SOME IDENTITIES FOR THE GENERALIZED FIBONACCI AND LUCAS FUNCTIONS

Fengzhen Zhao and Tianming Wang

Dalian University of Technology, 116024 Dalian, China (Submitted August 1999-Final Revision March 2000)

1. INTRODUCTION

In this paper, we consider the generalized Fibonacci and Lucas functions, which may be defined by

$$U(x) = \frac{\alpha^x - e^{i\pi x} \beta^x}{\alpha - \beta} \tag{1}$$

and

$$V(x) = \alpha^x + e^{i\pi x} \beta^x, \tag{2}$$

where $\alpha = (p + \sqrt{\Delta})/2$, $\beta = (p - \sqrt{\Delta})/2 > 0$, $\Delta = p^2 - 4q$, p and q are integers with q > 0, and x is an arbitrary real number. It is clear that U(x) = F(2x) and V(x) = L(2x) when p = 3 and q = 1, where F(x) and L(x) are the Fibonacci and Lucas functions, respectively (see [2]).

In [2], R. André-Jeannin proved that well-known identities for Fibonacci and Lucas numbers are again true for F(x) and L(x). Basic results regarding these topics can be found in [1]. Some special cases of the functions U(x) and V(x) are treated in [4] and referred to in the Remark in [8]. The aim of this paper is to establish some identities for U(x) and V(x). We are interested in calculating the summation of reciprocals of products of U(x) and V(x).

2. MAIN RESULTS

From the definitions of the generalized Fibonacci and Lucas functions, we can obtain the main results of this paper.

Theorem: Assume that n, r, and s are positive integers, and x is an arbitrary real number. Then

$$\sum_{k=1}^{n} \frac{e^{i\pi(k-1)rx}q^{(k-1)rx}}{U(krx-rx+sx)U(krx+sx)} = \frac{U(nrx)}{U(rx)U(sx)U(sx+nrx)}$$
(3)

and

$$\sum_{k=1}^{n} \frac{e^{i\pi(k-1)rx}q^{(k-1)rx}}{V(sx+krx-rx)V(sx+krx)} = \frac{U(nrx)}{U(rx)V(sx)V(sx+nrx)}.$$
 (4)

Proof: From (1) and (2), it is easy to verify that U(x) and V(x) satisfy

$$\frac{V(sx)}{U(sx)} - \frac{V(sx+rx)}{U(sx+rx)} = \frac{2e^{i\pi sx}q^{sx}U(rx)}{U(sx)U(sx+rx)}$$
(5)

and

$$\frac{U(sx)}{V(sx)} - \frac{U(sx+rx)}{V(sx+rx)} = \frac{-2e^{i\pi sx}q^{sx}U(rx)}{V(sx)V(sx+rx)}.$$
 (6)

In (5) and (6), replacing s by s, s+r, s+2r, ..., s+(n-1)r, and adding the results we can obtain

$$\sum_{k=1}^{n} \frac{e^{i\pi(k-1)rx}q^{(k-1)rx}}{U(sx+krx-rx)U(sx+krx)} = \frac{e^{-i\pi sx}q^{-sx}}{2U(rx)} \left(\frac{V(sx)}{U(sx)} - \frac{V(sx+nrx)}{U(sx+nrx)}\right)$$

and

$$\sum_{k=1}^{n} \frac{e^{i\pi(k-1)rx}q^{(k-1)rx}}{V(sx+krx-rx)V(sx+krx)} = \frac{e^{-i\pi sx}q^{-sx}}{2U(rx)} \left(\frac{U(sx)}{V(sx)} - \frac{U(sx+nrx)}{V(sx+nrx)}\right)$$

From (5) and (6), we can prove that the equalities (3) and (4) hold. \Box

Remark: From (1) and (2), we can show that the following relations are valid:

$$V(2rx) - e^{i\pi(r-s)x}q^{(r-s)x}V(2sx) = \Delta U(rx - sx)U(rx + sx); \tag{7}$$

$$V(2rx) + e^{i\pi(r-s)x}q^{(r-s)x}V(2sx) = V(rx - sx)V(rx + sx);$$
(8)

$$U^{2}(rx) - e^{i\pi(r-s)x}q^{(r-s)x}U^{2}(sx) = U(rx - sx)U(rx + sx);$$
(9)

$$V^{2}(rx) - e^{i\pi(r-s)x}q^{(r-s)x}V^{2}(sx) = \Delta U(rx - sx)U(rx + sx).$$
 (10)

From (7) and (8), we have

$$\sum_{k=0}^{n} \frac{e^{i\pi krx}q^{krx}}{V(2krx+rx+2sx)-e^{i\pi(sx+krx)}q^{sx+krx}V(rx)} = \sum_{k=0}^{n} \frac{e^{i\pi krx}q^{krx}}{\Delta U(krx+sx)U(krx+rx+sx)}$$

and

$$\sum_{k=0}^n \frac{e^{i\pi krx}q^{krx}}{V(2krx+rx+2sx)+e^{i\pi(sx+krx)}q^{sx+krx}V(rx)} = \sum_{k=0}^n \frac{e^{i\pi krx}q^{krx}}{V(krx+sx)V(krx+rx+sx)} \,.$$

