THE LEAST NUMBER HAVING 331 REPRESENTATIONS AS A SUM OF DISTINCT FIBONACCI NUMBERS

Marjorie Bicknell-Johnson

665 Fairlane Avenue, Santa Clara, CA 95051

Daniel C. Fielder

School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332-0250 (Submitted October 1999-Final Revision February 2000)

1. INTRODUCTION

Let A_n be the least number having exactly n representations as a sum of distinct Fibonacci numbers. Let R(N) denote the number of representations of N as sums of distinct Fibonacci numbers, and let Zeck N denote the Zeckendorf representation of N, which is the unique representation of N as a sum of distinct, nonconsecutive Fibonacci Numbers. The sequence $\{A_n\}$ is sequence A013583 studied earlier [7], [9], where we list the first 330 terms; here, we extend our computer results by pencil and logic to calculate A_{331} and other "missing values." We list some pertinent background information.

Theorem 1: The least integer having F_k representations is $(F_k)^2 - 1$, and F_k is the largest value for R(N) for N in the interval $F_{2k-2} \le N < F_{2k-1}$.

Theorem 2: Let N be an integer written in Zeckendorf form; if $N = F_{n+k} + K$, $F_n \le K < F_{n+1}$, we can write R(N) by using the appropriate formula:

$$R(N) = R(F_{n+2p} + K) = pR(K) + R(F_{n+1} - k - 2), \ k = 2p;$$
(1.1)

$$R(N) = R(F_{n+2n+1} + K) = (p+1)R(K), k = 2p+1;$$
(1.2)

$$R(N) = R(N - F_{2w}) + R(F_{2w+1} - N - 2), \ F_{2w} \le N < F_{2w+1}. \tag{1.3}$$

Theorem 3: Zeck A_n ends in ...+ F_{2c} , $c \ge 2$. If Zeck N ends in ...+ $F_{2c+2k+1}$ + F_{2c} , $c \ge 2$, then

$$R(N) = R(N-1)R(F_{2c}) = cR(N-1).$$

If Zeck $A_n = F_m + K$, then $F_m < A_n < F_m + F_{m-2}$.

Lemma 1: If $\{b_n\}$ is a sequence of natural numbers such that $b_{n+2} = b_{n+1} + b_n$, then

$$R(b_n-1)=R(b_{n+1}-1)=k$$

for all sufficiently large n (see [8]).

Lemma 1 and Theorem 3 are useful in calculating A_n when n is composite. Theorems 2 and 3 are proved in [2] and [3], while Theorem 1 is the main result of [1].

Theorem 4: If $n = R(A_n)$ is a prime, then Zeck A_n ; is the sum of even-subscripted Fibonacci numbers only. If Zeck A_n begins with F_{2k+1} , then $n = R(A_n)$ cannot be prime.

Proof: Theorem 3 and (1.2) show that a change in parity in subscripts indicates that at least one pair of factors exists for R(N).

Lemma 2: For integers N such that $F_{2k} \le A_n \le N < F_{2k+1}$ and R(N) = n,

$$F_{k-1} \le R(A_n - F_{2k}) \le R(F_{2k+1} - N - 2) \le R(F_{2k+1} - A_n - 2) \le F_k. \tag{1.4}$$

Proof: The pair of exterior endpoints are a consequence of Theorem 1. The pair of interior endpoints reflect symmetry about the center of the interval, since R(N) is a palindromic sequence within each such interval $F_{2k} \le N < F_{2k+1} - 2$.

If Zeck $n = F_k + K$, $0 < K \le F_{k-2}$, then $A_n > F_{2k-1}$, where we note that we are relating the Zeckendorf representations of A_n and of $R(A_n)$. In our extensive tables, Zeck A_n begins with F_{2k-1} , F_{2k} , F_{2k+1} , or F_{2k+2} , while all values for n, $1 \le n = R(N) \le F_k$, appear for $N < F_{2k+1}$, but this has not been proved. The first 330 values for A_n are listed in [7], too long a table to repeat here. Our computer results conclude with $A_{466} = 229971$; there are 69 "missing values" for n between 330 and 466. We also have complete tables for R(N) for all $N < F_{22}$, not included here, which shorten the work but are not essential to follow the logic in solving for A_n given n.

