Extend $\mathrm{F}_{3}(\mathrm{z})$ vertically by periodicity and horizontally by the functional equation, $F_{3}(z+2)=F_{3}(z+1)+F_{3}(z)$. The extension would be an entire function with period i and $F_{3}(n)=F_{n}, n$ an integer.

REMARKS

Selection of a proper extension for $F(n)$ should, via the machinery of Analytic Function theory, put a powerful wrench on the Fibonacci Prime Conjecture.

REFERENCES

1. E. Titchmarsh, The Theory of Functions, 2nd ed. (1952), p. 284b. 2. Ibid, p. 284 a.
2. Ibid, pp. 124-125.

$X X X X X X X X X X X X X X X$

CORRECTIONS

[^0]
[^0]: ''Binomial Coefficients, the Bracket Function, and Compositions with Relatively Prime Summands" by H. W. Gould, Fibonacci Quarterly, 2(1964), pp. 241-260.

 Page 241. The second paragraph should begin: "Indeed this result is
 equivalent to the identical congruence $(1-x)^{p} \equiv 1-x^{p}(\bmod p)$
 ...' ${ }^{\prime}$
 Page 245. In Theorem 3 it is necessary to require $a_{i}>0$.
 Page 257. Line after relation (48), replace "out" by "our".
 Page 251. Line 9 from bottom, for "as" read 'an'.

