ON THE GENERALIZED LAGUERRE POLYNOMIALS

Gospava B. Djordjević

University of Niš, Faculty of Technology, 16000 Leskovac, Yugoslavia (Submitted March 1999)

1. INTRODUCTION

In this note we shall study two classes of polynomials $\{g_{n,m}^{a}(x)\}_{n \in \mathbb{N}}$ and $\{h_{n,m}^{a}(x)\}_{n \in \mathbb{N}}$. These polynomials are generalizations of Panda's polynomials (see [2], [3]). Also, these polynomials are special cases of the polynomials which were considered in [4] and [5]. For m = 1, the polynomials $\{g_{n,m}^{a}(x)\}$ are the well-known Laguerre polynomials $L_{n}^{\alpha}(x)$ (see [6]), i.e.,

$$g_{n,1}^{a}(x) \equiv L_{n}^{a-1}(x). \tag{1.0}$$

In this paper the polynomials $\{g_{n,m}^{a}(x)\}\$ and $\{h_{n,m}^{a}(x)\}\$ are given by

$$F(x,t) = (1-t^m)^{-a} e^{-\frac{xt}{1-t^m}} = \sum_{n=0}^{\infty} g_{n,m}^a(x) t^n$$
(1.1)

and

$$G(x,t) = (1+t^m)^{-a} e^{-\frac{xt}{1+t^m}} = \sum_{n=0}^{\infty} h_{n,m}^a(x) t^n.$$
(1.2)

Using (1.1) and (1.2), we shall prove a great number of interesting relations for $\{g_{n,m}^{a}(x)\}$ and $\{h_{n,m}^{a}(x)\}$, as well as some mixed relations.

2. RECURRENCE RELATIONS AND EXPLICIT REPRESENTATIONS

First we find two recurrence relations of the polynomials $\{g_{n,m}^{a}(x)\}$. Differentiating (1.1) with respect to *t*, we get

$$\frac{\partial F(x,t)}{\partial t} = (1-t^m)^{-a-1} e^{-\frac{xt}{1-t^m}} (amt^{m-1} - amt^{2m-1} - x - x(m-1)t^m)$$

= $(1-t^m) \sum_{n=1}^{\infty} ng_{n,m}^a(x)t^{n-1}.$ (2.1)

By (2.1) and from (1.1), we obtain the following recurrence relation:

$$ng_{n,m}^{a}(x) - (n-m)g_{n-m,m}^{a}(x) = am(g_{n-m,m}^{a+1}(x) - g_{n-2m,m}^{a+1}(x)) - x(g_{n-1,m}^{a+1}(x) + (m-1)g_{n-1-m,m}^{a+1}(x)).$$
(2.2)

Again, from (1.1) and (2.1), we get

$$ng_{n,m}^{a}(x) = -x(g_{n-1,m}^{a}(x) + (m-1)g_{n-1-m,m}^{a}(x)) + (m(a-2)+2n)g_{n-m,m}^{a}(x) - (m(a-2)+n)g_{n-2m,m}^{a}(x), \ n \ge 2m.$$
(2.3)

Corollary 2.1: If m = 1, then (2.2) and (2.3) yield the corresponding relations for Laguerre polynomials:

$$nL_n^{a-1}(x) - (n-1)L_{n-1}^{a-1}(x) = (a-x)L_{n-1}^a(x) - aL_{n-2}^a(x)$$

2001]

403

and

$$nL_n^a(x) = (2n+a-2-x)L_{n-1}^a(x) - (n+a-2)L_{n-2}^a(x), n \ge 2.$$

In a similar way, from (1.2), we get the following relations:

$$nh_{n,m}^{a}(x) = (m-1)xh_{n-1-m,m}^{a+2}(x) - amh_{n-m,m}^{a+1}(x) - xh_{n-1,m}^{a+2}(x), n \ge m,$$

and

$$nh_{n,m}^{a}(x) = x(m-1)h_{n-1-m,m}^{a}(x) - xh_{n-1,m}^{a}(x) - (2n+am-2m)h_{n-m,m}^{a}(x) - (n+am-2m)h_{n-2m,m}^{a}(x), \ n \ge m$$

