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1. INTRODUCTION

It is well known that a positive integer N is called a pentagonal (generalized pentagonal)
number if N =m(3m—1)/2 for some integer m> 0 (for any integer m).

Luo Ming [2] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci
sequence {F)}, and later shown in [3] that 2, 1, and 7 are the only generalized pentagonal num-
bers in the Lucas sequence {L,}.

In this paper we consider the associated Pell sequence {(,} defined in [1] as

O,=0,=1 and Q,,,=20,,,+0, for any integer n ¢))
and establish that J, = O, =1 and 0, = 7 are the only generalized pentagonal numbers in it.

2. PRELIMINARY RESULTS

We recall that the Pell sequence {£,} is defined by
F=0, F,=1, and B, ,=2F,

n+l

+ P, for any integer n @))

and that it is closely related to the sequence {(,}. The following properties of these sequences
are well known. For all integers n:

P,=CD"™FE, and 0, =(-1)"Q,; €))
B=2F wa g -2F, @
where o =1++/2 and f=1-+/2;
On=2R1+ (-1 )
02, =20, - (D" (6)
As a direct consequence of (4), we have
Oppin = 20,0,— (-1)"0,,_, for all integers m and n. @)

The following congruence relation of {(,} is very useful.

Lemma 1: If m is even and n, k are integers, then 0, ,,,. = (-1)*Q, (mod 0,).

Proof: If k =0, the lemma is trivial. For k>0, we use induction on k. By (7), O,.2,=
20,..9,,— (~1)"Q,, which gives the lemma for k£ =1 since m is even.

Assume that the lemma holds for all integers < k. Again by (7) and the induction hypothesis,
we have
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Qn+2(k+1)m = 2Qn+2ka2m - Qn+2(k-—l)m
=2(-1)0,0,,~ (-D*"'Q, (mod Q) ®
= (-D*20,, +DQ, (mod Q).
But since m is even, it follows from (6) that

20,,+1=-1 (mod Q,). )

Now (8) and (9) together prove the lemma for £ +1. Hence, by induction, the lemma holds for
k>0.
If k <0, say k =—r, where r > 0, we have by (7) and (3) that

Ozt = 20,05~ Opsarm = 20,1 - (1Y 0, (mod @) =(-1)'Q, (mod 0,)

which proves the lemma completely.

3. PENTAGONAL NUMBERS IN {(,}

Note that N = m(3m—1)/2 if and only if 24N +1=(6m—1)? so that N is generalized penta-
gonal if and only if 24N +1 is the square of the form 6m—1. Therefore, we have to first identify
those » for which 240, +1 is a perfect square. We prove in this section that 240, +1 is a perfect
square only when =0, 1, or 3. We begin with

Lemma 2: Suppose n=0 or 1 (mod 36). Then 240, +1 is a perfect square if and only if n=0
orl.
Proof: If n=0 or 1, then 240, +1="5%. Conversely, suppose n=0 or 1 (mod 36). Ifn ¢
{0, 1}, then  can be written as n=2-32.2"- g+ &, where > 1, gis odd, and £ =0 or 1. Write
32.2" ifr =3 or 8 (mod 10),
m=43.2" ifr=1or6(mod 10),
2’ otherwise,

so that » = 2km + £, where k is odd.
Now, by Lemma 1 and (3), we have 240, +1=240,, .. +1=24(-1)*Q, +1 (mod Q,) =
24(-1D)+1 (mod Q,) =23 (mod Q,). Hence, the Jacobi symbol

240, +1)_(=23)_( =L 2:—_1(&(_—1):2&
#2252 (%) (19
Also, since 2% = 2! (mod 22) for ¢ > 1, it follows that

m=+4, +6, +10 (mod 22). (1

Note that, modulo 23, the sequence {Q,} is periodic with period 22. It follows from (11) and (3)
that 0, = Q,, O, or Q,, (mod 23). Thatis, 0, =17, 7, or 5 (mod 23), so that

(%)-G) G ()

300 [AauG.



PENTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE AND DIOPHANTINE EQUATIONS

and, in any case, we have (%’"3—) =~-1. This, together with (10) gives

(_24%#“)2_1 for n ¢{0,1},

showing that 240, +1 is not a square. Hence the lemma.

Lemma 3: Suppose n=3 (mod 252). Then 240, +1 is a perfect square if and only if 7 = 3.

Proof: If n=3, then 240, +1=24-7+1=132. Conversely, if n=3 (mod 252) and n#3,
then we can write 7 as n=2-3%-7-2"-g+3, where r >1 and g is odd. Writing

(7.3.2" ifr=110r 52 (mod 82),
7-27  ifr=21,26,310r67 (mod 82),
32.27  ifr=14,16,17,20,28,33,42, 45,
k= 57,58, 61,69, or 74 (mod 82),
3.2 ifr=3,5+6,7, 10,12, +18,19, 423, 32,
+35, 44, 46,48, 51,53, 60, or 73 (mod 82),
\2’ otherwise,

we find that n = 2km+3, where k is odd (in fact, k =3-g, 3*-g, 7-g, 3-7g, or 3%-7-g). There-
fore, by Lemma 1 and the facts that O, = 7, k is odd, we have

240, +1=24P, . +1=24(-1)*Q;+1 (mod Q,) =-167 (mod Q,,).

