PROPERTIES OF THE POLYNOMIALS DEFINED BY MORGAN-VOYCE

M.N.S. Swamy

Nova Scotia Technical College, Halifax, Canada

1. Introduction

In dealing with electrical ladder networks, A. M. Morgan-Voyce defined a set of polynomials by:

(1)
$$b_n(x) = x B_{n-1}(x) + b_{n-1}(x)$$
 $(n \ge 1)$

(2)
$$B_{n}(x) = (x + 1) B_{n-1}(x) + b_{n-1}(x) (n \ge 1)$$

with,

(3)
$$b_0(x) = B_0(x) = 1$$

These polynomials b and B have a number of very fascinating and interesting properties, and is the subject matter of this article. A few properties of these have been studied by Basin.

From (1) and (2) we see that

(4)
$$b_n = B_n - B_{n-1}$$

(5) and,
$$x B_n = b_{n+1} - b_n$$

Substituting (4) in (1) we have that B_n satisfies the difference equation,

$$B_{n}(x) = (x + 2)$$
 $B_{n-1}(x) - B_{n-2}(x)$ $(n \ge 2)$

with

(6)
$$B_0(x) = 1$$
, and $B_1(x) = x + 2$

From (1) and (2) it can easily be derived that $b_n(x)$ also satisfies the same difference equation, namely,

$$b_n(x) = (x + 2)$$
 $b_{n-1}(x) - b_{n-2}(x)$ $(n \ge 2)$

with

(7)
$$b_0(x) = 1$$
, and $b_1(x) = x + 1$

The difference equation (6) may be expressed as the continuant,

(8)
$$B_{n}(x) = \begin{pmatrix} x+2 & 1 & 0 & . & . & . & 0 \\ 1 & x+2 & 1 & 0 & . & 0 \\ 0 & 1 & x+2 & 1 & . & & & \\ . & . & . & . & . & . & 0 \\ . & . & . & . & . & . & 1 \\ 0 & . & . & 0 & 1 & x+2 & n & (n \ge 1) \end{pmatrix}$$

and hence we may study the properties of B_n by using those of the continuants. We shall list below only such of those properties of $B_n(x)$ which we will use in studying $b_n(x)$ and in deriving relations between the polynomials $b_n(x)$ and $B_n(x)$:

(9)
$$B_{m+n} = B_m \quad B_n - B_{m-1} \quad B_{n-1}$$

(10)
$$B_{2n} = B_n^2 - B_{n-1}^2$$

(11)
$$B_{2n-1} = B_{n-1} \quad (B_n - B_{n-2})$$

(12)
$$(x + 2)$$
 $B_{2n-1} = B_n^2 - B_{n-2}^2$

(13)
$$B_{n} B_{r-h+1} = B_{r} B_{n-h+1} - B_{h-2} B_{n-r-1}$$

(14)
$$B_{n-1} B_{n+1} - B_n^2 = -1$$

(15)
$$\frac{d}{dx} B_{n}(x) = \sum_{0}^{n-1} (B_{r} \cdot B_{n-1-r})$$

2. Relations between $b_n(x)$ and $B_n(x)$, and properties of $b_n(x)$:

From (5) and (7),

(16)
$$x B_n = (x + 1) b_n - b_{n-1}$$

Also we have,

(17)
$$B_{n+1} - B_{n-1} = b_{n+1} + b_n$$

From (4) and (5),

(18)
$$b_{n+1} - b_{n-1} = x (B_n + B_{n-1})$$

By successively substituting $0, 1, 2, \ldots$ for n in (5) and adding we have,

(19)
$$x \sum_{0}^{n} B_{r} = b_{n+1} - 1$$

Similarly from (4) we may deduce that,

$$(20) \qquad \sum_{n=0}^{n} b_{n} = B_{n}$$

Now,

$$b_{m+n} = B_{m+n} - B_{m+n-1} = (B_m B_n - B_{m-1} B_{n-1}) - (B_m B_{n-1} - B_{m-1} B_{n-2})$$

$$= B_m - (B_n - B_{n-1}) - (B_{n-1} - B_{n-2}) - B_{m-1}$$

Hence,

(21a)
$$b_{m+n} = B_m b_n - B_{m-1} b_{n-1}$$

Interchanging m and n we have,

(21b)
$$b_{m+n} = b_m B_n - b_{m-1} B_{n-1}$$

Hence,

(22)
$$b_{m}B_{n} - B_{m}b_{n} = b_{m-1}B_{n-1} - B_{m-1}b_{n-1}$$

We will see later that this is a particular case of the more general relationship (29).

