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1. INTRODUCTION

In this paper we study the properties of linear recursive sequences and give some applica-
tions to matrices.

For a;, @, € Z, the corresponding Lucas sequence {u,} is given by 4, =0, 4, =1, and u,,, +
au, +ayu, =0 (n=1). Such series have very interesting properties and applications, and have
been studied in great detail by Lucas and later writers (cf. [2], [4], [6], [10]).

The general linear recursive sequences {u,} is defined by », +au,_,+---+a,u, ,, =0 (n=>0).
Since Dickson [2], many mathematicians have been devoted to the study of the theory of linear
recursive sequences. More recently, linear recursive sequences in finite fields have often been
considered; for references, one may consult [3], [5], [7], [8], [11], [12], [13], [16], [17], and [18].

In this paper we extend the Lucas series to general linear recursive sequences by defining
{uay,...,a,)} as follows:

U_,==u;=0, yy=1,

u, +au, ++au, =0 (n=0,+1,+2, .),

(1.1)

where m>2 and a,, # 0.

We mention that sequences like (1.1) have been studied by Somer in [12] and [13], and by
Wagner in [15].

In Section 2 we obtain various expressions for {u,(a,, ..., a,)}. For example,

ky++ k)

' Ry - k
un(al,...,am)z Z W(_l) 1t +mall R
ky+2ky+ - +mk,=n 1* m*
m ;:H—m—
n=0,12..),
j#l
where A,,..., 4,, are all distinct roots of the equation x™ +a1x”"1 +eeta, =0

The purpose of Section 3 is to give the formula for the powers of a square matrix and further
properties of {u (a,,...,a,)}. The main result is that

m—1 { m=1
A= Z;)LZ . )A’ (1.2)

>m

where u, = u,(ay, ..., a,) (n=0,+1,+2,..) and 4 is an m x m matrix with the characteristic poly-
nomial apc™ +ax™ "+ +a, (g, =1).

Formula (1.2) is a generalization of the Hamilton-Cayley theorem, and it provides a simple
method of calculating the powers of a square matrix.

Let A,,..., 4, be the roots of the equation x” +ax™ " +:--+a,, =0, u, = u,(a, ...,a,), and
s,=A+-+ A, (n=1,2,3,..). InSections 2 and 3 we also show that
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Zsku _y=hu, and s, = —Zkaku k- (1.3)
k=1

k=1

We establish the following identity in Section 4:

~ k! m=1 (m-1 k,
Upne1 = Z I%'kl'—kTH (Zas-run—s) um‘jlrk,+l’ (14)

ko+ky+ - +k,_1=k m=-1°r=0 \ s=r
r=0
where u, =u.(a,, ...,a,) and g, =1.
For later convenience, we use the following notations throughout this paper: Z denotes the
set of integers; Z* denotes the set of positive integers; | 4| denotes the determinant of A; and
{u,(a,...,a,)} denotes the sequence defined by (1.1).

2. EXPRESSIONS FOR {u,(a,...,a,,)}
In this section we establish some formulas for {u,(a;, ...,a,)}.

Lemma 2.1: Let a,, ..., a, be complex numbers with a,, # 0. For any n € Z, we have

un(al,.,.,am>:*iu_n-m[%A 4 1).

a, a,’’a,’a,
Proof: Let
vnzun(ga—'"i,“.,s—l,ai] and un:—gl-v_n_m,
m m m m
Since v_,,=--=v=0,v_, =-a,v,=-a,, weseethatu,_, =---=u_ =0, uy=1. Also,

u,+au, +-+au, .

m m m

1 a a,_;
= —(a_v—n—m +E_V—n—m-{\-l teeet C': V_ptv.,
=0 (n=0,+1,+2,.).
Thus, u, =u,(a,, ...,a,) foranyne Z.

