ON THE GENERALIZED LAGUERRE POLYNOMIALS

Gospava B. Djordjevié
University of Ni§, Faculty of Technology, 16000 Leskovac, Yugoslavia
(Submitted March 1999)

i. INTRODUCTION

In this note we shall study two classes of polynomials {g} ,(x)},oy and {#; . (x)},.y. These
polynomials are generalizations of Panda's polynomials (see [2], [3]). Also, these polynomials are
special cases of the polynomials which were considered in [4] and [5]. For m =1, the polynomials
{g, .(x)} are the well-known Laguerre polynomials L7 (x) (see [6]), i.e.,

gna(x) = L7 (). (1.0)
In this paper the polynomials {g; ,(x)} and {h; ,(x)} are given by

xt

Fle,f)=(1-1") e " =3 g?  (o)e" a.n
and "
Gx, 1) = (1+17) %€ #7 = 3 12 (0)e". (1.2)

Using (1.1) and (1.2), we shall prove a great number of interesting relations for {g; ,(x)} and
{h, »(x)}, as well as some mixed relations.

2. RECURRENCE RELATIONS AND EXPLICIT REPRESENTATIONS

First we find two recurrence relations of the polynomials {g,, ,,(x)}.
Differentiating (1.1) with respect to 7, we get
.
IF(x,0) _ (A-t"yte =" (amt™ ! — amt*™ ! — x — x(m - 1)e™) ‘
ot . 2.1)
=(1-1") ngl ()"
n=1

By (2.1) and from (1.1), we obtain the following recurrence relation:

Ngy (%) = (1= 1) 85, m(X)

272
= (g™ ()= 85D ()~ K82 () + (m— DI (). @2

Again, from (1.1) and (2.1), we get
ngt () = —(g s () + (M= D1 () o)

+ (m(a - 2) + 2n)g:—m, m(x) - (m(a - 2) + n)gr[:—Zm, m(x)’ nz2m.

Corollary 2.1: 1f m=1, then (2.2) and (2.3) yield the corresponding relations for Laguerre poly-
nomials:
nLH(x) = (n - DIZi(x) = (@ - X)Ly (x) — aL;,_y(x)
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and
nLi(x)=Q2n+a-2-x)L;_(x)-(n+a-2)L;_,(x), n>2.
In a similar way, from (1.2), we get the following relations:
nhy (%) = (m=Dxhi2L, (%) —amhit, ()~ xh3E (x), n=m,

and

nhy (6) = X(m =Dy, 5 (%) = Xy (%)

- (2n+am-2mh;_,, ,(x)—(n+am-2mh;_,, .(x), n=m.

Starting from (1.1) and (1.2), we get the following explicit representations of the polynomials
{gn. m(x)} and {h; ,(x)}, respectively:

L i CEa

&n.n(¥) = ; il(n—mi)! 24)
and
L i R
By, () = go o) X" 2.5)
Corollary 2.2: 1f m=1, then (2.6) is the explicit representation of the Laguerre polynomials:
- L ()" (a+n-i);
Ja 1 x) = ( - i Lyn=i
" () g il(n—1)!
Now, differentiating (1.1) with respect to x, we get
Dg:,m(x) = —ggfll,m(x)’ nxl (26)
If we differentiate (2.6), with respect to x, k times, we obtain
Dkg:,m(x) = (_l)k nrlf,m(x)> nxk. (27)

Corollary 2.3: Using the idea in [1], from (2.2) and (2.6), we get
(n—xD)g; ,(x) = (n—m+x(m—-1)D)g;_,, () +amD(grs1-2m, m(X) ~ &ri1-m, m(X)).
For m=1 in the last equality and from (1.0), we get
(n+(a—x)D) &7} (x) = (n—1+aD) 27}(x).
In a similar way, from (1.2), we have

DH;, ,(x) = —h3* ,(x)

n—-1,m

and
D'y, )= ()R (%), n>s.