2. THE CALCULATION OF A_{331}

Since A_n is known for all $n \le 330$ and, for all n such that $A_n < F_{28}$, and since 331 is prime, we can find A_{331} by listing successive addends for Zeck A_n , and choosing the smallest possibility at each step. Let $N = F_{28} + K^*$, for $F_{28-2q} \le K < F_{29-2q}$. Then

$$R(N) = qR(K) + R(F_{29-2a} - K - 2)$$
(2.1)

by (1.1), and the maximum possible value for R(N) is

$$\max R(N) = qF_{15-a} + F_{14-a}$$

by Theorem 1. Since $F_{2k} \le A_n < F_{2k} + F_{2k-2}$, $2 \le q$. We summarize in Table 1.

TABLE 1

$$N = F_{28} + K, \ F_{28-2q} \le K < F_{29-2q}$$

$$\max R(N): \ qF_{15-q} + F_{14-q}$$

$$q = 2: \qquad 2F_{13} + F_{12} = 466 + 144 = 610$$

$$q = 3: \qquad 3F_{12} + F_{11} = 432 + 89 = 521$$

$$q = 4: \qquad 4F_{11} + F_{10} = 356 + 55 = 411$$

$$q = 5: \qquad 5F_{10} + F_{9} = 275 + 34 = 309$$

Notice that maximum values for R(N) for $q \ge 5$ are smaller than 331. For our purposes, the smallest possibility is q = 4, or $N = F_{28} + F_{20} + K$. We write Table 2 to determine the third possible even subscript in Zeck N when q = 4.

Start with w=3 in Table 2, the smallest possibility, with $F_{14} \le K < F_{15}$. Solve the Diophantine equation 14A+5B=331, $13 < A \le 21$, which has 14(19)+5(13)=331. By Lemma 2, since $A_{19}=F_{14}+A_7$, $7 \le B=R(F_{15}-K-2) \le 19-7=12$. Thus, $B\ne 13$ and $w\ne 3$.

456

TABLE 2

$$N = F_{28} + F_{20} + K, \quad F_{20-2w} \le K < F_{21-2w}$$

$$R(N) = (5w - 1)R(K) + 5R(F_{21-2w} - K - 2)$$

$$\max R(N) : (5w - 1)F_{11-w} + 5F_{10-w}$$

$$w = 1: \qquad 4F_{10} + 5F_9 = 220 + 170 = 390$$

$$w = 2: \qquad 9F_9 + 5F_8 = 306 + 105 = 411$$

$$w = 3: \qquad 14F_8 + 5F_7 = 294 + 65 = 359$$

$$w = 4: \qquad 19F_7 + 5F_6 = 247 + 40 = 287$$

Next take w=2 in Table 2, with $F_{16} \le K < F_{17}$, and solve 9A+5B=331, $21 < A \le 34$, which has 9(34)+5(5)=331, but $A_{34}=F_{16}+A_{13}$, so that we must have $13 \le B \le 21$; B=5 is too small. We also find 9(29)+5(14)=331, which is plausible since $A_{29}=1050=F_{16}+A_8$, and $8 \le B=14 \le 21$. However, this combination of values does not appear in the computer printouts; only N=1050, 1152, 1189 have R(N)=29 for $N < F_{16}+F_{14}$, so B=8, 21, 18, 11, 17, or 12, but not 14. However, we can verify that $B \ne 14$ either by assuming that the next term is F_{14} and calculating one more step, or by noting that we are solving A=R(K)=29 for some K which also has $R(F_{17}-K-2)=14$ and $R(K-F_{16})=29-14=15$. We must have $K-F_{16} \ge A_{15}=F_{13}+F_8+F_4$ or $K=F_{16}+F_{14}+K'$. Then, because $F_{17}-K-2=F_{13}-K'-2 < A_{14}=F_{13}+16$, we cannot have $R(F_{17}-K-2)=14=B$, a contradiction. The last viable solution 9(24)+5(23)=331 has B too large. Thus, $w\ne 2$.

Finally, take w=1, with $F_{18} \le K < F_{19}$. Solve 4A+5B=331 for $34 < A \le 55$, obtaining 4(49)+5(27)=331 and 4(44)+5(31)=331, where 4(39)+5(35)=331 has B too large. From the computer printout, $A_{44}=F_{18}+A_{12}=2744$, but $R(F_{19}-2744-2)=32$, not 31. The next occurrence of R(K)=44 in our computer table is for K=2791 for which $31=R(F_{19}-2791-2)$; and since 2791 is the smallest integer that satisfies all of the parameters, we have a solution. Without such a table, one could assume that F_{18} is the next term, and compute the term following F_{18} . We now have

$$A_{331} = F_{28} + F_{20} + 2791 = 327367$$
.