Theorem 2.1: Let a,, ..., a, be complex numbers with a,, 0. Then the generating functions of
{u,a,...,a,)} and {u_,(a, ...,a,)} are given by

i 1
u(ay,...,a,)x" =
n\*1 > %m m
o I+ax+---+a,x
and
sl m
X
u_a,...,a,)x" =1- )
per S X" +ax™ +. +a,

Proof: Letu,=u,(a,,...,a,), ay=1, and a, =0 for k >m. Then

(S S - £ (S

n=0 n=0 \k=0
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Observe that

a1 =+ =a,=0 forn>m and that u,_,=---=u_=0forne{l,2,..,m-1}. So
we have

n m
Zaku = Zaku =0 forn=123, ..,
k=0 k=0

sl m
n k] _ —
Z u,x ax" |=agu, = 1.
n=0 k=0

S 1

n _
Zuﬂx - m -
0 I+ax+--+a,x

and therefore,

It then follows that

From the above and Lemma 2.1, we see that

n=1 m n=m m m —m
o0
a,. a 1
——a—meu =l 1, ,—1-,—— xk
k=0 a, Ay Ay
x" 1

This completes the proof.

Corollary 2.1: Let a,=by=1 and (T ,a,x")(Zmob,x")=1 For m=12,3,..., we have b, =
u,(a,...,a,).

Proof: Since the coefficient of x” in (1+ax+-+++a,x™+---)™ is the same as the coeffi-
cient of x™ in (1+ax+---+a,x™), by using Theorem 2.1 we get b,=u,(a,,...,a,). This
completes the proof.

We remark that Corollary 2.1 gives a simple method of calculating {5,}.

Theorem 2.2: Let a,, ..., a, be complex numbers with a,, # 0 and
m
X" rax" + o ta, x+a, = ](x-4).
i=1

(@) Forn=0,1,2,..., we have

_ ky aky ., 2k,
ua,...,a,)= Z ALAG A
ky kg +-+k,=n
_ (ky+ -+ +k,)! (1)t Honghi .. g
kil k1 1 m -
ky+2ky+ - +mk,=n 1 m*
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() Forn=m,m+1,m+2,..., we have

1 1
u_(ay,..,a,)=——
( ! ) a”'k+ ;—n— /’{'kl /?'k

~ Z (k1+"'+km)! ——1_ ey Ak, 41 -
) Ik, \ @ 4

m

kl
[XXYs ) .
kl +2k2+"' +mk,,,= n—m

Proof: Since 1+ax+---+a,x” =(1-2A;x) - (1-1,x), by Theorem 2.1, we have

Zu(a"' o —Hl Ao ﬁ(i”{k kJ

f=1

5[ T Aes)

n=0 \ ky+---+k,=n
This implies
fy ok k
ufa,...,a,)= > ApAG e A,
ky kgt =n
From Theorem 2.1 and the multinomial theorem, we see that

= 1
u(a, .. a)i)x"=
,; ACTEREY I+ax+--

E(—l)’(a1x+ +a,x™)

Y| B pdied |y

n=0 | +2ky+ - vmk,=n
kit tk,=r

had I
(3 e

0 \ ey +2ky 4 +mk,=n

Thus,
!
un(al’“_’am)z Z M(_])kl+k..+km a{cl ---a,lf{".
ky+2ky 4 tmk,=n kl! km!
1 m
This proves part (a).
Now consider part (b). It follows from Theorem 2.1 that
n m__ 1 1
u_a,...,a,)x" =—x
D R e n e
:(_l)m—lxm. 1 1 :_};m_ m © (—x-)k
IRy W (e (s R 1 P B

Therefore, we have
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u——n(al""’am)=—.l— Z ; fOI‘an.

D ky+ - k= n-m ’?'kll “.ﬂ’kp’n"

By Lemma 2.1 and part (a),
1 a, a

u—n(ab ey am) = _a_un—m (Ll: ooy "al_, ai)

____1_ (k1+"'+km)! a+- e, | Fmmt K 1 o
- 2 ol k| D a, ) \a,) -

Dy ky+2ky - +mk,,= n—m
Hence, the proof'is complete.

