# THE LEAST NUMBER HAVING 331 REPRESENTATIONS AS A SUM OF DISTINCT FIBONACCI NUMBERS 

Marjorie Bicknell-Johnson<br>665 Fairlane Avenue, Santa Clara, CA 95051

## Daniel C. Fielder

School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332-0250
(Submitted October 1999-Final Revision February 2000)

## 1. $\mathbb{I N T R O D U C T I O N}$

Let $A_{n}$ be the least number having exactly $n$ representations as a sum of distinct Fibonacci numbers. Let $R(N)$ denote the number of representations of $N$ as sums of distinct Fibonacci numbers, and let Zeck $N$ denote the Zeckendorf representation of $N$, which is the unique representation of $N$ as a sum of distinct, nonconsecutive Fibonacci Numbers. The sequence $\left\{A_{n}\right\}$ is sequence A013583 studied earlier [7], [9], where we list the first 330 terms; here, we extend our computer results by pencil and logic to calculate $A_{331}$ and other "missing values." We list some pertinent background information.

Theorem 1: The least integer having $F_{k}$ representations is $\left(F_{k}\right)^{2}-1$, and $F_{k}$ is the largest value for $R(N)$ for $N$ in the interval $F_{2 k-2} \leq N<F_{2 k-1}$.
Theorem 2: Let $N$ be an integer written in Zeckendorf form; if $N=F_{n+k}+K, F_{n} \leq K<F_{n+1}$, we can write $R(N)$ by using the appropriate formula:

$$
\begin{align*}
& R(N)=R\left(F_{n+2 p}+K\right)=p R(K)+R\left(F_{n+1}-k-2\right), k=2 p  \tag{1.1}\\
& R(N)=R\left(F_{n+2 p+1}+K\right)=(p+1) R(K), k=2 p+1  \tag{1.2}\\
& R(N)=R\left(N-F_{2 w}\right)+R\left(F_{2 w+1}-N-2\right), F_{2 w} \leq N<F_{2 w+1} . \tag{1.3}
\end{align*}
$$

Theorem 3: Zeck $A_{n}$ ends in $\ldots+F_{2 c}, c \geq 2$. If Zeck $N$ ends in $\ldots+F_{2 c+2 k+1}+F_{2 c}, c \geq 2$, then

$$
R(N)=R(N-1) R\left(F_{2 c}\right)=c R(N-1) .
$$

If Zeck $A_{n}=F_{m}+K$, then $F_{m}<A_{n}<F_{m}+F_{m-2}$.
Lemma 1: If $\left\{b_{n}\right\}$ is a sequence of natural numbers such that $b_{n+2}=b_{n+1}+b_{n}$, then

$$
R\left(b_{n}-1\right)=R\left(b_{n+1}-1\right)=k
$$

for all sufficiently large $n$ (see [8]).
Lemma 1 and Theorem 3 are useful in calculating $A_{n}$ when $n$ is composite. Theorems 2 and 3 are proved in [2] and [3], while Theorem 1 is the main result of [1].

Theorem 4: If $n=R\left(A_{n}\right)$ is a prime, then Zeck $A_{n}$; is the sum of even-subscripted Fibonacci numbers only. If Zeck $A_{n}$ begins with $F_{2 k+1}$, then $n=R\left(A_{n}\right)$ cannot be prime.

Proof: Theorem 3 and (1.2) show that a change in parity in subscripts indicates that at least one pair of factors exists for $R(N)$.

Lemma 2: For integers $N$ such that $F_{2 k} \leq A_{n} \leq N<F_{2 k+1}$ and $R(N)=n$,

$$
\begin{equation*}
F_{k-1} \leq R\left(A_{n}-F_{2 k}\right) \leq R\left(F_{2 k+1}-N-2\right) \leq R\left(F_{2 k+1}-A_{n}-2\right) \leq F_{k} \tag{1.4}
\end{equation*}
$$

Proof: The pair of exterior endpoints are a consequence of Theorem 1. The pair of interior endpoints reflect symmetry about the center of the interval, since $R(N)$ is a palindromic sequence within each such interval $F_{2 k} \leq N<F_{2 k+1}-2$.

