower approximate to a; since g > g, we
have g>¢q; ;..

Case 2: j=a,,,—1. Here, p,,/q,, is a best lower approximate to «; since g > g;, we
have g 2 q,,.

Ifiis odd, then p; /g; is a best upper approximate, and the asserted inequalities follow. O

Lemma 2: The differences A, are given in three cases:

Casel: a<1. Here, A, =|F,_,—-Q,,a|forh=12,....

Case2: a>1and (a))>1/2. Here, Aj=1and A, =|B,_,-Q, ,a|for h=2,3, ...
Case 3: a>1and (a))<1/2. Inthis case, A; =1, A, = (@),

Ay =1-((h-2)a)) forh=34,.. ,a+],
and A, has the form |5, - Q.| forall h>a, +2.
Proof: First, suppose i is an even nonnegative integer. It is easy to check that (3) implies

>0t G® > Pt 4a@ > > "D g -1t i 6,12 %)
and (2) implies

©0 2 Dir,0 T 9i41,0% > Pist1 T Gie 0¥ > > Dist, a1~ Ginl, g, 125 )
in the former case, for example, (3) implies p,,; > g;,,@, so that

U+DDia+ 0 = Upina + ) > (G + DGy + g, = (i + ),
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1€, P i~ Py> (4, 1 —4gy)a, so that —p,+q@>-p; ;,1+q, ;0 as desired in (5); chain (6)
likewise follows from (2).
Since p,, /G4y <@ < P43/ q;43, We also have

“Pia,-11 0,10 > Pivro ~ Gis1, 0¥ @)
and
pH'l’ ai+3_1 - qi"’l, a,'+3_1a > —pi+2, 0 + qi+2, Oa N (8)
Inequalities (5)-(8) are clearly equivalent to the chain
(@) =-po+a@ = |B-0] > IR -0l > |B - Gar] >+ ©)

The numbers p;;/q,;, alias F,/(Q,, comprise the complete set of best lower and upper approxi-
mates to . Consequently, any difference A, not included in chain (9) must exceed (@)). We
consider the following cases:

Case 1: a< 1. Clearly 5, = , so0 that A, =5, -5, = = ((@)). No difference A, can exceed
A, since, for any s, = u +va where v > 1, we have

S, = 8,158, — (u + (V - l)a) = ((a)))
and, for s, =u+0a, we have

$,=8,4<s,~((w-D+|1/aja)=1-|1/ala< a.

n n—-1 =
Thus, A, =|P,_, - Q,,a|for h=1,2,....
Case 2: a>1and (@)) >1/2. Write m=|a]. Then s;=i fori=12,...,m, and s,,, = .
Consequently, A, =1 and A, =a-m=((a)). Write m=s, and a =s,,,, and, for any n>m,
write s, =u+va. If u>m, then

S =8, <u—-m+@+Da-s,= (),
whereas, if # < m, then

S =S, Su+m+l+(v-Na-s,=m+1-a=1-((a)) < (a)).

Thus, A, <A, forall >3, sothat A, = |B,_, - O, ,a|for h=2,3, ...

Case3: a>1and (a))<1/2. AsinCase 2, clearly A, =1and A, =a-|a]= (). Itis
easy to check that (ja)) = j(@)) for j=12,...,a,=[1/(a—-ay)].

We seek conditions under which terms ja and |1+ ja ] are not consecutive in s: suppose
je<u+va<|1+ja]. Equivalently, (j—v)a <u<1+|ja]-va. Such an integer u exists if
and only if | (j—v)a | < |1+ ja]-va] or, equivalently, | (j—v)a]<|ja]-|val, or yet again,
(G-va) < (ja)) - (va)). Since 0< j—v < j, this last equality, hence the nonexistence of u,
is equivalent to the condition j>a,+1. That is to say, each |1+ ja |- ja, which is equal to
1-((ja)), is one of the differences A, for j=1,2,...,a,, and this fails to be the case for all
Jjza+1.