n—-s,m

3. SOME IDENTITIES OF THE CONVOLUTION TYPE

In this section we shall prove some interesting identities related to {g, ,(x)} and {A; ,(x)}.
First, from (1.1), we find
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(x+y)t ©

F(e,0)-F(y,)=(1-1"y%e " =Y 2 (x4 )",

whence we get

Zgn—l m(x)gam(y) gn m(x+y)

Theorem 3.1: The following identities hold:

[nim) n—mj n=i=mj (o, i _ 4,7
a Y n—i—-mj),;
&)= 2, ’

== Je-i-m))!

grm(X+);
ZDsgn——l m(x)Dsga 0= gﬁa}?sm(x +y), n=2s,

ZD"g o mOD RS (%) = g%, 1n(2%), n22k;

[(n—k)/m)] (k)

Iga—k-—mt 2m(2x) (— )kzgﬂjl]ik m(x) i, m(x);

i=0

[(n—k)/m] k), k +e
( l)l |Igr7—k—m1 2m(2x) = (_1) z h::—'_k m(x)g,‘-f m(X);

i=0
Zgn_, (V&L (%) = gy (2%).
i=0

Proof: From (3.1), we have

Y »

(1-1")y e = =elt” Zgz ' (x+ ),

whence

g)ngm(xw - (ZO )@ (¥) (—t'”)"]@gﬁf‘m(x +y)t").

(3.1)

(.2)

(3.3)

(3.4)

(.5)

(3.6)

(.7)

Multiplying the series on the right side, then comparing the coefficients to #”, by the last

equality we get (3.2).
If we differentiate (1.1) s times, with respect to x, we find

s __xt
& ‘I;(ﬁ t) ( l)sts(l _ IM)—a—se 1-t™ .

From (a), we get

S°F(x,1) S'F(y,1)
o ay*

- Zgg’a’-’l’-ZS(x+y)tn+25.
n=0

Since

OF(x, 1) IF(p,1) _ > <
. > — Ds a Ds a ln
ooy =% DB DN,
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and, from (i), it follows that
2 D8y D () = Gren(x+ ), 225,
i=0

The last identity is the desired identity (3.3).
Differentiating (1.2) & times, with respect to x, we get

k _xt_
TIED - Cpptamyete (b)

Then, from (a) and (b), we find
OF(x, 1) o”kG(x 1)

o Z gtk (2x)m, (i)
The left side of (ii) yields
F*F(x, 1) é”‘G(x D o~ kp
D D"h 1"
0"x" 5)6 ;g) g gn-r m(x) i, m(x) (lll)

So, from (ii) and (iii), we get (3.4).
In a similar way, starting from (1.1) and (1.2), we can prove identity (3.5). From (1.1) and
(b), we can prove identity (3.6).
In the proof identity (3.7), we start from
_xt
Fo(x,)=(1-1")y"e =", by (1.1),

and
xt

FP(x,ty=(1-1")ybe =" by (1.1).
So, we obtain
Fo(x,1)-F°(x, 1) = z g:jf,’(Zx)t".
n=0
On the other side, we have

(i g:,m(x)t"](i gf:,,,,(x)t"j =3 gE@u)e

n=0 n=0 n=0

Identity (3.7) follows by the last equality and the proof of Theorem 3.1 is completed.
Corollary 3.1: If m=1in (3.2), (3.3), and (3.7), then we get

n n-j n—r—
Lﬁa—-l(x — (n i- .])1 L2a—l(x+y)’
) ,go Zo Jin—i-j)!
Y DIAD L) = BE e+ ),
i=0
and

ZLn.,(x)L”"‘(x) L (2x),
i=0
respectively.
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Furthermore, we shall prove some more general results.