If Zeck $n=F_{k}+K, 0<K \leq F_{k-2}$, then $A_{n}>F_{2 k-1}$, where we note that we are relating the Zeckendorf representations of $A_{n}$ and of $R\left(A_{n}\right)$. In our extensive tables, Zeck $A_{n}$ begins with $F_{2 k-1}, F_{2 k}, F_{2 k+1}$, or $F_{2 k+2}$, while all values for $n, 1 \leq n=R(N) \leq F_{k}$, appear for $N<F_{2 k+1}$, but this has not been proved. The first 330 values for $A_{n}$ are listed in [7], too long a table to repeat here. Our computer results conclude with $A_{466}=229971$; there are 69 "missing values" for $n$ between 330 and 466. We also have complete tables for $R(N)$ for all $N<F_{22}$, not included here, which shorten the work but are not essential to follow the logic in solving for $A_{n}$ given $n$.

## 2. THE CALCULATION OF $A_{331}$

Since $A_{n}$ is known for all $n \leq 330$ and, for all $n$ such that $A_{n}<F_{28}$, and since 331 is prime, we can find $A_{331}$ by listing successive addends for Zeck $A_{n}$, and choosing the smallest possibility at each step. Let $N=F_{28}+K$, for $F_{28-2 q} \leq K<F_{29-2 q}$. Then

$$
\begin{equation*}
R(N)=q R(K)+R\left(F_{29-2 q}-K-2\right) \tag{2.1}
\end{equation*}
$$

by (1.1), and the maximum possible value for $R(N)$ is

$$
\max R(N)=q F_{15-q}+F_{14-q}
$$

by Theorem 1. Since $F_{2 k} \leq A_{n}<F_{2 k}+F_{2 k-2}, 2 \leq q$. We summarize in Table 1.

## TABLE 1

$$
\begin{array}{ll} 
& N=F_{28}+K, F_{28-2 q} \leq K<F_{29-2 q} \\
& \max R(N): q F_{15-q}+F_{14-q} \\
q=2: & 2 F_{13}+F_{12}=466+144=610 \\
q=3: & 3 F_{12}+F_{11}=432+89=521 \\
q=4: & 4 F_{11}+F_{10}=356+55=411 \\
q=5: & 5 F_{10}+F_{9}=275+34=309
\end{array}
$$

Notice that maximum values for $R(N)$ for $q \geq 5$ are smaller than 331 . For our purposes, the smallest possibility is $q=4$, or $N=F_{28}+F_{20}+K$. We write Table 2 to determine the third possible even subscript in Zeck $N$ when $q=4$.

Start with $w=3$ in Table 2, the smallest possibility, with $F_{14} \leq K<F_{15}$. Solve the Diophantine equation $14 A+5 B=331,13<A \leq 21$, which has $14(19)+5(13)=331$. By Lemma 2, since $A_{19}=F_{14}+A_{7}, 7 \leq B=R\left(F_{15}-K-2\right) \leq 19-7=12$. Thus, $B \neq 13$ and $w \neq 3$.

TABLE 2

$$
\begin{array}{cc} 
& N=F_{28}+F_{20}+K, F_{20-2 w} \leq K<F_{21-2 w} \\
& R(N)=(5 w-1) R(K)+5 R\left(F_{21-2 w}-K-2\right) \\
& \max R(N):(5 w-1) F_{11-w}+5 F_{10-w} \\
w=1: & 4 F_{10}+5 F_{9}=220+170=390 \\
w=2: & 9 F_{9}+5 F_{8}=306+105=411 \\
w=3: & 14 F_{8}+5 F_{7}=294+65=359 \\
w=4: & 19 F_{7}+5 F_{6}=247+40=287
\end{array}
$$