Remark 2.1: Let x"+ax™ '+ +a,=(x-A;)(x-1,). If {u,(a,...,a,)} is given by its
generating function, by Theorem 2.2(a) we have
u(ay,...a)= 9, Al Am (020), (2.1
Iy+ky+ - +k,=n
as was found by Wagner [15].
Suppose a, =1 and g, =0 for £ ¢{0,1,...,m}. Using Theorem 2.1 and Cramer's rule, one
can prove the following facts:

(a) Forn=1,23,..., we have

al a2 vee an
way,...,a,) =" o A 7 G (2.2)

AG-n UBp q

(b) Forn=m+1,m+2,..., we have
— L Ay " App
u_(a,..,a,)=|- L I Gt 7 Dameni | (2.3)
Ay : : - :
ayn Q3 A1

Here, (a) is well known (see [9]) when {u,(q,, ..., a,,)} is given by its generating function.

Theorem 2.3: Let a,,...,a, be complex numbers with a, #0, and 1,, 4,,..., 4, be the distinct
roots of the equation x™ +ax™ " +---+a, = 0. For any integer n, we have

m
uay,..,a,)=y —I——

i=1

/In+m—

(i 1)

3:1:1s

Proof: Consider the following system of m linear equations in m unknowns x;, X,, ..., X,
X +x++x,=0
A+ A+ +A4,x,=0
2.4
A2 4+ A2, e+ A2, = 0

A+ A ey e+ A, =1,
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Since (2.4) is equivalent to

1 1 1\( x 0
A Ay ﬂ'.m X 0
A e x| |0
et e x, 1

by the solution of Vandermonde's determinants and Cramer's rule, we obtain

1 - 1 0 1 - 1
‘= 1 Ay v Ay 0 Ay o Ay
| [V R B : -
I = BN~ R
1 1 1 . 1
__(L ’11 A’i—l A‘H-l //l’m
H(l -A)| : : o
B e B AR o A

1 .
[TA,-2)=+=7—= (=12,..,m).
H(/1 i)m( r=4) ll;[(/l,-—ﬂ,-) ¢ ")

r>s r, S#i

FormnelZ, set

i A’H'm—
=y (/1 -4,
From the above, we see that u,_,, =---=u_; =0, 4, =1 Also,

n-1
U, +ap,  +-+au, = ZH(}L — )(,1m+a1},m teta)

=0 (n= 0,+1,£2,..).
Thus, v, =u,(a,,...,a,) forn=0,£1,+£2,.... This completes the proof.
For example, let {S(n, m)} be the Stirling numbers of the second kind given by

x" = ZS(n,m)x(x—l) co(x—m+1).
m=0
It is well known (see [1]) that
1 m m—; m ~n-—
S(n,m):—"T!Z('l’.’)(—l) =Y —— fornzm>1.
i=0 i=1 (1 J)
Jj=1
J#i
Thus, for n2m=>1, S(n,m)=u,_,(a,...,a,), where a,, ...,a, are determined by(x — 1)(x—2) --
(x—m)=x"+ax™" +---a,. From this, we may extend the Stirling numbers of the second kind

m

by defining S(n,m)=u,_,(a,,...,a,) foranyne Z and me Z*.
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Remark 2.2: Suppose that the equation x™+a,x™" + -+ +a,, = 0 has distinct nonzero roots A,,

<oy Ay, and that {U,} satisfies the recurrence relation U, +a U, + - +a,U,_, =0 (n>m). Itis

well known (see [1]) that there are m constants ¢, ..., c, such that U, = q A} +c, % + - + ¢, A",
foreveryn=0,1,2,....