Theorem 3.2:
2 gt m(a) - &k () = gl TR (e o0 )5 (-8)
I
Z h::m(xl)'”hi:fm(xk):hr‘:,];mwk(xl-*'"""xk); G.9)
i1+--~+i,‘=n

ST g ) g Y (e h(5)

=0 iy+---+ip=n-s St + =S (3 10)

= Z i,,2m(2x1) gii,lm(zxk)'

it +ig=n
Proof: From (1.1), we get

0
Fa(xy, t) -+ F (i, 1) = 3 gty (o + 2007
n=0

Further, we have the following identity:

0

2 X & () e 8k ()" = D (e X
n=0

n=0 i+ +ip=n
Identity (3.8) follows immediately from the last equality. In a similar way, from (1.2), we can
prove (3.9).
Now we shall prove (3.10). From (1.1) and (1.2), we have

_2(x,+~~~+xk)t
Fxy, 1) F (8, 1) G(xy, 1) -+ G(x,,, 1) = (1= 27y *ae 1=m
So we get

[i Z gi‘:,m(xl) gﬂ,m(xk)t")'(i Z h;,,m(xl) “'hf-,,,m(xk)t")

n=0 ij+--+ig=n n=0 ji+--+jg=n

=Y g (2x e+ 221",

n=0

Comparing the coefficients to #” in the last equality, we get (3.10) and the proof of Theorem 3.2
is completed.

Corollary 3.2: If m=1, using (1.0), then (3.8) becomes
L) L) = L O e ).

i Hig=n
Corollary 3.3: If x,=x,=---=x, =x and a, =a, =---=a, =a, then (3.8) becomes
Y &) g () = g, @3.11)
i+ +ig=n

Corollary 3.4: If m=1, then (3.11) yields
Y LT L) = LY ().

iyt tig=n

2001] 407



ON THE GENERALIZED LAGUERRE POLYNOMIALS

REFERENCES

1. G. Djordjevi¢. "On Some Properties of Generalized Hermite Polynomials." The Fibonacci

Quarterly 34.1 (1996):2-6.

2. G. Djordjevi¢, & G. V. Milovanovi¢. "A Generalization of One Class of Panda's Polyno-

mials." In IV Conference on Applied Mathematics, pp. 42-47. Belgrade, 1989.
3. R.Panda. "On a New Class of Polynomials." Glasgov Math. J. 18 (1977):105-08.

4. R.C. Singh Chandel. "A Note on Some Generating Functions." Indiana J. Math. 25 (1983):

185-88.

5. H. M. Srivastava. "A Note on a Generating Function for the Generalized Hermite Polyno-

mials." Nederl. Akad. Wetensch. Proc. Ser A, 79 (1976):457-61.

6. H. M. Srivastava. "On the Product of Two Laguerre Polynomials." Rollettino della Unione

Matematica Italiano 5.4 (1972):1-6.
AMS Classification Numbers: 11B39, 11B83

®s o%
€0 oo

o
L <4

Errata for " Generalizations of Some Identities Involving the Fibonacci Numbers"

by Fengzhen Zhao & Tianming Wang
The Fibonacci Quarterly 39.2 (2001):165-167

On page 166, (10) should be
Z UaUnUg =

a+b+c=n

Ui
2077 -49")
~q"V,(4n* —6n— DU -y + q* (4n® ~ DUp-ze), 12 2.

(=D -2W7U,

Hence, on page 167, (13) should be

F2
FyFyFy =———%t —((n-1)(n-2)I2F,
Z ikt bkt ck 2(Li“4(—1)k)2 (( )( ) %+ nk

a+b+c=n

—(-D¥L,(4n* —6n—A)F,, 1, +(4n* =D F, ), n=2.

In the meantime, line 14 and line 16 of page should be, respectively,

Y FuFuFi =55 (00— D01-DF, - 3(4n ~n=4)Fyyy + (417 = F, ).

a+b+c=n
S BuFyk. = Sio((lsn2 631+ 66)F,,_y + (10n% —36n+44)E), ).
a+b+c=n

Line 19 of page 167 should be: + (4n> —-4)F,_,,), n>2.
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