Next take $w=2$ in Table 2, with $F_{16} \leq K<F_{17}$, and solve $9 A+5 B=331,21<A \leq 34$, which has $9(34)+5(5)=331$, but $A_{34}=F_{16}+A_{13}$, so that we must have $13 \leq B \leq 21 ; B=5$ is too small. We also find $9(29)+5(14)=331$, which is plausible since $A_{29}=1050=F_{16}+A_{8}$, and $8 \leq B=$ $14 \leq 21$. However, this combination of values does not appear in the computer printouts; only $N=1050,1152,1189$ have $R(N)=29$ for $N<F_{16}+F_{14}$, so $B=8,21,18,11,17$, or 12, but not 14. However, we can verify that $B \neq 14$ either by assuming that the next term is $F_{14}$ and calculating one more step, or by noting that we are solving $A=R(K)=29$ for some $K$ which also has $R\left(F_{17}-K-2\right)=14$ and $R\left(K-F_{16}\right)=29-14=15$. We must have $K-F_{16} \geq A_{15}=F_{13}+F_{8}+F_{4}$ or $K=F_{16}+F_{14}+K^{\prime}$. Then, because $F_{17}-K-2=F_{13}-K^{\prime}-2<A_{14}=F_{13}+16$, we cannot have $R\left(F_{17}-K-2\right)=14=B$, a contradiction. The last viable solution $9(24)+5(23)=331$ has $B$ too large. Thus, $w \neq 2$.

Finally, take $w=1$, with $F_{18} \leq K<F_{19}$. Solve $4 A+5 B=331$ for $34<A \leq 55$, obtaining $4(49)+5(27)=331$ and $4(44)+5(31)=331$, where $4(39)+5(35)=331$ has $B$ too large. From the computer printout, $A_{44}=F_{18}+A_{12}=2744$, but $R\left(F_{19}-2744-2\right)=32$, not 31. The next occurrence of $R(K)=44$ in our computer table is for $K=2791$ for which $31=R\left(F_{19}-2791-2\right)$; and since 2791 is the smallest integer that satisfies all of the parameters, we have a solution. Without such a table, one could assume that $F_{18}$ is the next term, and compute the term following $F_{18}$. We now have

$$
A_{331}=F_{28}+F_{20}+2791=327367
$$

Let us make use of our work thus far. In Table 2, w=3 has $14 F_{8}+5 F_{7}=359$, one of the "missing values." Since we cannot write a smaller solution,

$$
A_{359}=F_{28}+F_{20}+A_{21}=317811+6765+440=325016 .
$$

Also, Table 1, $q=4, N=F_{28}+\left(F_{20}+K\right)$ has $R(N)=359$ for $4(76)+55=359$, or for $N=F_{28}+$ $A_{76}=317811+7205$, which gives the same result.

## 3. THE CALCULATION OF $\boldsymbol{A}_{339}$

The second missing value on our list is 339 . We can find $A_{339}$ with very little effort, although $339=3 \cdot 113$ is not a prime. Since $A_{113}=F_{24}+K, N=F_{28}+F_{23}+\cdots$ has $R(N)=3 R\left(F_{23}+\cdots\right)$, and $A_{113}$ is too large to appear as the second factor. Now, taking $q=4$, for $N=F_{28}+\left(F_{20}+K\right)$, $4(74)+43=339$, and $A_{74}=8187$ while $R\left(F_{21}-8187-2\right)=R(2757)=43$; in fact, $2757=A_{43}$. Then

$$
N=A_{339}=F_{28}+A_{74}=317811+8187=325998 .
$$

We have also generated

$$
N=F_{28}+A_{89}=317811+7920=325731
$$

which has $R(N)=411$ from Table 1, $q=4$, while Table 2, $w=2$, gives $A_{411}=F_{28}+F_{20}+A_{34}$ which is the same result. Just as for 339 , while we can factor $411=3 \cdot 137, A_{137}$ is too large. Again from Table 2, w $=2$, changing $A$ and $B$ slightly, we find $9 F_{9}+5 F_{7}=371$, also on our list. If we take $K=1427=F_{16}+F_{14}+F_{10}+F_{6}$, then $R(K)=34, R\left(F_{21}-K-2\right)=13$; the only other value for $K$ in this interval such that $R(K)=34$ is $A_{34}$ but $R\left(F_{21}-A_{34}-2\right)=21$, so 1427 is the smallest we can take for $K$. Thus, we write

$$
A_{371}=F_{28}+F_{20}+1427=326003 .
$$

We next illustrate how to use factoring to find $A_{n}$ when $n$ is composite, using Lemma 1 and Theorem 3. Let $n=410=41 \cdot 10$ :

$$
\begin{aligned}
& A_{10}=105=F_{11}+F_{7}+F_{4}, \\
& A_{41}=2736=F_{18}+F_{12}+F_{6}, \\
& 41=R\left(F_{18}+F_{12}+F_{6}+F_{1}-1\right)=R\left(F_{28}+F_{22}+F_{16}+F_{11}-1\right), \\
& 41 \cdot 10=R\left(F_{28}+F_{22}+F_{16}+A_{10}\right) .
\end{aligned}
$$