If a,#0 and x"+ax™ ' +---+a, =(x—A)" - (x—1,)", where A,,..., A, are all distinct,
then using Theorem 2.1 we can prove that

. )
U@y .. ) ==Y z(” J= “”)( 1)"-ffj G, ')/1"+"-f (n>0), (2.5)

mil]O

where
ﬁ@:g@_%yummﬁm@:#%g

Theorem 2.4: Let ay, ..., a, be complex numbers with a,, # 0, X" +ax™ ' +---+a, =(x— 1) -
(x-4,), s, =41+ A5++ 2, and u,=u,(a,...,a,). Forn=12,3,..., we have

n n
D> s, =nu, and ) S, =M, .

k=1
Proof: Since
c 1 -1 -1 -1
ux" = =(A-Ax) (A-Ax) " --(1-4,%)",
S = e = (= ) (1= 20
we have

logZu x" =—Zlog(1 Ax)= i iﬂ!::n is";:n.

n=0 i=1 n=1 n=1
By differentiating the expansion, we get
D X" _ ZS e
T U X"
That is,
el el o0
(Z 5,x" ) (z ux" | = Z nu,x".
n=1 n=0 n=1

Comparing the coefficients of x” on both sides gives

n
> S, =nu,.
k=1

To complete the proof, by the above and Lemma 2.1 one can easily derive

n
S Uy —n-m = nu—-n—m‘
k=1
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3. THE FORMULA FOR THE POWERS OF A SQUARE MATRIX

This section is devoted to giving a formula for the powers of a square matrix. First, we
derive an explicit formula for companion matrices and then give a formula for arbitrary square
matrices.

Theorem 3.1: Let ay,...,a, be complex numbers with a, #0, neZ, and u,=u,\a,...,a,).
Then

0 -a, Y (1 aq a - a,_
1 0 _amr: 11 aj a':_; u, Uy ot Upem1
1 - : un.—l u.n o un+gn—2 )
0 -aq a : )
1 -q, 1 Upomt1 Ypemrz U,
Proof: Let
0 a,, 1 g a a,
1 0O -a,_, 1 aq - a,,
A= 1 L, D= T A
O "’al ‘. . al
and
un un+1 un+m—1
M = Uy , v U
n . . . . *
Uil Upomea un
Since u,_,, =---=u_; =0 and u, = 1, we see that DM, = 4°.
Clearly, M, A= M, forany k € Z. Therefore, forn=1,2,3,..., we have
_ _ 2 _ .=
Mn - Mﬂ'—lA —_ Mn_zA —_—rct = MoAn
and
_ -1_ -2 _ -
M, =M A" =M A =-=MA"

From this, it follows that
DM, =DMyA" = A" and DM_,=DMA™" =47",
which proves the theorem.

Remark 3.1: Let {u.(a,,...,a,)} be given by its generating function. For n =0, the result of
Theorem 3.1 is known (see [9]).

Corollary 3.1: Let a,...,a, be complex numbers with a,+#0, neZ, and u,=u(a,...,a,).
Then
U

7 n+l n+m—-1
n—-1 n n+m-2 _( l)mn n
={— a. .
. . . . m
YU+t Ypemsz " U,
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Proof: Let A, D, and M, be the matrices as in the proof of Theorem 3.1. It is clear that
|4|=(-1)"a, and |[D|=1. Thus, taking the determinant of both sides of the identity 4” = DM,
gives the result.

Clearly, Corollary 3.1 is a vast generalization of the known fact that F>—F, |F,,, = (-1)"",
where {F,} is the Fibonacci sequence.

Corollary 3.2: Let a,, ...,a,, be complex numbers with @, # 0, X" +ax™ '+ +a, = (x—1,) ---
(x-A,),nelZ, u,=u(a,..,a,),and s, = A1+ A5+---+ 1. Then

m
s, = —Z kau,_, .
k=1

Proof: Suppose that 4 is the companion matrix in Theorem 3.1. Then x” +ax™ ' +--- +a,
is the characteristic polynomial of 4 and hence 4, ..., 4,, are the eigenvalues of 4. From matrix
theory, we know that the eigenvalues of A" are 17, 47, ..., 47,. Denote the trace of the matrix C
by tr(C). Then, by the above and Theorem 3.1,

8, = A+ A+ oo+ A0 = tr(A") = tr(DM,)

m [ m—i m-1
= Z (Z au -k] (m-k)au,_,
i=1 \ k=0

k=0

m=1 m
=-ma,l, ,,— Z kaku -k = _Z kakun—k'
k=0 k=1
This proves the corollary.