Let us make use of our work thus far. In Table 2, w = 3 has $14F_8 + 5F_7 = 359$, one of the "missing values." Since we cannot write a smaller solution,

$$A_{359} = F_{28} + F_{20} + A_{21} = 317811 + 6765 + 440 = 325016$$
.

Also, Table 1, q = 4, $N = F_{28} + (F_{20} + K)$ has R(N) = 359 for 4(76) + 55 = 359, or for $N = F_{28} + A_{76} = 317811 + 7205$, which gives the same result.

3. THE CALCULATION OF A_{339}

The second missing value on our list is 339. We can find A_{339} with very little effort, although $339 = 3 \cdot 113$ is not a prime. Since $A_{113} = F_{24} + K$, $N = F_{28} + F_{23} + \cdots$ has $R(N) = 3R(F_{23} + \cdots)$, and A_{113} is too large to appear as the second factor. Now, taking q = 4, for $N = F_{28} + (F_{20} + K)$, 4(74) + 43 = 339, and $A_{74} = 8187$ while $R(F_{21} - 8187 - 2) = R(2757) = 43$; in fact, $2757 = A_{43}$. Then

$$N = A_{339} = F_{28} + A_{74} = 317811 + 8187 = 325998.$$

2001] 457

We have also generated

$$N = F_{28} + A_{89} = 317811 + 7920 = 325731$$

which has R(N) = 411 from Table 1, q = 4, while Table 2, w = 2, gives $A_{411} = F_{28} + F_{20} + A_{34}$ which is the same result. Just as for 339, while we can factor $411 = 3 \cdot 137$, A_{137} is too large. Again from Table 2, w = 2, changing A and B slightly, we find $9F_9 + 5F_7 = 371$, also on our list. If we take $K = 1427 = F_{16} + F_{14} + F_{10} + F_6$, then R(K) = 34, $R(F_{21} - K - 2) = 13$; the only other value for K in this interval such that R(K) = 34 is A_{34} but $R(F_{21} - A_{34} - 2) = 21$, so 1427 is the smallest we can take for K. Thus, we write

$$A_{371} = F_{28} + F_{20} + 1427 = 326003$$
.

We next illustrate how to use factoring to find A_n when n is composite, using Lemma 1 and Theorem 3. Let $n = 410 = 41 \cdot 10$:

$$A_{10} = 105 = F_{11} + F_7 + F_4,$$

$$A_{41} = 2736 = F_{18} + F_{12} + F_6,$$

$$41 = R(F_{18} + F_{12} + F_6 + F_1 - 1) = R(F_{28} + F_{22} + F_{16} + F_{11} - 1),$$

$$41 \cdot 10 = R(F_{28} + F_{22} + F_{16} + A_{10}).$$

 $N = F_{28} + F_{22} + F_{16} + F_{11} + F_7 + F_4 = 336614$ has R(N) = 410. Writing R(N) as $205 \cdot 2$ gives the same solution, while $82 \cdot 5$ gives a slightly larger solution. $N = A_{410}$ if there is no smaller solution using the even subscript formula. We can easily see that $N \neq F_{28} + F_{20} + K$ from our earlier work, so we test out $N = F_{28} + F_{22} + K$ in Table 3.

TABLE 3

$$N = F_{28} + F_{22} + K, \quad F_{22-2p} \le K < F_{23-2p}$$

$$R(N) = (4p-1)R(K) + 4R(F_{23-2p} - K - 2)$$

$$\max R(N) : (4p-1)F_{12-p} + 4F_{11-p}$$

$$p = 1: \qquad 3F_{11} + 4F_{10} = 267 + 220 = 487$$

$$p = 2: \qquad 7F_{10} + 4F_{9} = 385 + 136 = 521$$

$$p = 3: \qquad 11F_{9} + 4F_{8} = 374 + 84 = 458$$

$$p = 4: \qquad 15F_{8} + 4F_{7} = 315 + 52 = 367$$

$$p = 5: \qquad 19F_{7} + 4F_{6} = 247 + 24 = 271$$

The smallest choice to generate 410 is p = 3 for $F_{16} \le K < F_{17}$ which requires that we solve 11A + 4B = 410 for $A \le 34$ which, in turn, gives us 11(30) + 4(20) = 410; $A_{30} = 1092 = F_{16} + 105$ and $R(F_{17} - A_{30} - 2) = 20$, so that

$$A_{410} = F_{28} + F_{22} + F_{16} + 105$$

the same result as by factoring.