$N=F_{28}+F_{22}+F_{16}+F_{11}+F_{7}+F_{4}=336614$ has $R(N)=410$. Writing $R(N)$ as $205 \cdot 2$ gives the same solution, while 82.5 gives a slightly larger solution. $N=A_{410}$ if there is no smaller solution using the even subscript formula. We can easily see that $N \neq F_{28}+F_{20}+K$ from our earlier work, so we test out $N=F_{28}+F_{22}+K$ in Table 3.

## TABLE 3

|  | $N=F_{28}+F_{22}+K, F_{22-2 p} \leq K<F_{23-2 p}$ |
| :---: | :---: |
|  | $R(N)=(4 p-1) R(K)+4 R\left(F_{23-2 p}-K-2\right)$ |
|  | $\max R(N):(4 p-1) F_{12-p}+4 F_{11-p}$ |
| $p=1:$ | $3 F_{11}+4 F_{10}=267+220=487$ |
| $p=2:$ | $7 F_{10}+4 F_{9}=385+136=521$ |
| $p=3:$ | $11 F_{9}+4 F_{8}=374+84=458$ |
| $p=4:$ | $15 F_{8}+4 F_{7}=315+52=367$ |
| $p=5:$ | $19 F_{7}+4 F_{6}=247+24=271$ |

The smallest choice to generate 410 is $p=3$ for $F_{16} \leq K<F_{17}$ which requires that we solve $11 A+4 B=410$ for $A \leq 34$ which, in turn, gives us $11(30)+4(20)=410 ; A_{30}=1092=F_{16}+105$ and $R\left(F_{17}-A_{30}-2\right)=20$, so that

$$
A_{410}=F_{28}+F_{22}+F_{16}+105,
$$

the same result as by factoring.
Note that Table 3 provides more "missing values" on our list. Here, $p=4$ gives $R(N)=367$ for $N=F_{28}+F_{22}+A_{21}$, which easily demonstrates that $N \neq F_{28}+F_{20}+K$, so $A_{367}=335962$, the same result as $A_{367}=F_{28}+A_{97}$ by working with Table 1, $q=3$. Furthermore,

$$
A_{458}=F_{28}+A_{123}=317811+18866=336677
$$

comes from $q=3$ of Table 1, and $A_{458}=F_{28}+F_{22}+A_{34}$ comes from $p=3$ above.
We expect to see all "missing values" $n<F_{14}=377$ appearing for $N=F_{28}+K$ based on our previous experience, but we have been unable to prove that all $n=R(N), 1 \leq n \leq F_{k}$, will appear for $N=F_{2 k}+K$. Generating some of them will take patience, especially for a value such as $n=421$ which has no solution for $A_{n}=F_{28}+K$. One can generate more tables such as Table 4 similarly to Tables 1 through 3, or one can list possible successive subscripts for Zeck $A_{n}$ and evaluate each case.

Some results, verifiable in other ways, can be read from the tables. From Table 4. below, we have

$$
A_{610}=F_{28}+F_{24}+A_{89} \text { and } A_{542}=F_{28}+F_{24}+A_{55} .
$$

However, $A_{555}=A_{610}+5<F_{28}+F_{24}+A_{144}$. Table 1 gives

$$
A_{610}=F_{28}+A_{233} \text { (the same result) and } A_{521}=F_{28}+A_{144} .
$$

Table 3 gives

$$
A_{487}=F_{28}+F_{22}+A_{89} \text { and } A_{521}=F_{28}+F_{22}+A_{55} \text { (the same result). }
$$

Table 4 gives $R(N)=333$ for $N=F_{28}+F_{24}+A_{21}$, where Zeck $N$ uses only even-subscripted Fibonacci numbers, but $A_{333}=209668<N$. One must verify that $N$ is the smallest possible, especially if $R(N)$ is composite.