Theorem 3.2: Let A be an m x m matrix with the characteristic polynomial y ,(x) = ayx™ +ax™!
+-+a,, a,#0,ne”Z,and u, =u,a,...,a,). Then

m=1 (m-1
A" = Z (Z as_,u,,_s) A"

r=0 \ s=r

Proof: For n € Z and arbitrary numbers vy, ..., v,,_;, set

5=0 \r=0
Then
m m-1 3 m
Yavie =2 | 2V, |t =0 (1=0,£1%2,..). (3.1
k=0 5=0 \r=0 k=0
Since ay =1 and u_, =---=u_, =0, we see that
n s n n n—1 n
V; = Z (Z ax—rvr)un-—s = (Z as—run—s V.=V, +z Zas—run-—s Yy
5s=0 \r=0 r=0 \s=r r=0 \s=r (3-2)
n=1 { m+r
=v,+ Z (Zas_run_szr =v, n=0,1,...,m-1).
r=0 \ s=

Hence, {v;} is uniquely determined by (3.1) and (3.2).
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From the Hamilton-Cayley theorem, we know that A™ +@A™ ! +.--+a,I = O, where [ is the
m x m unit matrix and O is the m x m zero matrix. So, forneZ, A" +a A" +---+a,A"™=0.
If we set A" = (a")mxm, then

a? +a@l ™+ +a,al™ =0 (n=0,%1,%2, ).
Applying the above result, we get

m=1{m-1
ai(;l) = Z (Zas—ra(r)) Un—s Z (mz s—rl n—s)ai(;) GJj=L12..,m).

s=0 \r=0 r=0 \ s=r

Hence,

m=1(m-1
=5 (S
r=0 \ s=r

The proof'is now complete.

Since u_,=+--=u_ =0 and u,=1, we see that au,_, +--+a, , u=-a,  if 0<r<

m—1. Thus, the Hamilton-Cayley theorem is a special result of Theorem 3.2 in the case n=m.
We remark that the result of Theorem 3.2 provides a very simple method of calculating the
powers of a square matrix.

Corollary 3.3: Let p be an odd prime, a,b,c,d € Z, plad —bc, A = (a—d)* +4bc. Then
o (modp) if (4)=
(‘; g)p_(ﬁ) ={er  (modp) if (8)=
(ad-bo)I (modp) if (&)=~-1,
where 7 is the 2 x 2 identity matrix and () denotes the Legendre symbol.

Proof: Let u_; =0, uy=1, and u,,, = (a+d)u,—(ad-bcyu,., n=0,1,2,...). Then u, =
u,(—a—d,ad -bc). Since the characteristic polynomial of (¢ }) is x? - (a +d)x +ad —bc, using
Theorem 3.2 we see that

(L; z)n =u,, (‘c’ b)+ (u,—(a+d)u,_) ((1) (1)) - (un;ui”ln—l un?-uz;l ) 3.3)
Clearly, A = (a+d)* - 4(ad —bc). Thus, by [10, pp. 46-47],
U,y (a) _O (mod p), u,_, _( ) (mod p).
Putting the above together yields
(g 3),,-(%) =, () I (mod p).

If (4)=1 then u, ()=, 1=(4)=1 (mod p). If (4)=-1, then u, ;=-1 (mod p) and
u, =0 (mod p). Thus p-(8) = Ypi1 =(a+d)u,-(ad -bc)u, , = ad —bc (mod p).
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If (4) =0, then p|A. Using Fermat's little theorem, we see that

1 [a+d+JAV? (a+d-JA VT
up-(%)_up_ﬁ —T —_ —2—

2 1 +1-k k-1
) () Gl Ve

a+d

= Zfﬂ-(p +D(a+d)f = (mod p).

