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1. Introduction

Indealing with electrical ladder networks, A. M. Morgan-Voyce

defined a set of polynomials by:

(1) b (x) =x B__ (x) +b__ (x) (m2 1)
(2) Bn(x) = (x +1) Bn_l(x) + bn-l(X) (n>1)
with,

(3) by(x) = By(x) = 1

These polynomials bn and Bn have a number of very fasci-
nating and interesting properties, and is the subject matter of this
article. A few properties of these have been studied by Basin.

From (l) and (2) we see that

(4) bn - Bn B Bn—l

(5) and, x Bn = bn+l - brl

Substituting (4) in (1) we have that Bn satisfies the difference equa-

tion,

Bn(x) = (x + 2) Bn-l(x) - Bn—Z(X) (n2> 2)
with
(6) Bo(x) =1, and BI(X) =x+2

From (1) and (2) itcaneasilybe derived that bn(x) also satisfies the

same difference equation, namely,

b (x)=(x+2) b ,(x)-b x) (n2 2)

n—Z(

with
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The difference equation (6) may be expressed as the continuant,

xt2 1 o . . .0
1 xt2 1 0 0
0 1 x+2 1
(8) B_(x) =
. 0
. 1
0 . . 0 1 xt2|n (n>1)

and hence we may study the properties of ]3n by using those of the
continuants. We shall list below only such of those properties of Bn(x)
which we will use in studying bn(x) and in deriving relations between

the polynomials bn(x) and Bn(x):

(9) Bm+n = Bm Bn - Bm-l Bn-—l
2 2
(10) BZn - Bn - Bn—l
(11) BZn-l = Bn—l (Bn - Bn—Z)
(12) (x+2) B -B*. B
* ) 2n-1~ "n Tn-2
(13) By Brnt1 7By Bann " Bnz Bara
(14) B B .. -B*=-1
n-1 n+l n_
n-1
d —_— 3
(15) dx Bn(x) - Z (Br Bn—l—r)
0

2. Relations between bn(x) and Bn(x), and properties of bn(x):
From (5) and (7),

(16) x B_=(x+1)b -b

Also we have,
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(17) B -B_ . =b',. +b

From (4) and (5),

n-

1 - =
(18) bn+1 bn—l x (Bn * Bn—l)
By successively substituting 0, 1, 2, ... for n
adding we have,
n
(19) x ZBrzbn+1~l
0
Similarly from (4) we may deduce that,
n
2 =
(20) Z b =B_
0

Now,

bm+n - Bm+n_Bm+n—1 - (BmBn B Bm-an-l) h (BmB

- Bm (Bn h Bn—l) B (Bn—l - Bn-Z) Bm—l

Hence,
(212) bm+n = men h Bm—lbn—l
Interchanging m and n we have,
(21b) bm+n - men B bm—an—l
Hence,
(22) men h Brnbn - bm—an—l - Bm—lbn—l

1

-B

75

in (5) and

m—IBn-Z)

We will see later that this is a particular case of the more general

relationship (29).
Putting m = n in (21),

(23) bZn = ann B bn—an—l

Putting m = n+l in (21),
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(24a) Pon+l © Pns1Bn - PrBriy

(24b) = Bn+1bn - Bnbn—l

From (7) we have

(x+2) byt = Pansz TPy
- bn+1 Bn+1 h ann * ann - bn—an—l
Hence,
(24c) (x +2) bZn-ﬂ-l = bn-HBn-i—l B bn—an—l

Also from (12),

(x+2) B,y = By - Bpy
Hence,
(x + Z)(BZn'H - b2n+1) = Bn+l(Bn+1 - bn-l-l) - Bn—-l(Bn—l - bn—l)
Hence,
(25) (x +2) BZn = Bn+1Bn - Bn—an—Z

From (23) and (24) we deduce that,

2 2
(26) bZn - bZn—l - bn - bn—l
Subtracting (12) from (25},
(x + 2')(BZn - BZn-l) - Bn(Bn+1 - Bn) - Bn—Z(Bn—l - Bn—Z)
Hence,
(272) b+ 2) bZn - Bnbn+l B Bn—an—l
(27b)- = ann+l - bn—ZBn-l