TABLE 4

$$
\begin{array}{cc} 
& N=F_{28}+F_{24}+K, F_{24-2 p} \leq K<F_{25-2 p} \\
& R(N)=(3 p-1) R(K)+3 R\left(F_{25-2 p}-K-2\right) \\
& \max R(N):(3 p-1) F_{13-p}+3 F_{12-p} \\
p=1: & 2 F_{12}+3 F_{11}=288+267=555 \\
p=2: & 5 F_{11}+3 F_{10}=445+165=610 \\
p=3: & 8 F_{10}+3 F_{9}=440+102=542 \\
p=4: & 11 F_{9}+43 F_{8}=374+63=437 \\
p=5: & 14 F_{8}+3 F_{7}=294+39=333
\end{array}
$$

By constructing $N$ taking one even-subscripted Fibonacci number at a time, one can find $A_{n}$ for $n$ prime, $n<466$; some solutions are very short, while others take patience. Prime values for $n$ in Table 5 can be found for $N=F_{28}+K$ except for $n=421,439$, and 461, which need $N=F_{30}+K$. The composites $n$ for which $A_{n}>F_{28}+K$, found by considering factors of $n$, need $N=F_{29}+K$. Note that only the subscripts in Zeck $A_{n}$ are listed in Table 5.

The calculations of $A_{n}$ for $n$ prime and of $A_{n}$, where Zeck $A_{n}$ has even subscripts only agree with D. Englund [4], [5], and with computations using "Microsoft Excel" by M. Johnson. Of the composites $n=R\left(A_{n}\right)$, where $A_{n}$ contains an odd-subscripted term, there are very many cases to consider and thus checking is more difficult. Each composite $n$ starred in the table can be computed from its factors and has $A_{n}<N$, where $R(N)=n$ and Zeck $N$ contains even-subscripted Fibonacci numbers only.