Putting m = n in (21),

(23)
$$b_{2n} = b_n B_n - b_{n-1} B_{n-1}$$

Putting m = n+1 in (21),

(24a)
$$b_{2n+1} = b_{n+1}B_n - b_nB_{n-1}$$

(24b) =
$$B_{n+1}b_n - B_nb_{n-1}$$

From (7) we have

$$(x + 2) b_{2n+1} = b_{2n+2} + b_{2n}$$

= $b_{n+1} B_{n+1} - b_n B_n + b_n B_n - b_{n-1} B_{n-1}$

Hence,

(24c) .
$$(x + 2) b_{2n+1} = b_{n+1} B_{n+1} - b_{n-1} B_{n-1}$$

Also from (12),

$$(x + 2) B_{2n+1} = B_{n+1}^2 - B_{n-1}^2$$

Hence,

$$(x + 2)(B_{2n+1} - b_{2n+1}) = B_{n+1}(B_{n+1} - b_{n+1}) - B_{n-1}(B_{n-1} - b_{n-1})$$

Hence,

(25)
$$(x + 2) B_{2n} = B_{n+1} B_n - B_{n-1} B_{n-2}$$

From (23) and (24) we deduce that,

(26)
$$b_{2n} - b_{2n-1} = b_n^2 - b_{n-1}^2$$

Subtracting (12) from (25),

$$(x + 2)(B_{2n} - B_{2n-1}) = B_n(B_{n+1} - B_n) - B_{n-2}(B_{n-1} - B_{n-2})$$

Hence,

(27a)
$$(x + 2) b_{2n} = B_n b_{n+1} - B_{n-2} b_{n-1}$$

$$= b_n B_{n+1} - b_{n-2} B_{n-1}$$

We will now derive a relationship between the polynomials $b_n(x)$ and $B_n(x)$, corresponding to the relation (13) for B_n :

Consider the expression,

$$b_{n-h+1}B_{r} - B_{h-2}b_{n-r-1}$$

$$= (B_{n-h+1} - B_{n-h})B_{r} - (B_{n-r-1} - B_{n-r-2})B_{h-2}$$

$$= (B_{n-h+1}B_{r} - B_{n-r-1}B_{h-2}) - (B_{n-h}B_{r} - B_{n-r-2}B_{h-2})$$

$$= B_{n}B_{r-h+1} - B_{n-1}B_{r-h+1} \qquad \text{from (13)}$$

$$= (B_{n} - B_{n-1})B_{r-h+1} = b_{n}B_{r-h+1}$$

Hence,

(28a)
$$b_n B_{r-h+1} = b_{n-h+1} B_r - B_{h-2} b_{n-r-1}$$

Similarly,

(28b)
$$b_{n}B_{r-h+1} = B_{n-h+1}b_{r} - b_{h-2}B_{n-r-1}$$

Hence from (28a) and (28b) we get the relation,

$$B_{r}^{b}_{n-h+1} - B_{h-2}^{b}_{n-r-1} = b_{r}^{b}_{n-h+1} - b_{h-2}^{b}_{n-r-1}$$

Changing r to m, h-2 to m-4, and n to m+n+1-r in the above relation,

(29a)
$$B_{m}b_{n} - B_{m-r}b_{n-r} = b_{m}B_{n} - b_{m-r}B_{n-r}$$

Using the relation (4) in (29a) we derive the corresponding relation for $B_n(x)$ as,

(30a)
$$B_{m}B_{n-1} - B_{m-r}B_{n-r-1} = B_{n}B_{m-1} - B_{n-r}B_{m-r-1}$$

These relations may be written neatly in the form of determinants:

(29b)
$$\begin{vmatrix} B_{m} & B_{n} \\ b_{m} & b_{n} \end{vmatrix} = \begin{vmatrix} B_{m-r} & B_{n-r} \\ b_{m-r} & b_{n-r} \end{vmatrix}$$

$$\begin{vmatrix} B_{m} & B_{m-1} \\ B_{n} & B_{n-1} \end{vmatrix} = \begin{vmatrix} B_{m-r} & B_{m-1-r} \\ B_{n-r} & B_{n-1-r} \end{vmatrix}$$

Now putting h = 2, and n = r+1 in equation (28) we get,

(31)
$$b_r B_r - b_{r+1} B_{r-1} = 1$$

Putting m = n-1, and r = n-1 in (29b) we get,

(32)
$$B_{n}b_{n-1} - b_{n}B_{n-1} = 1$$

From (31) and (32) we see that $b_n(x)$ is prime to $b_{n-1}(x)$, $B_n(x)$ and $B_{n-1}(x)$ for integral values of x. Also, for integral values of x, $B_n(x)$ is prime to $B_{n-1}(x)$, $b_n(x)$ and $b_{n+1}(x)$.

By successively substituting 1, 2, 3, \dots for n in (10) and adding, we have

$$\sum_{1}^{n} B_{2r} = B_{n}^{2} - B_{0}^{2} = B_{n}^{2} - B_{0}$$

Hence,

$$\sum_{n=0}^{\infty} B_{2r} = B_n^2$$

Similarly, using (11), (23), (24) and (26) we derive:

(34)
$$\sum_{0}^{n-1} B_{2r+1} = B_{n}B_{n-1}$$

$$\sum_{0}^{n} B_{2r} = b_{n}B_{n}$$

(36)
$$\sum_{0}^{n-1} b_{2r+1} = b_{n}B_{n-1}$$

(37)
$$\sum_{0}^{2n} (-1)^{r} b_{r} = b_{n}^{2}$$

Let us now find an expression for the derivative of $b_n(x)$:

$$b_{\mathbf{n}}^{!}(\mathbf{x}) = \mathbf{B}_{\mathbf{n}}^{!} - \mathbf{B}_{\mathbf{n}-1}^{!} = \sum_{0}^{\mathbf{n}-1} \mathbf{B}_{\mathbf{r}} \mathbf{B}_{\mathbf{n}-1-\mathbf{r}} - \sum_{0}^{\mathbf{n}-2} \mathbf{B}_{\mathbf{r}} \mathbf{B}_{\mathbf{n}-2-\mathbf{r}}$$

$$= B_{n-1}B_0 + \sum_{0}^{n-2} B_r(B_{n-r-1} - B_{n-r-2}) = B_{n-1}b_0 + \sum_{0}^{n-2} B_rb_{n-r-1}$$

Hence,

(38)
$$b_{n}(x) = \sum_{0}^{n-1} B_{r}b_{n-1-r}$$

3. Explicit polynomial expressions for $B_n(x)$ and $b_n(x)$:

We can establish by induction that,

$$B_n(x) = \sum_{k=0}^{n} (c_n^k x^k)$$
,

where,

(39)
$$c_n^k = \binom{n+k+1}{n-k}.$$

Now

(39)
$$b_{n}(x) = B_{n}(x) - B_{n-1}(x) = \sum_{0}^{n} \left[\binom{n+k+1}{n-k} - \binom{n+k}{n-k-1} \right] x^{k}$$
$$= \sum_{0}^{n} \binom{n+k}{n-k} x^{k} .$$

Therefore we have

$$b_{n}(x) = \sum_{k=0}^{n} (d_{n}^{k} x^{k})$$

where,

(40)
$$d_{n}^{k} = \binom{n+k}{n-k}.$$

The equations (39) and (40 are explicit polynomial expressions for b_n and B_n , and show that they are of degree n.

We shall now derive a formula for

$$\int B_n(x) dx$$
:

From (39),

$$\int_{B_{n}(x)} dx = \sum_{0}^{n} (c_{n}^{k} x^{k+1}/k+1) + c$$

Now the coefficient of \mathbf{x}^{k+1} for the expression \mathbf{B}_{n+1} - \mathbf{B}_{n-1} is,

$$c_{n+1}^{k+1} - c_{n-1}^{k+1} = \binom{n+k+3}{n-k} - \binom{n+k+1}{n-k-2} = (n+1) c_n^k / (k+1)$$

$$= (n+1)(\text{coefficient of } x^{k+1} \text{ in } \int_{B_n} (x) dx.)$$

Hence,

(41)
$$\int_{B_{n}(x) dx} = \frac{B_{n+1} - B_{n-1}}{n+1} + c .$$

It may also be established that over the interval (-4,0), $B_n(x)$ and $b_n(x)$ are orthogonal polynomials with respect to the weight functions $\sqrt{4-(x+2)^2}$ and $\sqrt{(x+4)/-x}$ respectively.

It may also be seen from (6) that,

(42a)
$$B_n(x) = S_n(x+2)$$

and hence,

(42b)
$$b_{n}(x) = S_{n}(x+2) - S_{n-1}(x+2) ,$$

where $S_n(x)$ is the Chebyshev polynomial.

4. Conclusions:

The article deals with the properties of a set of polynomials $b_n(x)$ and $B_n(x)$ defined by (1), (2) and (3). Even though they are related to the Chebyshev polynomials, the author believes that $B_n(x)$ and $b_n(x)$ are of use in the study of ladder networks and hence deserve a study of this nature.

REFERENCES

 A. M. Morgan-Voyce, Ladder network analysis using Fibonacci numbers, IRE. Trans. on Circuit Theory, Vol. CT-6, Sept. 59, pp. 321-322.

- S. L. Basin, The appearance of Fibonacci numbers and the Q matrix in electrical network theory, Math. Magazine, Vol. 36, March-April 63, pp. 84-97.
- 3. S. L. Basin, An application of continuants, Math. Magazine, Vol. 37, March-April 64, pp. 83-91.
- 4. V. O. Mowery, Fibonacci numbers and Tchebycheff polynomials in ladder networks, IRE. Trans. on Circuit Theory, Vol. CT-8, June 61, pp. 167-168.
- 5. T. R. Bashkow, A note on ladder network analysis, IRE. Trans. on Circuit Theory, Vol. CT-8, June 61, pp. 168-169.
- 6. T. R. O'Meara, Generating arrays for ladder network transfer functions, IEEE. Trans. on Circuit Theory, Vol. CT-10, June 63, pp. 285-286.
- 7. F. Bubnicki, Input impedance and transfer function of a ladder network, IEEE. Trans. on Circuit Theory, Vol. CT-10, June 63, pp. 286-287.
- 8. Solution to problem 33, Canadian Mathematical Bulletin, Vol.4, No. 3, 1961, pp. 310-311.

ACKNOWLEDGEMENTS

This work was supported by the National Research Council of Canada, under Grant No. A-2875. The author would like to thank the reviewer and Professor V. E. Hoggatt for their useful suggestions and comments.