Every difference A, is necessarily of the form |p—ga|. By Lemma 1, if [p—qga| < (@),
then |p —qa| is one of the differences A,. We have already seen that in addition to these A, are
the a, numbers 1- ((ja)), for j=0,1,...,a,—1. In order to see that there is no other difference
A,, we consider two possibilities.
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Case 3.1: p—qga>0. Here, |p—ga|=1-((ga)), which exceeds ((«)) and is a differ-
ence A, for g=1,2, ..., a,, and for no other values, as already proved.

Case 3.2: —p+qga>0. Here, |p—ga|=((ga). If (ga) > (@), then for any n we
have s, <s, +(-La]+a) =s,+ (@) < 5, + (ga)), so that ((ga)) is not a difference A,. O

Theorem 1: Suppose « is a positive irrational number. If 7 is even and 0< j<a,,—1, then
|p; — q;;e| first occurs at g and last occurs at p,,; —1+(g;; +¢, —Da. Ifiisoddand 0<j<

a;,, — 1, then | p; —g,;| first ocours at p;; and last occurs at p; + p, — 1+ (g — Dex.

Proof: Suppose i is even, and let & be the index for which A, = |p,; —q;|. Since i is even,

A, =-p;+g,a. Let m be the index such that s, =g;;, and suppose that A, first occurs at

s, =u+va, where w<m. Then s, =u+p,;+(v—g;)a. Since s, is a term of sequence s,

we have v > g, , but then u +va > g,,a, contrary to s, <s,. Therefore, A, does not occur before
s, Next, we show that

S T Sm-1 = Ah' (10)

Since s,, = g;;a, it suffices to prove that s, ; = p;;. Now p,; < g, since 7 is even. So, suppose,
contrary to (10), that p,; <s, = y+za < g;;a for some nonnegative integers x, y, z. Then g;a—
P, >(q; —2)a—y >0, but this is untenable because p,;/g;; is a best lower approxi-mate to a.
Therefore, (10) holds.
Turning now to the last occurrence of A, let n be the index such that s, = p,,;, —1+(g; +
g1 —Da. Then
5, — Ay =Pt Dby —1+(g1—Da,

and this is clearly a number in the sequence s. We must show that, for any difference A = |-p,, +
O | less than A, the number s, — A is not in 5. (By Lemma 2, the only differences A that need
be considered are, in fact, of the form | —p, + g, |.)

Case 1: Even k. Here A= -p +q,a. By Lemma 2, we have g, > ¢, ;,; (which is g, if
Jj=a,,—1). Then

8§, = A= P+ py—1+(g; + g - 1-1)a,

and the coefficient of @ is <¢;; +¢;,; —1-¢; ;,, but since this number is —1, the number s, - A is
not in s.

Case 2: Odd k. Here, A=p,, —q . By Lemma 2, we have p;, > p, ;,, (which is p,; if
Jj=a,,—1),and
53~ A= P = P~ 1+ (g + g~ 14 gl
Since p,,; — p; — 1 <0, the number s, — A is not in s.
We now know that s,—s,_, =A,. Thatis, A, occurs at 5,. To see that this location in s

marks the last occurrence of A,, suppose m > n. We must show that s, —s,,_, <s,—s,_,. Write
S, as u+va; then one of the following cases holds: (A) u 2 p,,,; B) v2q,; +q,,.

Case A: u > p,,,. Here, the number u— p,,, +(v+g,,,) is a term s, in the sequence s.
Since -p,,; +¢,,,& <0, we have s, =u—p,,, +(v+q, )a<u+va=s,, sothat s, <s, ,, and

m—1s
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Case B: v2gq;+q,, Here, g;+q.,,=(+Dg.+g =4, ;... Therefore, the number
utp jn+(-q, ;) isaterms,. Since p, ;,;—¢; ;. <0, we have s, <s,,_,, so that

Sn ~ S < Sy~ Sy =UTVO _(u+pi,j+l +(v_qi,j+l)a)
=Pt il <S8, — S,
This finishes a proof for even i. A proof for odd i is similar and thus omitted here. O

Corollary 1.1: Suppose « is a positive irrational number. Let »=n(h) be the index such that A,
last occurs at s,. If @ <1 or ((@)) > 1/2, the sequence n(h) is strictly increasing. If @ >1 and
(@) < 1/2, the sequence n(a, +2), n(a, +3), n(a, +4), ... is strictly increasing.