Note that Table 3 provides more "missing values" on our list. Here, p=4 gives R(N)=367 for $N=F_{28}+F_{22}+A_{21}$, which easily demonstrates that $N\neq F_{28}+F_{20}+K$, so $A_{367}=335962$, the same result as $A_{367}=F_{28}+A_{97}$ by working with Table 1, q=3. Furthermore,

458 [NOV.

$$A_{458} = F_{28} + A_{123} = 317811 + 18866 = 336677$$

comes from q = 3 of Table 1, and $A_{458} = F_{28} + F_{22} + A_{34}$ comes from p = 3 above.

We expect to see all "missing values" $n < F_{14} = 377$ appearing for $N = F_{28} + K$ based on our previous experience, but we have been unable to prove that all n = R(N), $1 \le n \le F_k$, will appear for $N = F_{2k} + K$. Generating some of them will take patience, especially for a value such as n = 421 which has no solution for $A_n = F_{28} + K$. One can generate more tables such as Table 4 similarly to Tables 1 through 3, or one can list possible successive subscripts for Zeck A_n and evaluate each case.

Some results, verifiable in other ways, can be read from the tables. From Table 4. below, we have

$$A_{610} = F_{28} + F_{24} + A_{89}$$
 and $A_{542} = F_{28} + F_{24} + A_{55}$.

However, $A_{555} = A_{610} + 5 < F_{28} + F_{24} + A_{144}$. Table 1 gives

$$A_{610} = F_{28} + A_{233}$$
 (the same result) and $A_{521} = F_{28} + A_{144}$.

Table 3 gives

$$A_{487} = F_{28} + F_{22} + A_{89}$$
 and $A_{521} = F_{28} + F_{22} + A_{55}$ (the same result).

Table 4 gives R(N) = 333 for $N = F_{28} + F_{24} + A_{21}$, where Zeck N uses only even-subscripted Fibonacci numbers, but $A_{333} = 209668 < N$. One must verify that N is the smallest possible, especially if R(N) is composite.

TABLE 4

$$N = F_{28} + F_{24} + K, \quad F_{24-2p} \le K < F_{25-2p}$$

$$R(N) = (3p-1)R(K) + 3R(F_{25-2p} - K - 2)$$

$$\max R(N) \colon (3p-1)F_{13-p} + 3F_{12-p}$$

$$p = 1: \qquad 2F_{12} + 3F_{11} = 288 + 267 = 555$$

$$p = 2: \qquad 5F_{11} + 3F_{10} = 445 + 165 = 610$$

$$p = 3: \qquad 8F_{10} + 3F_{9} = 440 + 102 = 542$$

$$p = 4: \qquad 11F_{9} + 43F_{8} = 374 + 63 = 437$$

$$p = 5: \qquad 14F_{8} + 3F_{7} = 294 + 39 = 333$$

$$Example 2 = 294 + 39 = 333$$

By constructing N taking one even-subscripted Fibonacci number at a time, one can find A_n for n prime, n < 466; some solutions are very short, while others take patience. Prime values for n in Table 5 can be found for $N = F_{28} + K$ except for n = 421, 439, and 461, which need $N = F_{30} + K$. The composites n for which $A_n > F_{28} + K$, found by considering factors of n, need $N = F_{29} + K$. Note that only the subscripts in Zeck A_n are listed in Table 5.

The calculations of A_n for n prime and of A_n , where Zeck A_n has even subscripts only agree with D. Englund [4], [5], and with computations using "Microsoft Excel" by M. Johnson. Of the composites $n = R(A_n)$, where A_n contains an odd-subscripted term, there are very many cases to consider and thus checking is more difficult. Each composite n starred in the table can be computed from its factors and has $A_n < N$, where R(N) = n and Zeck N contains even-subscripted Fibonacci numbers only.

2001]