Starting from (1.1) and (1.2), we get the following explicit representations of the polynomials $\{g_{n,m}^{a}(x)\}$ and $\{h_{n,m}^{a}(x)\}$, respectively:

$$g_{n,m}^{a}(x) = \sum_{i=0}^{[n/m]} \frac{(-1)^{n-mi}(a+n-mi)_{i}}{i!(n-mi)!} x^{n-mi}$$
(2.4)

and

$$h_{n,m}^{a}(x) = \sum_{i=0}^{[n/m]} \frac{(-1)^{n-(m-1)i} (a+n-mi)_{i}}{i!(n-mi)!} x^{n-mi}.$$
 (2.5)

Corollary 2.2: If m = 1, then (2.6) is the explicit representation of the Laguerre polynomials:

$$L_n^{a-1}(x) = \sum_{i=0}^n \frac{(-1)^{n-i}(a+n-i)_i}{i!(n-i)!} x^{n-i}.$$

Now, differentiating (1.1) with respect to x, we get

$$Dg_{n,m}^{a}(x) = -g_{n-1,m}^{a+1}(x), \quad n \ge 1.$$
(2.6)

If we differentiate (2.6), with respect to x, k times, we obtain

$$D^{k}g_{n,m}^{a}(x) = (-1)^{k}g_{n-k,m}^{a+k}(x), \quad n \ge k.$$
(2.7)

Corollary 2.3: Using the idea in [1], from (2.2) and (2.6), we get

$$(n-xD)g_{n,m}^{a}(x) = (n-m+x(m-1)D)g_{n-m,m}^{a}(x) + amD(g_{n+1-2m,m}^{a}(x) - g_{n+1-m,m}^{a}(x))$$

For m = 1 in the last equality and from (1.0), we get

$$(n+(a-x)D)L_n^{a-1}(x) = (n-1+aD)L_{n-1}^{a-1}(x).$$

In a similar way, from (1.2), we have

$$Dh_{n,m}^{a}(x) = -h_{n-1,m}^{a+1}(x)$$

and

$$D^{s}h_{n,m}^{a}(x) = (-1)^{s}h_{n-s,m}^{a+s}(x), \quad n \ge s.$$

3. SOME IDENTITIES OF THE CONVOLUTION TYPE

In this section we shall prove some interesting identities related to $\{g_{n,m}^a(x)\}$ and $\{h_{n,m}^a(x)\}$. First, from (1.1), we find

[NOV.

$$F(x,t) \cdot F(y,t) = (1-t^m)^{-2a} e^{\frac{(x+y)t}{1-t^m}} = \sum_{n=0}^{\infty} g_{n,m}^{2a} (x+y)t^n,$$
(3.1)

whence we get

$$\sum_{i=0}^{n} g_{n-i,m}^{a}(x) g_{i,m}^{a}(y) = g_{n,m}^{2a}(x+y).$$

Theorem 3.1: The following identities hold:

$$g_{n,m}^{2a}(x) = \sum_{j=0}^{[n/m]} \sum_{i=0}^{n-mj} \frac{y^{n-i-mj}(n-i-mj)_j}{j!(n-i-mj)!} g_{i,m}^{2a}(x+y);$$
(3.2)

$$\sum_{i=0}^{n} D^{s} g^{a}_{n-i,m}(x) D^{s} g^{a}_{i,m}(y) = g^{2a+2s}_{n-2s,m}(x+y), \ n \ge 2s;$$
(3.3)

$$\sum_{i=0}^{n} D^{k} g_{n-i,m}^{a}(x) D^{k} h_{i,m}^{a}(x) = g_{n-2k,2m}^{a+k}(2x), \ n \ge 2k;$$
(3.4)

$$\sum_{i=0}^{[(n-k)/m]} \frac{(k)_i}{i!} g^a_{n-k-mi, 2m}(2x) = (-1)^k \sum_{i=0}^n g^{a+k}_{n-i-k, m}(x) h^a_{i, m}(x);$$
(3.5)

$$\sum_{i=0}^{[(n-k)/m]} (-1)^i \frac{(k)_i}{i!} g^a_{n-k-mi, 2m}(2x) = (-1)^k \sum_{i=0}^n h^{a+k}_{n-i-k, m}(x) g^a_{i, m}(x);$$
(3.6)

$$\sum_{i=0}^{n} g_{n-i,m}^{a}(x) g_{i,m}^{b}(x) = g_{n,m}^{a+b}(2x).$$
(3.7)