Proof:

Case 1: i even. Assume first that a <1. If 0< j<a,, —2, then, by Theorem 1, the differ-
ence A, =—p,; +q,a last occurs at my = p,,; —1+(q;; + g, — Da. By Lemma 2, we obtain A, =
=D, 11t s which last occurs at n, = p,,; -1 +(g;, 1t G — Da. Since G, 41> Gij> We have
ny,>n.

If j =a,, —1, then the difference A, = —p,; +g;;a last occurs at m = p,,; —1+(q;; + ¢,y — D
and, by Lemma 1, A,,,, namely p.,, —q,,,&, last occurs at p, +p,,, —1+(q,,,—Da. We have
(91,4,,-1 + 9i41)@ < Pry2 + G140, SO that

Pin— 14 g1 ¥ G ~ DA <P+ Pra — 1+ (g2~ Dax,

which is to say that the last occurrence of —p,; +¢;,a precedes that of p,,; o — ;1,02 -

Next, assume that @ >1 and ((@)) > 1/2. The difference A, =1 occurs at | & ] and is easily
seen not to occur thereafter. Clearly, this last occurrence of A, precedes the last appearance of
A, = («)). The proof given above for the case a < 1 now applies to all A, for A>2.

Finally, assume that @ >1 and ((@)) < 1/2. By Case 3 of Lemma 2 and the method used in
Case 1 above, the sequence n(a, +2), n(a, +3), n(a, +4), ... is strictly increasing.

Case 2: i odd. A proof much like that for 7 even is omitted. O

Corollary 1.2: Suppose « is a positive irrational number and i > 0. If the difference |p,; —g;;a|
last occurs at s,, then the difference |p,,; — g, | first occurs before s,, and no difference less
than | p,,, — g, | first occurs before s,,.

Proof: For the first assertion it suffices, by Theorem 1, to observe that, for eveni>2

Pint < P —14(g;; + 41— Dax,
and for odd 7,
Gin@ < Pij + P — 1+ (g1 — Der.
For the second assertion, first suppose 7 is even. The well-known identity p,,,q; — pg;1 =1
implies that a,,;p.g;,, — pi:1g; = —1, so that

42D 941 @3 — D+ 3P Gi1 — P + P + G111 > 0,
4i11(@ 3@ 1200+ P+ D > Pt @129+ 4 — D,
4,11(43P142 + D > Pa (G2 — D),
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from which follows
Pus=Pntl_ P

a
Gz —1 9it1

so that
Prs > P~ 1+ (@ = DGy + 4 + Gy — D
2 P —1+(q; + 4 —Da,
and, by Theorem 1, the difference p,,; — g5 first occurs after s,,.
It is clear from Theorem 1 that, if a difference A first occurs after the difference —p,,, +g;,,&

first occurs, then either A = p, ., —q,,;a or else A first occurs after p,,; —q,, ;& first occurs. We
have therefore finished with a proof for even i. A proof for odd 7 involving the inequality

pi+2_l

<a
Qi34 +1

is similar and omitted. O

2. THE SPAN OF «
Forn=12,..., let

fy=" (11)
k2n -

and define the span of « as
s(a)=sup{f(n):n=0,1,2,...}.

Theorem 2: Suppose a =[ay,a,,...]. Then the span of « is finite if and only if the partial quo-
tients a; are bounded.

Proof: Let n be large enough that the differences A, = s,,—s,,; are of the form |p; —g,«|
for all m > n; this is possible by Lemma 2. Then, in (11), the numerator ranges through differences
A, = |p,.j —q,.jal, where i >0 and 1< j<a,,,—1. Now suppose lp,.j —q,.ja| last occurs at s, and

| is1— i1 | 1ast occurs at s,,. Then n’ > n by Corollary 1.1, and using Corollary 1.2 we find

max{s, - ,_ _

nax{Se ~ Se-1) __p-92 _ _Ip-gel __lp-gal __|p-gal

min{s, -8} min{s, —s,,} - min{s, -~} min{s, =5} Py~ Gl
n k<n k<n k<n

so that

\p, — g2
s(a) < sup——~———, 12
@ iz(ll)lpi+2_qi+2a| (12
From the standard identity

|Pi_qia|=rlr2 P where 1, :=[a;,a,,,,...],
~Tiny
we have
|2 — g,
IP ,_ql a|= i+2+1/r;'+3’
i+1 ~ Gis1
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whence
|7 — g2
—————=(g +1/I; a; +1/’; ,
Ipi+2 - qi+2a| +2 +3)( +3 +4)
so that
s(@) < sup(@,, + (a3 +1). (13)
i20