We willnow derive a relationship between the polynomials bn(x)
and Bn(x), corresponding to the relation (13) for Bn:

i xXpression
Consider the expression,
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Pa-n1Br ~ Bp2Paran
(Bn—h+1 ) Bn-h)Br B (Bn—r—l B Bn—r—Z)Bh—Z
= (Bn*h-l-lBr B Bn—r-lBh~2) B (Bn—hBr B Bn—r—ZBh—Z)
= BnBr—h-H - Bn—lBr—h+l from (13)

b B

n n-1""r-h+1 =~ PnTr-h+l
Hence,
(282) DB hdl T Pnont1Br m Bn2Pnorod
Similarly,
(28b) anr—h+1 - Bn—h+lbr - bh—ZBn—r—l

Hence from (28a) and (28b) we get the relation,

Bobnhr ~ BPrno2Puoro1 T PrBrins T Pno2Bnira

Changing r to m, h-2 to m-4, and n to min+l-r in the above

relation,

(29a) B b -B b _=b B -b_ B
m n m-r n-r m n m-r n-r

Using the relation (4) in (29a) we derive the corresponding relation

for Bn(x) as,

B B

(302) BmBn—l B Bm—an—r—l T Pam-1 " Bn—er~r—1

These relations may be written neatly in the form of determinants:

Bm Bn Bm—r Bn-r
(29b) Tl o=
b b b b
and m n m-r n-r
B B B B
m m-1 m-r m-1l-r
(30h) B =
n Bn—l Bn-r Bn—l—r

Now putting h = 2, and n = r+l 1in equation (28) we get,

(31) b B -b =1
r T

r+1Br-1
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Putting m = n-1, and r = n-1 in (29b) we get,

(32) Bnbn—l - ann—l =1

From (31) and (32) we see that bn(x) is prime to bn_l(x), Bn(x)
and Bn_l(x) for integral values of x. Also, for integral values of x,
Bn(x) is prime to Bn_l(x), bn(x) and bn_l_l(x).

By successively substituting 1, 2, 3, ... for n in (10) and add-

ing, we have
n
2 2 _ 2
ZBzr”Bn‘Bo‘Bn'Bo
1
Hence,

n

2

(33) Z B, =B
0

Similarly, using (11), (23), (24) and (26) we derive:

n-1
(34) 2 Baiw = BuBa
0
n
o S s, b,
0
n-1
(36) z b2r+1 = ann—l
0
Zn
T 2
(37) > -1 b_ = b
0
Let us now find an expression for the derivative of bn(x):
n-1 n-2
1 - R! - ! - -
bn(x) =B Bn—l Ban—l—r Z Ban—Z-r
0 0

n-2

n-2
Bn-lBO * E Br(Bn-r—l - Bn—r—Z) - Bn-lbO * Z Brbn—r—l
0 0
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Hence,

n-1

(38) bn(x) - Z Brbn—l-r
0

3. Explicit polynomial expressions for Bn(x) and bn(x):

We can establish by induction that,

n
B ()= D (ehx)
k=0
where,
(39) el = (i)
Now
a
(39) b (x) =B _(x) - B__ (x) =) [(‘Tff) - (n‘}fffl)] <
0

Therefore we have

k=0
where,

k _ ntk
(40) at=Cr .

The equations (39) and (40 are explicit polynomial expressions

for bn and Bn, and show that they are of degree n.

We shall now derive a formula for

[Bn(x) dx
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From (39),

n

k _ktl
/Bn(x) dx = Z (cox' " /kHl) +c
0
.. k+1 . .
Now the coefficient of x for the expression B - B is,
n+l n-1

k+l  k+l _ n+k+3 ntk+1

S G B G R A DA )

(n + 1)(coefficient of =<' in an(x) dx . )

Hence,
B - B
_ “ntl n-1
(41) an(x) dx = ———37— +c .
It may also be established that over the interval (-4, 0), Bn(x)

and bn(x) are orthogonal polynomials with respect to the weight func-

tions J‘l S (x + 2)2 and ,(x +4)/-x respectively.

It may also be seen from (6) that,

(42a) Bn(x) = Sn(x+2)
and hence,
(42b) bn(x) = Sn(x+2) - Sn_l(x+2) s

where Sn(x) is the Chebyshev polynomial.

4, Conclusions:

The article deals withthe properties ofa set of polynomials bn(x)
and Bn(x) defined by (1), (2) and (3). Eventhough they are related to
the Chebyshev polynomials, the author believes that Bn(x) and bn(x)
are of usein the study of ladder networks and hence deserve a study of

this nature.
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