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1. INTRODUCTION 

It is well known that a positive integer N is called a pentagonal (generalized pentagonal) 
number if N'= m(3m -1) / 2 for some Integer m > 0 (for any integer m). 

Luo Ming [2] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci 
sequence {Fn}, and later shown in [3] that 2, 1, and 7 are the only generalized pentagonal num-
bers in the Lucas sequence {LJ. 

In this paper we consider the associated Pell sequence {Qn} defined in [1] as 
Q> = fi = l and Qn+2=2Qn+l + Q„ for any integer n (1) 

and establish that Q, = Qx -1 and Q3 = 7 are the only generalized pentagonal numbers in it. 

2. PRELIMINARY RESULTS 

We recall that the Pell sequence {Pn} is defined by 
P0 = 0, ^ = 1, and Pn+2 = 2Pn+1 + Pn for any integer n (2) 

and that it is closely related to the sequence {Qn}. The following properties of these sequences 
are well known. For all integers n: 

P_„ = (-1)"+1P„ and Q_n = ( - l )»a; (3) 

where a = l + j2 and/? = 1-V2; 

e„2 = 2P„2 + (-l)"; (5) 

Q2n = 2Ql-{-\J. (6) 

As a direct consequence of (4), we have 

GU, = 2QmQn-{-\fQm_n for all integers m and n. (7) 

The following congruence relation of {Qn} is very useful. 

Lemma 1: Ifm is even and w, * are integers, then Qn+2km = (rtfQn (moc* Qn)' 

Proof: If k = 0, the lemma is trivial. For k > 0, we use induction on k. By (7), Qn+2m = 
2Qn+mQm - (-l)mQn, which gives the lemma for k = 1 since m is even. 

Assume that the lemma holds for all integers < k. Again by (7) and the induction hypothesis, 
we have 
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Qn+2(k+l)m ~ ^Qn+lkmQlm Qn+2(k-l)m 

- 2(-lfQnQ2m-(-l)k-lQ„ (mod QJ (8) 
= (-\)\2Q2m + \)Qn (modgj . 

But since m is even, it follows from (6) that 
2Q2m + 1^-1 (mod QJ. (9) 

Now (8) and (9) together prove the lemma for k + l. Hence, by induction, the lemma holds for 
k>Q. 

If & < 0, say k = -r, where r > 0, we have by (7) and (3) that 

Qn^2km^QnQ2rrn-Qn+2rm^Qn(-W-(-WQn (™>d QJ ^ (-\JQn ( m o d QJ 

which proves the lemma completely. 

3. PENTAGONAL NUMBERS IN {£,} 

Note that N = m(3m -1) / 2 if and only if 24N +1 = (6m -1)2 so that N is generalized penta-
gonal if and only if 24N +1 is the square of the form 6m-1. Therefore, we have to first identify 
those n for which 24Qn +1 is a perfect square. We prove in this section that 24Qn +1 is a perfect 
square only when n = 0,1, or 3. We begin with 

Lemma 2: Suppose n = 0 or 1 (mod 36). Then 24Qn +1 is a perfect square if and only if n = 0 
o r l . 

Proof: If n = 0 or 1, then 24Qn +1 = 52. Conversely, suppose n = 0 or 1 (mod 36). If n £ 
{0,1}, then n can be written as n = 2-32>2r -g+£, where /*>!,£• is odd, and £ = 0 or 1. Write 

'32-2r ifr = 3or8(modl0), 
m = i3'2r ifrE=lor6(mod 10), 

2r otherwise, 

so that n = 2km + s, where k is odd. 
Now, by Lemma 1 and (3), we have 24Qn + l = 24Q2km+£ + l = 24(-lfQ£ + l (mod QJ = 

24(-l) + l (mod QJ = -23 (mod QJ. Hence, the Jacobi symbol 

'2AQ.+J) _ (^ _ f - i V a ) _ f^YOAf^) _ (QA 
Qm ) [QJ [QJKQJ {QJK23AQJ {23)- (10) 

