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The purpose of this articleis to investigate analytic extensions
of Fn and Ln to the complexplane, We shall begin by considering
a particular extension. Later we will consider alternate extensions.

We begin with the following notation

a=(1+V5)/2 and B = (1-V5)/2

Since P < 0 we adopt the convention f = et {(-B).

With these conventions, we shall make the following definitions:
The Fibonacci Function, F(z)=1/ V5 (az - BZ)

The Lucas Function, L{z) = a? + BZ .
Note that F(n) = Fn and L(n) = Ln’ where n denotes an integer.

I Periodic Properties of F{z) and L(z)

Theorem 1. a” is periodic with period 2®i/lna = Py

z 2mi z
a” e =a .

Proof. o” T Pa
Z . .. . . 2 2 .
Theorem 2. B” is periodic with period 2#%/(1n"a +7# )(W—llna):pB.
Proof. Since - lna = In(-B), we have
ﬁz + PB - Bz eZn‘l - BZ
Theorem 3. F(z) and L{z) are not periodic,
Proof. Deny! Assume F(z) has period w. F(0) =0 = F(w)
implies a®@=p® |
Thus F(z +®)=1/V5 a® (a” - p7) .
Hence a®=1, so Re{w)=0. Then B%# 1 unless w =0,

The proof for L(z) is similar.

11 Zeroes of F(z) and L{z).

Theorem 4. The zeroes of F(z) are

4kmina/(41n"a + 7o) - T/21na + i)
37
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Proof. Note that this theorem implies the only real zero of
F(z) is 0.

F(z) = 0 implies (a/p)* =1 = o2kmi

, k an integer.
Setting z = x + iy and collecting real and imaginary parts and

equating, the result follows.

The moduli of the zeroes are IZkl‘IT/\/ 41n2c1 + ‘1T2 .

Theorem 5. The zeroes of L(z) are
2(2k + 1) 1na/(41n2a + wz)( - w/2lna +1i) = Z
where k is an integer.

Proof. Note that this theorem implies L(z) has no real zeroes.

Write -1 = e(Zk-HL)”1 and proceed as above.

The moduli of the zeroes are l2k+1 ]1r/v 41n2a + 772 .

Observe that all of the zeroes of L(z) and F(z) are on the ray
@ = Arctan ((-2lna)/7) ~ -20°.

111 Behavior of F(z) and L(z) on the real axis.

Theorem 6. On the realaxis, the onlyreal values of F(z) and L(z)
are at z = n (an integer), that is, Fn and Ln.

Proof. Since y =0, o? = ax, [SZ = e-xlna + 7TXl;

Im F(z) =Im L(z) = 0 yields

-1/\/_5—-6—}(111(l sin wx =0 or

-xlna .
e sin wx = 0.

Hence x =k, k an integer.
(It is not too difficult to show that the only lattice points with real im-

ages for F(z) are on the real axis.)

v Identities Satisfied by F(z) and L(z).

Many of the identities of Fn and Lm carry over to F(z) and

L{(z). We shall list a few of them. They are easy to verify,

a.  F(z42) = F(z+l) + F(z) c.  F(z+1)F(z-1) - F2(z) = 7%

b, L(z42) = L{z+1) + L(z) d. L2(z) - 5 F2(z) = 4e" 2
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e F(-z) = -¢ F(z)
f. F(z)L(z) = F(22z)
g. F(zt+w)= F(z-1)F(w) + F(z)F(w+1)
h,  F(32) = Fo(z+1) + F(2) - Fo(z-1)
i, LimF(x)/F(x+l) =

X —3 00

LimF(iy) /F(iy+l) = - B

y—y

In general, (-1 )n
ewiz

in an identity for Fn and Ln carries over to
The identities which do not carry over to F(z) and L(z) are
those which only make sense for integral argument. That is, those

which involve binomial coefficients, etc.

A% Analytic Properties of F(z) and L(z).

Note that our convention for P implies 1Inf =wi + In(-B). It
is thus immediate that F(z) and L(z) are holomorphic in the plane
(entire functions).

From the Taylor formula, we have for any finite =z,

o0
F(z) = 1/V3 3 {[(1nka)aw - (1n*B)B™] /k:} (z-w)X  and
k=0
x kK w Koy oW . k
L(z) = 3 {[(m a)a’ + (In"B)P ]/k.} (z-w)
k=0

Note the results when these are used with w=0 and z =n or with

w=n-1 and z = n.