THE LEAST NUMBER HAVING 331 REPRESENTATIONS AS A SUM OF DISTINCT FIBONACCI NUMBERS

TABLE 5. "Missing Values" for $n, 331 \leq n=R(N) \leq 465$

| $n$ prime |  |  | $n$ composite |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $A_{n}$ | Zeck $A_{n}$ | $n$ | $A_{n}$ | Zeck $A_{n}$ |
| 331 | 327367 | 28,20,18,12,10,6 | 339 | 325998 | 28,20,16,14,10,4 |
| 347 | 336067 | 28,22,14,12,8,4 | 371 | 326003 | 28,20,16,14,10,6 |
| 349 | 339528 | 28,22,18,16,14,10,4 | 381 | 339533 | 28,22,18,16,14,10,6 |
| 353 | 338185 | 28,22,18,10,8,4 | 391 | 336674 | 28,22,16,12,8 |
| 359 | 325016 | 28,20,14,10,6 | 394 | 343709 | 28,22,20,16,14,10,4 |
| 367 | 335962 | 28,22,14,10,6 | 396* | 337224 | 28,22,17,11,7,4 |
| 373 | 336588 | 28,22,16,10,8,4 | 402* | 336690 | 28,22,16,12,9,4 |
| 379 | 338690 | 28,22,18,14,12,10,6 | 404* | 343722 | 28,22,20,16,14,10,7,4 |
| 383 | 338638 | 28,22,18,14,12,6,4 | 406 | 336661 | 28,22,16,12,6 |
| 389 | 336944 | 28,22,16,14,10,4 | 407 | 338258 | 28,22,18,12,6 |
| 397 | 342688 | 28,22,20,14,8,4 | 410* | 336614 | 28,22,16,11,7,4 |
| 401 | 338648 | 28,22,18,14,12,8 | 411 | 325731 | 28,20,16,12,8,4 |
| 409 | 343476 | 28,22,20,16,12,10,4 | 412* | 365326 | 28,24,16,12,7,4 |
| 419 | 338656 | 28,22,18,14,12,8,6 | 413 | 336716 | 28,22,16,12,10,6 |
| 421 | 839994 | 30,20,16,12,10,4 | 415 | 339300 | 28,22,18,16,12,10,6 |
| 431 | 343714 | 28,22,20,16,14,10,8 | 417 | 336682 | 28,22,16,12,8,6 |
| 433 | 343426 | 28,22,20,16,12,6 | 422 | 371960 | 28,24,20,16,8,6 |
| 439 | 841557 | 30,20,18,12,8,4 | 423* | 338580 | 28,22,18,14,11,6 |
| 443 | 343447 | 28,22,20,16,12,8,6 | 425 | 338279 | 28,22,18,12,8,6 |
| 449 | 367292 | 28,24,18,14,12,6 | 426 | 336949 | 28,22,16,14,10,6 |
| 457 | 367923 | 28,24,18,16,12,8,6 | 427 | 372015 | 28,24,20,16,10,8,6 |
| 461 | 851181 | 30,22,16,14,10,6,4 | 428* | 372468 | 28,24,20,16,14,12,7,4 |
| 463 | 338562 | 28,22,18,14,10,8,4 | 429* | 337287 | 28,22,17,12,8,4 |
|  |  |  | 430 | 338635 | 28,22,18,14,12,6 |
|  |  |  | 434 | 339156 | 28,22,18,16,10,6 |
|  |  |  | 435* | 338363 | 28,22,18,13,8,4 |
|  |  |  | 436* | 338266 | 28,22,18,12,7,4 |
|  |  |  | 437 | 343337 | 28,22,20,16,10,6 |
|  |  |  | 438 | 338512 | 28,22,18,14,8,6 |
|  |  |  | 444* | 339253 | 28,22,18,16,12,7,4 |
|  |  |  | 446 | 367957 | 28,24,18,16,12,10,6 |
|  |  |  | 447* | 530063 | 29,21,19,15,11,6 |
|  |  |  | 448* | 338643 | 28,22,18,14,12,7,4 |
|  |  |  | 450* | 338829 | 28,22,18,15,11,8,4 |
|  |  |  | 451* | 544635 | 29,23,17,12,6 |
|  |  |  | 452* | 527110 | 29,21,17,13,11,7,4 |
|  |  |  | 453 | 371350 | 28,24,20,14,8,6 |
|  |  |  | 454* | 526877 | 29,21,17,11,7,4 |
|  |  |  | 455* | 340426 | 28,22,19,15,11,8,4 |
|  |  |  | 456* | 338520 | 28,22,18,14,9,4 |
|  |  |  | 458 | 336677 | 28,22,16,12,8,4 |
|  |  |  | 459* | 544580 | 29,23,17,11,6 |
|  |  |  | 460* | 343434 | 28,22,20,16,12,7,4 |
|  |  |  | 462* | 337389 | 28,22,17,13,9,4 |
|  |  |  | 464* | 338376 | 28,22,18,13,9,4 |
|  |  |  | 465 | 338274 | 28,22,18,12,8,4 |

[NOV.

## REFERENCES

1. Marjorie Bicknell-Johnson. "The Smallest Positive Integer Having $F_{k}$ Representations as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:47-52. Dordrecht: Kluwer, 1999.
2. Marjorie Bicknell-Johnson. "The Zeckendorf-Wythoff Array Applied to Counting the Number of Representations of $N$ as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:53-60. Dordrecht: Kluwer, 1999.
3. M. Bicknell-Johnson \& D. C. Fielder. "The Number of Representations of $N$ Using Distinct Fibonacci Numbers, Counted by Recursive Formulas." The Fibonacci Quarterly 37.1 (1999): 47-60.
4. David A. Englund. "An Algorithm for Determining $R(N)$ from the Subscripts of the Zeckendorf Representation of $N$." The Fibonacci Quarterly 39.3 (2001):250-52.
5. David A. Englund. Private correspondence.
6. Daniel C. Fielder. "CERL Memorandum Report DCF05/22/97, On Finding the Largest Fibonacci Number in a Positive Integer with Extensions to Zeckendorf Sequences." Computer Engineering Research Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, June 24, 1997.
7. D. C. Fielder \& M. Bicknell-Johnson. "The First 330 Terms of Sequence A013583." The Fibonacci Quarterly 39.1 (2001):75-84.
8. David A. Klarner. "Partitions of $N$ into Distinct Fibonacci Numbers." The Fibonacci Quarterly 6.4 (1968):235-44.
9. Posting of terms on N. J. A. Sloane's "On-Line Encyclopedia of Integer Sequences," June 1996. http://www.research.att.com/~njas/sequences/

AMS Classification Numbers: 11B39, 11B37, 11Y55