Thus, s(e) is finite if and only if the partial quotients a ; are bounded. O

Example 1: Incase o =(1++/5)/2 =[1,1,1,...], it is easy to verify the following results:

(@) All the convergents are principal convergents, and p,/q;, = F,,, / F,,;, where F, denotes
the £™ Fibonacci number, defined by F, =0, /=1, F,=F, |+ F, ,fork=23, .. ;

®) A,=|F,-F_a|l=a forh=123,.;

(¢) A, first occurs at s,, where n=(F,_, +)(F, +1)/2 for h=2,3,4, ..., and

F_a ifhisevenand >2,
S =
" \F, if /1 is odd,;

(d) A, last occurs at s,, where

| FaFa =172 if hisevenand >2,
1+ B (B -1)/2  if his odd,

and
{17,,+l ~1+(F,,,~Da ifhisevenand >2,

"\ Fy—14+(F,-Da  ifhis odd;

(&) s(a)=c+1=2.618034.

Using the upper bound sup,»¢(@;,, +1/7,3)(a,,3 +1/1,4) from the proof of Theorem 3, we
have three more examples.

Example 2: s(~2)=s([1,2]) < (2+ Hlﬁ)z =31-124/3=10.2153.

Example 3: s(\3)=s([1,1,2]) < (1+ J§1+1)(2+ ﬁ2+ 1) =2+4/3 = 373205,

_ 2
Example 4: s(\5) = s([2,4]) < (4 + ng_ 2) =41+124/5= 678328

3. UPPER SYMBIOTIC NUMBER FOR {i + ja+y} AND {i + ja}

We return now to the problem stated in the Introduction.

Theorem 3: Suppose a and y are positive irrational numbers, y rationally independent of , and
suppose a has bounded partial quotients. Let R,={i+ ja:i,j € Z'} and let R,= R,+y. Then
U(R,R,)) < s(a)+1.
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Proof: As before, let s, denote the n'™ largest number in R, after s, =0, and assume now
that at least one number # in R, lies between s,_, and s,. Let ¢, and 7, be the least and greatest

such numbers, where w > 0. We seek an upper bound for the number w +1 of numbers 7 between
s,_; and s,. Let m’ be the index for which ¢, =s,, +y . The inequalities

8,1 < tm < tm+1<"'< tm+w <,

imply that
tm+w - tm = (tm+1 - tm) + (tm+2 - tm+1) Foeeet (tm+w - tm+w—1)
= (sm’+1 - Sm’) + (Sm'+2 - Sm’+1) teee ot (sm’+w - Sm’+w—1)
>2wmin{s,,,, = Sy  1SVSW}2wmin{s, — s, ,},
kzn k<n
so that
S, — S

n

L—n Tnl < s(a). O
min{s, —._}
k<n

Experimental sampling suggests that 2(R,,R,)=2 for a = (1++/5)/2 regardless of the value
of ¥ (as long as y is positive, irrational, and rationally independent of «), and that similar results
may hold for other quadratic irrationals. Sampling also suggests, perhaps unsurprisingly in view
of the proof of Theorem 3, that #(R,,R,) may often be considerably less than the span of .

We conclude with a particularly easy-to-state related unsolved problem. Let

R,={1,3,5,9,1525,27,..} = {35/ :i 2 0, j > 0}
and let

R,=1{2,6,10,18,30,50,54,...} = {2r :r €R,}.
Is U(R,,R,) finite? (For an equivalent formulation of this problem, let R,={i+ ja}, where
a =log5/log3, and let R,=y +R,, where ¥ =log2/log3.)
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