Also, since 2'+,° s 2' (mod 22) for t> 1, it follows that 
m s ±4, ±6, ±10 (mod 22). (11) 

Note that, modulo 23, the sequence {Q„} is periodic with period 22. It follows from (11) and (3) 
that Q„ = Q,, Q6, or Ql0 (mod 23). That is, Qm = 17, 7, or 5 (mod 23), so that 
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and, in any case, we have (%) = - 1 . This, together with (10) gives 

24Q. + 1 
Qn, 

-1 for w<2 {0,1}, 

showing that 24Q, +1 is not a square. Hence the lemma. 

Lemma 3: Suppose n = 3 (mod 252). Then 24Q, +1 is a perfect square if and only if n = 3. 

Proof: If n = 3, then 2AQn +1 = 24 • 7 +1 = 132. Conversely, if « = 3 (mod 252) and n * 3, 
then wecan writewas « = 2-32-7-2r-g+3, where r>\ andgisodd. Writing 

7-3-2r ifr = l lo r52 (mod 82), 
7-2r if r = 21,26,31, or 67 (mod 82), 

if r = 1,4,16,17,20,28,33,42,45, 
57,58,61,69, or 74 (mod 82), 

if r = 3,5, ±6,7, +10,12, ±18,19, +23,32, 
±3 5,44,46,48,51,53, 60, or 73 (mod 82), 

otherwise, 

k = 
32-2r 

3-2r 

we find that n = 2km+3, where k is odd (in fact, k = 3• g, 32-g, 1-g, 3• Ig, or 32 • 7• g). There-
fore, by Lemma 1 and the facts that Q3-7,kis odd, we have 

240, +1 = 24P2fon+3 +1 - 24( - r /g 3 +1 (mod QJ = -167 (mod &,). 
Hence, 

240+11 -
Qn, 

' -167^ 
Qn, 

- l ) 
QJ 

f 1 6 7 l -lo-J" -f-
1! 

'{QJ 
(Qn,) 
l l6?J f-

1!-Ifi-J" _ra/ \167, (12) 

(13) 

Since 2 m 2 = 2f (mod 166) for t > 1, It follows that 
w = ±43 ±14, ±18, ±20? ±22, ±24, ±26, ±40, ±42, ±50, ±52, ±58, 

±62, ±66, ±70, ±72, ±74, ±76, ±78, or ±82 (mod 166). 

But, modulo 167, the sequence {Qn} has period 166. This, together with (13) and (3), gives that 

Qm s 17,15,153,55,10,5,20,37,95,30,131,123,86, 
129,125,151,113,26,43, or 13 (mod 167) 

and it can be seen that (-^) = -1 in all cases. Using this in (12), we get (24|ra+1) = - 1 , proving the 
theorem. 

A consequence of Lemmas 2 and 3 is the following. 

Lemma 4: Suppose n = 0, 1, or 3 (mod 2520). Then 24gw +1 is a perfect square only for n = 0, 
l ,or3. 

Lemma 5: 24Qn +1 is not a perfect square if n £ 0, 1, or 3 (mod 2520). 

Proof: We prove the lemma in different steps, eliminating at each stage certain integers 
n modulo 2520 for which 24Q, +1 is not a square. In each step, we choose an integer m such 
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that the period k (of the sequence {QJ mod m) is a divisor of 2520 and thereby eliminate certain 
residue classes modulo k. Table A gives the various choices of the modulo m, the corresponding 
period k of Qn modulo m9 the values of n (mod k) for which the Jacobi symbol (24Qn +1 / m) is -1 
and the values of n (mod k) remaining at each stage. For example, 
Modulo 7: The sequence {Qn} has period 6 so that, if n = 2, 4, or 5 (mod 6), then Qn = Q2, Q4, 
or Q5 (mod 7). Thus, we have Qn = 3 or 6 (mod 7); hence, 24Qn + 1 = 3 or 5 (mod 7). Therefore, 

showing that (24Q,+ 1/7) = -1 and, hence, 24gw + l is not a square. Thus, 24Q, + 1 is not a 
square if n = 2, 4, or 5 (mod 6). So there remain the cases n = 0, 1, or 3 (mod 6); equivalently, 
the cases w = 0, 1, 3, 6, 7, or 9 (mod 12). 