Proof: From (3.1), we have

$$(1-t^m)^{-2a}e^{\frac{xt}{1-t^m}} = e^{\frac{yt}{1-t^m}}\sum_{n=0}^{\infty}g_{n,m}^{2a}(x+y)t^n,$$

whence

$$\sum_{n=0}^{\infty} g_{n,m}^{2a}(x)t^{n} = \left(\sum_{n=0}^{\infty} \frac{y^{n}t^{n}}{n!}\right) \left(\sum_{k=0}^{\infty} {\binom{-n}{k}} (-t^{m})^{k}\right) \left(\sum_{n=0}^{\infty} g_{n,m}^{2a}(x+y)t^{n}\right)$$

Multiplying the series on the right side, then comparing the coefficients to t^n , by the last equality we get (3.2).

If we differentiate (1.1) s times, with respect to x, we find

$$\frac{\partial^s F(x,t)}{\partial x^s} = (-1)^s t^s (1-t^m)^{-a-s} e^{-\frac{xt}{1-t^m}}.$$
 (a)

From (a), we get

$$\frac{\partial^s F(x,t)}{\partial x^s} \cdot \frac{\partial^s F(y,t)}{\partial y^s} = \sum_{n=0}^{\infty} g_{n,m}^{2a+2s}(x+y)t^{n+2s}.$$
 (i)

Since

$$\frac{\partial^{s}F(x,t)}{\partial x^{s}} \cdot \frac{\partial^{s}F(y,t)}{\partial y^{s}} = \sum_{n=0}^{\infty} \sum_{i=0}^{n} D^{s}g^{a}_{n-i,m}(x)D^{s}g^{a}_{i,m}(y)t^{n},$$

2001]

405

and, from (i), it follows that

$$\sum_{i=0}^{n} D^{s} g^{a}_{n-i,m}(x) D^{s} g^{a}_{i,m}(y) = g^{2a+as}_{n-2s,m}(x+y), \ n \ge 2s.$$

The last identity is the desired identity (3.3).

Differentiating (1.2) k times, with respect to x, we get

$$\frac{\partial^k G(x,t)}{\partial x^k} = (-1)^k t^k (1+t^m)^{-a-k} e^{-\frac{xt}{1+t^m}}.$$
 (b)

Then, from (a) and (b), we find

$$\frac{\partial^k F(x,t)}{\partial x^k} \cdot \frac{\partial^k G(x,t)}{\partial x^k} = \sum_{n=0}^{\infty} g_{n,2m}^{a+k} (2x) t^{n+2k}.$$
 (ii)

The left side of (ii) yields

$$\frac{\partial^k F(x,t)}{\partial x^k} \cdot \frac{\partial^k G(x,t)}{\partial x^k} = \sum_{n=0}^{\infty} \sum_{i=0}^n D^k g^a_{n-i,m}(x) D^k h^a_{i,m}(x) t^n.$$
(iii)

So, from (ii) and (iii), we get (3.4).

In a similar way, starting from (1.1) and (1.2), we can prove identity (3.5). From (1.1) and (b), we can prove identity (3.6).