TABLE 5. "Missing Values" for n, $331 \le n = R(N) \le 465$

n prime

n composite

	" princ		" composite		
n	A_n	$\operatorname{Zeck} A_n$	n	A_n	$\operatorname{Zeck} A_n$
331	327367	28,20,18,12,10,6	339	325998	28,20,16,14,10,4
347	336067	28,22,14,12,8,4	371	326003	28,20,16,14,10,6
349	339528	28,22,18,16,14,10,4	381	339533	28,22,18,16,14,10,6
353	338185	28,22,18,10,8,4	391	336674	28,22,16,12,8
359	325016	28,20,14,10,6	394	343709	28,22,20,16,14,10,4
367	335962	28,22,14,10,6	396*	337224	28,22,17,11,7,4
373	336588	28,22,16,10,8,4	402*	336690	28,22,16,12,9,4
379	338690	28,22,18,14,12,10,6	404*	343722	28,22,20,16,14,10,7,4
383	338638	28,22,18,14,12,6,4	406	336661	28,22,16,12,6
389	336944	28,22,16,14,10,4	407	338258	28,22,18,12,6
397	342688	28,22,20,14,8,4	410*	336614	28,22,16,11,7,4
401	338648	28,22,18,14,12,8	411	325731	28,20,16,12,8,4
409	343476	28,22,20,16,12,10,4	412*	365326	28,24,16,12,7,4
419	338656	28,22,18,14,12,8,6	413	336716	28,22,16,12,10,6
421	839994	30,20,16,12,10,4	415	339300	28,22,18,16,12,10,6
431	343714	28,22,20,16,14,10,8	417	336682	28,22,16,12,8,6
433	343426	28,22,20,16,12,6	422	371960	28,24,20,16,8,6
439	841557	30,20,18,12,8,4	423*	338580	28,22,18,14,11,6
443	343447	28,22,20,16,12,8,6	425	338279	28,22,18,12,8,6
449	367292	28,24,18,14,12,6	426	336949	28,22,16,14,10,6
457	367923	28,24,18,16,12,8,6	427	372015	28,24,20,16,10,8,6
461	851181	30,22,16,14,10,6,4	428*	372468	28,24,20,16,14,12,7,4
463	338562	28,22,18,14,10,8,4	429*	337287	28,22,17,12,8,4
703	336362	20,22,10,14,10,6,4	430	338635	28,22,18,14,12,6
			434	339156	28,22,18,16,10,6
			435*	338363	28,22,18,13,8,4
			436*	338266	28,22,18,12,7,4
			437	343337	28,22,20,16,10,6
			438	338512	28,22,18,14,8,6
			444*	339253	28,22,18,16,12,7,4
			446	367957	28,24,18,16,12,10,6
			447*	530063	29,21,19,15,11,6
			448*	338643	28,22,18,14,12,7,4
			450*	338829	28,22,18,15,11,8,4
			451*	544635	29,23,17,12,6
			452*	527110	29,21,17,13,11,7,4
			453	371350	28,24,20,14,8,6
			454*	526877	29,21,17,11,7,4
			455*	340426	28,22,19,15,11,8,4
			456*	338520	28,22,18,14,9,4
			458	336677	28,22,16,12,8,4
			459*	544580	29,23,17,11,6
			460*	343434	28,22,20,16,12,7,4
			462*	337389	28,22,17,13,9,4
			464*	338376	28,22,18,13,9,4
			465	338274	
			403	3304/4	28,22,18,12,8,4

REFERENCES

- 1. Marjorie Bicknell-Johnson. "The Smallest Positive Integer Having F_k Representations as Sums of Distinct Fibonacci Numbers." In *Applications of Fibonacci Numbers* 8:47-52. Dordrecht: Kluwer, 1999.
- 2. Marjorie Bicknell-Johnson. "The Zeckendorf-Wythoff Array Applied to Counting the Number of Representations of N as Sums of Distinct Fibonacci Numbers." In Applications of Fibonacci Numbers 8:53-60. Dordrecht: Kluwer, 1999.
- 3. M. Bicknell-Johnson & D. C. Fielder. "The Number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas." *The Fibonacci Quarterly* **37.1** (1999): 47-60.
- 4. David A. Englund. "An Algorithm for Determining R(N) from the Subscripts of the Zeckendorf Representation of N." *The Fibonacci Quarterly* **39.3** (2001):250-52.
- 5. David A. Englund. Private correspondence.
- Daniel C. Fielder. "CERL Memorandum Report DCF05/22/97, On Finding the Largest Fibonacci Number in a Positive Integer with Extensions to Zeckendorf Sequences." Computer Engineering Research Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, June 24, 1997.
- 7. D. C. Fielder & M. Bicknell-Johnson. "The First 330 Terms of Sequence A013583." The Fibonacci Ouarterly 39.1 (2001):75-84.
- 8. David A. Klarner. "Partitions of N into Distinct Fibonacci Numbers." The Fibonacci Quarterly 6.4 (1968):235-44.
- 9. Posting of terms on N. J. A. Sloane's "On-Line Encyclopedia of Integer Sequences," June 1996. http://www.research.att.com/~njas/sequences/

AMS Classification Numbers: 11B39, 11B37, 11Y55

461