240, +1) (=167 _(-1\(167)_(-1)(Cu ) -1)_(Cn
S o M o9 vom o o ) o M
Since 2/*82 = 2" (mod 166) for # > 1, it follows that

m=14, 14, +18, +20, +22, +24, +26, +40, +42, +50, £52, +58,
+62, 66, £70, £72, +74, +76, £78, or +82 (mod 166).

Hence,

(13)

But, modulo 167, the sequence {(,} has period 166. This, together with (13) and (3), gives that
0, =17,15,153,55,10,5, 20,37, 95,30,131, 123, 86,
129,125,151, 113,26, 43, or 13 (mod 167)
and it can be seen that (%—7) =—1in all cases. Using this in (12), we get (%) = —1, proving the
theorem.
A consequence of Lemmas 2 and 3 is the following.
Lemma 4: Suppose n=0, 1, or 3 (mod 2520). Then 240, +1 is a perfect square only for n=0,
1, or 3.

Lemma 5: 240, +1 is not a perfect square if n# 0, 1, or 3 (mod 2520).

Proof: We prove the lemma in different steps, eliminating at each stage certain integers
n modulo 2520 for which 240, +1 is not a square. In each step, we choose an integer m such
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that the period k (of the sequence {(,} mod m) is a divisor of 2520 and thereby eliminate certain
residue classes modulo k. Table A gives the various choices of the modulo m, the corresponding
period & of O, modulo m, the values of n (mod k) for which the Jacobi symbol (240, +1/m) is —1
and the values of » (mod k) remaining at each stage. For example,

Modulo 7: The sequence {(,} has period 6 so that, if n=2, 4, or 5 (mod 6), then O, =(0,, 0,,
or Qs (mod 7). Thus, we have O, =3 or 6 (mod 7); hence, 240, +1=3 or 5 (mod 7). Therefore,

240,+1) (3 3
( 7 )‘(7) °r (7)
showing that (240, +1/7)=-1 and, hence, 240, +1 is not a square. Thus, 240, +1 is not a

square if n=2, 4, or 5 (mod 6). So there remain the cases n=0, 1, or 3 (mod 6); equivalently,
the cases n=0, 1, 3, 6, 7, or 9 (mod 12).

TABLE A
Period| Modulus Values of n Left out values of n (mod t)
k m where [24Q“+1] =_1 where t is a pesitive integer
m
6 7 {£2 and 5. 0,1 or 3 (mod 6)
12 516, 7 and 9. 0,1 or 3 (mod 12)
24 11 |12 and 13. 0,1,3 or 15 (mod 24)
. 179 115,25 and 51.
73 |+24,39 and 49. 0,1,3,27 or 63 (mod 72).

75, 99, 135, 145, 171,
504 1259 |+£216, 217, 219, 243, 289,
351, 361,433 and 459.

11, 16, 17, £24, 39, 47 0,1,3,63, 147 or 315

56 337 fand 5s. (mod 504)
113 |31 and 51,

42 | 4663 |27.

126 127 | 57.

10 a1 7.

20 29 |+4 and 15.

30 31 |9 and 19.

60 | 269 |25 and 51, 0,10r 3 (mod 2520).
19 [33.

40 59 |+8 and 23.

280 139 |203.

We are now able to prove the following theorem.
Theorem 1: (a) O, is a generalized pentagonal number only for n=0, 1, or 3, and (b) (), is a
pentagonal number only for =0 or 1.

Proof: Part (a) of the theorem follows from Lemmas 4 and 5. For part (b), since an integer
N is pentagonal if and only if 24N +1= (6m—1)%, where m is a positive integer, and since O; =7,
we have 240, +1# (6m—1)* for positive integer m, it follows that O is not pentagonal.
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4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that, if x; +y,+/D is the fundamental solution of Pell's equation x?— Dy?=
+1, where D is a positive integer which is not a perfect square, then x, +y,+/D = (x, + y,/D)" is
also a solution of the same equation; conversely, every solution of x? — Dy? = *1 is of this form.

Now, by (5), we have Q% = 2 P2+ (~1)" for every n. Therefore, it follows that

Q,,+~/2PB,, is a solution of x? —2y% =1, (14)
while
Qypi1 +2P,,,, is a solution of x? —2y% = —1. (15)
Theorem 2: The solution set of the Diophantine equation
X*(3x-1)2 =8y +4 (16)
is {(1,0)}.
Proof: Writing X = x(3x—1)/2, equation (16) reduces to the form
X2-2y* =1, 17

whose solutions are, by (14), 0,, + \/EPZ,, for any integer n.

Now x=a, y=b is a solution of (16) < {a(3a—1)/2}++/2b is a solution of (17) <
a(3a-1)/2=(,, and b = P,, for some integer 7.

Therefore, by Theorem 1(a), the ordered pair (“3=2, 3) = (Q,, ), giving that (a, ) = (1, 0)
and proving the theorem.

Similarly, we can prove the following theorem.

Theorem 3: The solution set of the Diophantine equation
x*(3x-1)*=8y* -4 (18)
is {(1, £1), (-2, £5)}.
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