In the proof identity (3.7), we start from

$$F^{a}(x,t) = (1-t^{m})^{-a} e^{\frac{xt}{1-t^{m}}}, \text{ by } (1.1),$$

....

and

$$F^{b}(x,t) = (1-t^{m})^{-b} e^{-\frac{xt}{1-t^{m}}}, \text{ by } (1.1).$$

So, we obtain

$$F^{a}(x,t)\cdot F^{b}(x,t) = \sum_{n=0}^{\infty} g^{a+b}_{n,m}(2x)t^{n}.$$

On the other side, we have

$$\left(\sum_{n=0}^{\infty}g_{n,m}^{a}(x)t^{n}\right)\left(\sum_{n=0}^{\infty}g_{n,m}^{b}(x)t^{n}\right)=\sum_{n=0}^{\infty}g_{n,m}^{a+b}(2x)t^{n}.$$

Identity (3.7) follows by the last equality and the proof of Theorem 3.1 is completed.

Corollary 3.1: If m = 1 in (3.2), (3.3), and (3.7), then we get

$$L_n^{2a-1}(x) = \sum_{j=0}^n \sum_{i=0}^{n-j} \frac{y^{n-i-j}(n-i-j)_i}{j!(n-i-j)!} L_i^{2a-1}(x+y),$$
$$\sum_{i=0}^n D^s L_{n-i}^{a-1}(x) D^s L_i^{a-1}(y) = L_{n-2s}^{2a+2s-1}(x+y),$$

and

 $\sum_{i=0}^{n} L_{n-i}^{a-1}(x) L_{i}^{b-1}(x) = L_{n}^{a+b-1}(2x),$

respectively.

406

[NOV.

Furthermore, we shall prove some more general results.

Theorem 3.2:

$$\sum_{i_1+\dots+i_k=n} g_{i_1,m}^{a_1}(x_1)\cdots g_{i_k,m}^{a_k}(x_k) = g_{n,m}^{a_1+\dots+a_k}(x_1+\dots+x_k);$$
(3.8)

$$\sum_{i_1+\dots+i_k=n} h_{i_1,m}^{a_1}(x_1)\cdots h_{i_k,m}^{a_k}(x_k) = h_{n,m}^{a_1+\dots+a_k}(x_1+\dots+x_k);$$
(3.9)

$$\sum_{s=0}^{n} \sum_{i_{1}+\dots+i_{k}=n-s} g_{i_{1},m}^{a}(x_{1}) \cdots g_{i_{k},m}^{a}(x_{k}) \cdot \sum_{j_{1}+\dots+j_{k}=s} h_{j_{1},m}^{a}(x_{1}) \cdots h_{i_{k},m}^{a}(x_{k})$$

$$= \sum_{i_{1}+\dots+i_{k}=n} g_{i_{1},2m}^{a}(2x_{1}) \cdots g_{i_{k},2m}^{a}(2x_{k}).$$
(3.10)

Proof: From (1.1), we get

$$F^{a_1}(x_1, t) \cdots F^{a_k}(x_k, t) = \sum_{n=0}^{\infty} g^{a_1 + \cdots + a_k}_{n, m} (x_1 + \cdots + x_k) t^n$$

Further, we have the following identity:

$$\sum_{n=0}^{\infty} \sum_{i_1+\dots+i_k=n} g_{i_1,m}^{a_1}(x_1)\cdots g_{i_k,m}^{a_k}(x_k)t^n = \sum_{n=0}^{\infty} g_{n,m}^{a_1+\dots+a_k}(x_1+\dots+x_k)t^n$$

Identity (3.8) follows immediately from the last equality. In a similar way, from (1.2), we can prove (3.9).

Now we shall prove (3.10). From (1.1) and (1.2), we have

$$F(x_1, t) \cdots F(x_k, t) \cdot G(x_1, t) \cdots G(x_k, t) = (1 - t^{2m})^{-ka} e^{-\frac{2(x_1 + \dots + x_k)t}{1 - t^{2m}}}.$$

So we get

$$\left(\sum_{n=0}^{\infty} \sum_{i_1+\dots+i_k=n} g^a_{i_1,m}(x_1) \cdots g^a_{i_k,m}(x_k) t^n \right) \cdot \left(\sum_{n=0}^{\infty} \sum_{j_1+\dots+j_k=n} h^a_{j_1,m}(x_1) \cdots h^a_{j_k,m}(x_k) t^n \right)$$

$$= \sum_{n=0}^{\infty} g^{ka}_{n,2m}(2x_1+\dots+2x_k) t^n.$$

Comparing the coefficients to t^n in the last equality, we get (3.10) and the proof of Theorem 3.2 is completed.