By the method used to obtain (3) and (4), we obtain the equalities

$$\sum_{k=0}^{n} \frac{e^{i\pi krx}q^{krx}}{V(2krx+rx+2sx)-e^{i\pi(sx+krx)}q^{sx+krx}V(rx)} = \frac{U(nrx+rx)}{\Delta U(rx)U(sx)U(sx+nrx+rx)}$$

and

$$\sum_{k=0}^n \frac{e^{i\pi krx}q^{krx}}{V(2krx+rx+2sx)+e^{i\pi(sx+krx)}q^{sx+krx}V(rx)} = \frac{U(nrx+rx)}{U(rx)V(sx)V(sx+nrx+rx)}.$$

Using (9) and (10) and applying the method used to obtain (3), we obtain the equalities

$$\sum_{k=0}^{n-1} \frac{e^{2i\pi krx}q^{2krx}}{U^2(2krx+rx+sx)-e^{i\pi(sx+2krx)}q^{sx+2krx}U^2(rx)} = \frac{U(2nrx)}{U(2rx)U(sx)U(sx+2nrx)}$$

and

$$\sum_{k=0}^{n} \frac{e^{2i\pi krx}q^{2krx}}{V^{2}(2krx + rx + sx) - e^{i\pi(sx + 2krx)}q^{sx + 2krx}V^{2}(rx)} = \frac{U(2nrx)}{\Delta U(2rx)U(sx)U(sx + 2nrx)}$$

Letting x be a positive real number and $\left|\frac{\beta}{\alpha}\right| < 1$, due to

$$\lim_{n \to +\infty} \frac{U(nx)}{U(nx+rx)} = \frac{1}{\alpha^{rx}} \quad \text{and} \quad \lim_{n \to +\infty} \frac{U(nx)}{V(nx+rx)} = \frac{1}{\sqrt{\Delta}\alpha^{rx}},$$

we immediately have the following corollary.

Corollary: Suppose that r and s are positive integers, and x is a positive real number. If $\left|\frac{\beta}{\alpha}\right| < 1$, then we have

$$\sum_{k=1}^{\infty} \frac{e^{i\pi(k-1)rx} q^{(k-1)rx}}{U(sx + krx - rx)U(sx + krx)} = \frac{1}{\alpha^{sx} U(rx)U(sx)}$$

and

$$\sum_{k=1}^{\infty} \frac{e^{i\pi(k-1)rx}q^{(k-1)rx}}{V(sx+krx-rx)V(sx+krx)} = -\frac{1}{\sqrt{\Delta}\alpha^{sx}U(rx)V(sx)}.$$

We note that formulas (3.3), (3.4), (3.5), (3.6), (3.9), and (3.10) in [6] are special cases of the Theorem and the Corollary.

Valuable references connected with the main results of this paper are [3], [5], and [7].

Finally, we give some special cases of the Theorem and the Corollary. If p=3 and q=1 in (3) and (4), we obtain

$$\sum_{k=1}^{n} \frac{e^{i\pi(k-1)rx}}{F(2krx - 2rx + 2sx)F(2krx + 2sx)} = \frac{F(2nrx)}{F(2rx)F(2sx + 2nrx)}$$

and

$$\sum_{k=1}^{n} \frac{e^{i\pi(k-1)rx}}{L(2krx-2rx+2sx)L(2krx+2sx)} = \frac{F(2nrx)}{F(2rx)L(2sx)L(2sx+2nrx)}.$$

If p = 3, q = 1, and x = 1 in the Corollary, we have

$$\sum_{k=1}^{\infty} \frac{(-1)^{(k-1)r}}{F(2s+2kr-2r)F(2s+2kr)} = \frac{2^s}{(3+\sqrt{5})^s F(2r)F(2s)}$$

and

$$\sum_{k=1}^{\infty} \frac{(-1)^{(k-1)r}}{L(2s+2kr-2r)L(2s+2kr)} = \frac{2^s}{\sqrt{5}(3+\sqrt{5})^s F(2r)L(2s)}.$$

REFERENCES

- 1. R. André-Jeannin. "Lambert Series and the Summation of Reciprocals in Certain Fibonacci-Lucas-Type Sequences." *The Fibonacci Quarterly* **28.3** (1990):223-26.
- 2. R. André-Jeannin. "Generalized Complex Fibonacci and Lucas Functions." *The Fibonacci Quarterly* **29.1** (1991):13-18.
- 3. R. André-Jeannin. "Problem B-697." The Fibonacci Quarterly 29.3 (1991):277.
- 4. M. W. Bunder. "More Fibonacci Functions." The Fibonacci Quarterly 16.2 (1978):97-98.
- 5. P. Filipponi. "A Note on Two Theorems of Melham and Shannon." *The Fibonacci Quarterly* **36.1** (1998):66-67.
- 6. R. S. Melham & A. G. Shannon. "On Reciprocal Sums of Chebyshev Related Sequences." *The Fibonacci Quarterly* **33.3** (1995):194-202.
- 7. S. Rabinowitz. "Algorithmic Summation of Reciprocals of Products of Fibonacci Numbers." *The Fibonacci Quarterly* **37.2** (1999):122-27.
- 8. F. Zhao. "Notes on Reciprocal Series Related to Fibonacci and Lucas Numbers." *The Fibonacci Quarterly* **37.3** (1999):254-57.

AMS Classification Number: 11B39