(e ]
F_=1//5 % [(1n9a® ' - (1a*p)p™ '] /!
k=0

This is, I believe, a new representation for Fn' The Hadamard
Factorization theorem can be used to express L(z) as a canonical

product. Asin theorem 5, let z, represent azero of L(z). Renum-

k

ber Zy as follows:
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k=-1, 0, -2, 1, -3, 2, ...

n=1, 2, 3, 4, 5, 6, ...
n+1[ and |zn] = 0(n). It is easy to see that L(z) is
of order and genus 1 and we have

Now Iz ,5|z
n

t /
L(z) = e? m (1 - z/zn) e?/%n , Wwhere
n=1
0
c=-3 [ln - l/zn) + 1/zn] .
n=1

We shall now discuss exceptional values of F(z) and L(z). Since F(z)
and L(z) are entire functions with essential singularities ato, by
Picard's theorem, they must take on every value, except possibly one,

and infinite number of times.

Lim L(x-ix) = Lim F(x-ix) = 0
X >0 X > ®
Thus 0 1is an asymptotic value for F(z) and L(z).
Lim L(x) = Lim F(x) =ocand o
X > 00 X —=> 00
is an asymptotic value for F(z) and L(z).

Ahlfors has shownthat entire functions of order P have at most
2P asymptotic values [1] Further, if an integral function has z as
an exceptional value, then z 1is an asymptotic value [2] . Now 0 is
not an exceptional value for F(z) or L(z); Part II. Hence F(z) and
L(z) have no finite exceptional values.

Thus the Fibonacci Prime Conjecture is trivial in the complex
plane; that is, there are an infinite number of Fibonacci images which
are distinct primes. It is conceivable that a knowledge of the distri-
bution of prime images mightyield a resolution of this conjecture, al-
though this problem is probablymore difficultthan the conjecture itself.
Poisson's formulae for real and imaginary parts of F(z) might be

useful, but the integrals are horrible Fresnel type integrals [3] .

A characterization of the point set corresponding to Im F(z) =0

should present an interesting problem. Graphs of {leeF(z) =0 } ,
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{z IImF(z) =0}, {zi |F(z)| = M } in some neighborhood of the origin

should yield interesting diagrams.

VI Alternate Extensions.

There are an infinite number of extensions of Fn and Ln to

entire functions in the complex plane. If the functional equation
G(z+2) = G(z+1) + G(z); G(0) =0, G(1)=1 ,

is used as a starting point, it appears that very little can be estab-
lished. However it is possible to obtain extensions which are real at

every point of the real axis. Consider, for example,

F (2) = 1/ V5 [o® - sin (5L (-p)7]

Note that Fl(z) satisfies the relation,
F, (z+1)F (z-1) - Flz(z) = sin (22+1) 7 /2

Fl(z) is an entire function and has zeroes on the negative real axis
and Fl(n) = Fn’ n an integer.

Another type of extension is,

F,(z) = % p)y +sin Tz .

Practicallynone of the above theorems hold for arbitrary extensions.
The following construction seems to indicate that F could be ex-
tended to a periodic entire function in the complex plane. Consider

the rectangle, R, in the complex plane bounded by
(1:0)’ (111), ('111), ('1,0) .

Select a function, F3(z), subject to the following conditions:

a. F3(O) =0

b, Fy(-14iy) + Fy(iy) = F (l+y); ye [0,1]
c. Fylx)= F3(x+i); xe[-1,1]

d. Fy(-1) = Fg(1) =1

e. F3(z), analytic on R .
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Extend F3l(z) vertically by periodicity and horizontally by the func-

tional equation, F_ (z+2) = F3(z+l) + F3(z)u The extension would be an

3
entire function with period i and F3(n) = Fn, n an integer.

REMARKS

Selection of a proper extension for F(n) should, via the mach-
inery of Analytic Function theory, put a powerful wrench on the Fib-

onacci Prime Conjecture.
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CORRECTIONS

"Binomial Coefficients, the Bracket Function, and Compositions with
Relatively Prime Summands' by H. W. Gould, Fibonacci Quarterly,
2{(1964), pp. 241-260,

Page 241. The second paragraph should begin: !'Indeed this result is

equivalent to the identical congruence (1 - x)p =1 -xP (mod p)

Page 245, In Theoremrn 3 it is necessary to require a;” 0.
Page 257. Line after relation (48), replace '‘out" by '"'our''.

Page 251. Line 9 from bottom, for '""'as' read "an''.
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