Corollary 3.2: If m = 1, using (1.0), then (3.8) becomes

$$\sum_{i_1+\cdots+i_k=n} L_{i_1}^{a_1-1}(x)\cdots L_{i_k}^{a_k-1}(x) = L_n^{a_1+\cdots+a_k-1}(x_1+\cdots+x_k).$$

Corollary 3.3: If $x_1 = x_2 = \dots = x_k = x$ and $a_1 = a_2 = \dots = a_k = a$, then (3.8) becomes

$$\sum_{i_1+\dots+i_k=n} g^a_{i_1,m}(x) \cdots g^a_{i_k,m}(x) = g^{ka}_{n,m}(kx).$$
(3.11)

Corollary 3.4: If m = 1, then (3.11) yields

$$\sum_{i_1+\cdots+i_k=n} L_{i_1}^{a-1}(x)\cdots L_{i_k}^{a-1}(x) = L_n^{ka-1}(kx).$$

2001]

ON THE GENERALIZED LAGUERRE POLYNOMIALS

REFERENCES

- 1. G. Djordjević. "On Some Properties of Generalized Hermite Polynomials." *The Fibonacci Quarterly* **34.1** (1996):2-6.
- G. Djordjević, & G. V. Milovanović. "A Generalization of One Class of Panda's Polynomials." In *IV Conference on Applied Mathematics*, pp. 42-47. Belgrade, 1989.
- 3. R. Panda. "On a New Class of Polynomials." Glasgov Math. J. 18 (1977):105-08.
- 4. R. C. Singh Chandel. "A Note on Some Generating Functions." *Indiana J. Math.* 25 (1983): 185-88.
- 5. H. M. Srivastava. "A Note on a Generating Function for the Generalized Hermite Polynomials." Nederl. Akad. Wetensch. Proc. Ser A, 79 (1976):457-61.
- 6. H. M. Srivastava. "On the Product of Two Laguerre Polynomials." *Rollettino della Unione Matematica Italiano* **5.4** (1972):1-6.

AMS Classification Numbers: 11B39, 11B83

Errata for "Generalizations of Some Identities Involving the Fibonacci Numbers" by Fengzhen Zhao & Tianming Wang

The Fibonacci Quarterly 39.2 (2001):165-167

On page 166, (10) should be

$$\sum_{a+b+c=n} U_{ak} U_{bk} U_{ck} = \frac{U_k^2}{2(V_k^2 - 4q^k)^2} ((n-1)(n-2)V_k^2 U_{nk} - q^k V_k (4n^2 - 6n - 4)U_{(n-1)k} + q^{2k} (4n^2 - 4)U_{(n-2)k}), \ n \ge 2.$$

Hence, on page 167, (13) should be

$$\sum_{a+b+c=n} F_{ak} F_{bk} F_{ck} = \frac{F_k^2}{2(L_k^2 - 4(-1)^k)^2} ((n-1)(n-2)L_k^2 F_{nk} - (-1)^k L_k (4n^2 - 6n - 4)F_{(n-1)k} + (4n^2 - 4)F_{(n-2)k}), \ n \ge 2$$

In the meantime, line 14 and line 16 of page should be, respectively,

$$\sum_{a+b+c=n} F_{2a}F_{2b}F_{2c} = \frac{1}{50} (9(n-1)(n-2)F_{2n} - 3(4n^2 - 6n - 4)F_{2n-2} + (4n^2 - 4)F_{2n-4}).$$
$$\sum_{a+b+c=n} F_{2a}F_{2b}F_{2c} = \frac{1}{50} ((15n^2 - 63n + 66)F_{2n-3} + (10n^2 - 36n + 44)F_{2n-4}).$$

Line 19 of page 167 should be: $+(4n^2-4)P_{(n-2)k}), n \ge 2$.

[NOV.