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1. F. D. Parker (Problem H-46, this Quarterly, Vol. 2 (1964),
p. 303) has proposed the evaluation of the determinant
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This suggests the more general problem of evaluating
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We shall show that
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To prove (1) we consider the quadratic form
k
k
Q= Z Fotrts U Us
r, s=0
Since
n n ;
_a -B 1+ /5 1 -5
Fn - a - B (Cl - 2 > ﬁ - 2 ) ’

we have

k Kk , '
(a—B)kQ _ § : u § :(-l)k_j (l;) a(n+r+s)j B(n—r—s)(k-j)
r, s=0 j=0

129



130 SOME DETERMINANTS CONTAINING POWERS April
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If we put
k Ir
(2) v = E ()
) r=0
it is clear that
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Thus by means ofthe linear transformation (2}, we have reduced Q to
diagonal form. If A denotes the determinant of the linear transfor-

mation (2), it follows from (3) that
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Now
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Since this is a Vandermonde determinant we get
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Therefore (4) becomes

1 k
Zk(k+1)(n+1)
D, = (-1)? TT (- (F

j=0

This completes the proof of (1).

2. As for the determinant
k ,
D, (L) = |l el (s=0, 1, Lo R,

consideration of the quadratic form
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It follows that
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3. Formulas (1) and (5) can be generalized in an obvious way. Con-

sider the sequence {Wn§ defined by
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where WO’ W, are assigned. Put
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We find that
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Indeed (6) holds also when p2 - 49 = 0, provided we now take
Un = n(p/Z)n_l. This can be proved directly in the following way. We

have
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where A=W _, pB=2W

0 - pW_ . Then
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We recall that for a determinant of the type
111n+r+sl (r, s=0, 1, ..., k)

we have
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where A 1is the usual finite difference operator. (See for example

1, p. 1037.) In the present instance u_ = (A+Bn)k, so that
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It follows that
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Since
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it.is clear that (6) and (7) are in agreement,
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