Combining the above produces the desired resuit.

4. AN IDENTITY FOR {uw,(a;,..., a,)}
Using Theorems 3.1 and 3.2, one can prove the following identity.

Theorem 4.1: Let a,...,a, be complex numbers with a, #0, a,=1, and u, =u,(a,...,q,).
Then, for n,/ € Z and k € Z*, we have

ki m=1 {m=1 k,
U1 = Z . WH LZ as—-run—s) u’"frk,H'
r=0

kgthy+ o +ky_ = m=-1°r=0 \ s=r

Proof: Let A, D, and M, denote the matrices as in the proof of Theorem 3.1. It is clear that
the characteristic polynomial of 4 is x™ +a;x™ ! +--+a,,. So, by Theorem 3.2,

m=1 (" m-1
A" = Z (Zas_run_s) AT

r=0 \ s=r

From this and the multinomial theorem for square matrices, it follows that

e {g(gen )

r=0 \ s=r

m-1
— ki m=1 (m-1 k, Zrkr“”
) Z m H (Z a_, n-s) Ar= .

kot + oty =k m=-1* r=0 r

Multiplying both sides on the left by D! and then applying Theorem 3.1, we see that

k' m~1 { m— k,
Mkn+l = 2 W H (Zas—r n—s] m-1

KgHley+ -+ = m 1° r=0 \s=r Zrk +

Now, comparing the elements in row 1 and column 1 of the matrices on both sides yields the
result.

Corollary 4.1: Let a, and a, be complex numbers with a, #0. If {U,} is the Lucas sequence
givenby Uy =0, U; =1, and U, +aU,_+a,U,_, =0 (r =0,£1,£2,...), then
k

k —i7i
Upsi =Y (,-)(—azvn_l)" Uil @.1)

i=0
where n,/ e Z and k € Z*.
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Proof: Note that U, =u,_,(a,,a,). By taking m=2 in Theorem 4.1 and then replacing / by
/-1, we obtain the result.

Remark 4.1: When n,/>0 and a, =a, = -1, the result of Corollary 4.1 was established by my
brother Zhi-Wei Sun [14]. (In the case / = 0, the result is due to Siebeck [2, p. 394].) Here I give
the following general identity,

k
’ k i s —iy7r
Uslpy =34 )Us-a0, ) Ut 42)
i=0
where {U;} satisfies the recurrence relation U} +aqU}_, +a,U}_, =0 (n=0,£1,+2,...). This can
be proved easily by using the relation U} = UlU, —a,UjU,_, and the known formula

U - 1 —ay+Ja?—4a,\ [(-a,-Ja>-4a, |
! Jaf—4a2 2 2

Corollary 4.2: Let a,...,a, be complex numbers with a, #0, a,=1, and u,=u,(a,,...,a,).

@,
For n, l € Z, we have
m=1(m-1
Uy = Z Zas—run—s Uy

r=0 \ s=r

Proof: Putting k =1 in Theorem 4.1 yields the result.

Corollary 4.3: Let p be a prime, a,,...,a,, €Z, pla,, LneZ, ay=1, and u,=u,(ay,...,a,).
Then

m=1 m-1

np+l = Z Zas-run— Y rp+l (mOd p)

r=0 s=r

Proof: If ky+---+k,_, = p, then

AR AN

p! _ |1 (modp) ifp=k, forsomere{0,..,m-1}
1! |0 (mod p) otherwise.

This, together with Theorem 4.1 and Fermat's little theorem, gives

m=1 (m-1 P
np+l = Z Z s—r n—s rp+l
r=0

m-1 m-1

= z Zas—r U, surp+l (mOdP),

r=0 s=r

which is the result.
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Fgy839 Is Prime

David Broadhurst and Bouk de Water have recently proved that Fy,s,, is prime.
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