TABLE A 

1 
Period 

k 1 6 

12 
24 

72 

504 

56 

j 42 
| 126 
j io~ 

20 
30 
60 

40 

280 

Modulus 
m 

-
5 

1 11 
179 

! 73 

1259 

337 

113 
4663 

127 
41 
29 
31 

269 
19 | 
5 9 j 

139 

Values of n 
f24Q.+ll t 

where 1-—-—1=-1 
|±2 and 5. 
|6, 7 and 9. 
12 and 13. 
15,25 and 51. 
±24, 39 and 49. 
75, 99, 135, 145, 171, 
±2169 2175 219, 243, 289, 
351, 361,433 and 459. 
11, ±16, 17, ±24, 39, 47 
and 55. 
31 and 51. 
27. 
57. 
7. 
±4 and 15. 
9 and 19. 
25 and 51. 
33. 
±8 and 23. j 
203. 

__—_—_ , . J 

Left out ¥siwes of m (mod t) 
where t is a positi¥© Integer 

0, 1 or 3 (mod 6) j 
| 0, 1 or 3 (mod 12) | 

0, 1,3 or 15 (mod 24) 

0, 1, 3, 27 or 63 (mod 72). | 

0,1,3,63,147 or 315 
(mod 504) 

0, 1 or 3 (mod 2520). 

We are now able to prove the following theorem. 
Theorem 1: (a) Qn is a generalized pentagonal number only for n - 0, 1, or 3, and (h) Qn is a 
pentagonal number only for n = 0 or 1. 

Proof: Part (a) of the theorem follows from Lemmas 4 and 5. For part (b)9 since an integer 
Nis pentagonal if and only if 24JV + 1 = (6m-I)2, where m is a positive integer, and since Q3 - 7, 
we have 24g3 +1 * (6m-1)2 for positive integer m, it follows that Q3 is not pentagonal. 
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4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS 

It is well known that, If xt +y1JI) is the fundamental solution of Pell's equation x2-Dy2 = 
±1, where D is a positive integer which is not a perfect square, then xn +yn4D - (xx +yl4D)n is 
also a solution of the same equation; conversely, every solution of x2 -Dy2 = ±1 is of this form. 

Now, by (5), we have Q2 = IP2 + (-If for every n. Therefore, it follows that 

Q2n + JlP2n is a solution of x2 - 2y2 = 1, (14) 
while 

22/2+1 + ̂ P2n+\ i s a solution of x2 - 2y2 = - 1 . (15) 

Theorem 2: The solution set of the Diophantine equation 

x2(3x-l)2 = 8j/2+4 (16) 
is {(1,0)}. 

Proof: Writing X = x(3x -1) /2, equation (16) reduces to the form 

X 2 - 2 / = l, (17) 

whose solutions are, by (14), Q2n + j2P2n for any integer n. 
Now x = a, y-b is a solution of (16) o {a(3a-l)/2} + V2£ is a solution of (17) <=> 

a(3a-1) / 2 = Q2n and b = P2n for some integer n. 
Therefore, by Theorem 1(a), the ordered pair (£l5|z^>?ty = (g^pQ)? g i v i n g tha t (a? j ) = (i?Q) 

and proving the theorem. 
Similarly, we can prove the following theorem. 

Theorem 3: The solution set of the Diophantine equation 

x2(3x-l)2 = 8 j 2 - 4 (18) 
is{(l,±l), (-2, ±5)}. 
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