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INTRODUCTION

The Fibonacci sequence {FJ} = 0,1,1,2, ... , with F. +
Fj+1 = Fj+2, j2 0, may be regarded as one element of a certain
space of sequences associated with the quadratic polynomial f(x) =
-1 -x+ xz, from which its remarkable properties derive. In the
following pages, we present first, in modern algebraic terminology,
an exposition of those parts of the general theory of such spaces of
linear recurring sequences which form a background for this point of
view. The spaces arising from quadratic polynomials are then con-
sidered in this setting, with some applications to number theory, in
particular to various tests for primality of the Mersenne and Fermat
numbers.

It is hoped that the paper maythus serveas an introduction and

source of reference for these aspects of the subject. [1] B

1. THE SPACE OF A POLYNOMIAL

n—1+Xn

Let f£(x) = mag-agX-...-ma

an arbitrary monic polynomial of degree n in Z[x] , i.e., with

X :(x—rl)...(x-rn) be
coefficients a, in the domain Z of rational integers, its (complex)
zeros beingtherefore algebraicintegers. With f(x) weassociate the
set C(f) of all sequences S = {SO’ 819 % with components sj in
the complex field LZ] C, in which Spreve28,.1 are arbitrary but

having

(R) aOSj +alsj+1 +... + an-lsj+n-1 = Sj+n

for all j> 0. Clearly, C(f) is a vector space of order n over C.
An obvious basis consists of the integral sequences [3] (i.e., with
components in Z):

Up= fogih = f1een0iagins e U= fu g o e

*Worked performed under the auspices of the United States Atomic
Energy Commission.

"f*R_efer to footnotes at end of article.
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of C(f), in terms of which every sequence S of the space may be ex-

pressed uniquely, in the form

S = SOUO +...t Sn-lUn—l’ sJ.E,C

A "Geometric'' sequence {1, T, rZ, . } with r&C is in C(f) if

and only if f(r) = 0.- Thus
R. = {131'.:1‘.2,...% 3 i:].,.--,n
i i’ 71

constitute the geometric sequences of C(f). Every element

ClRl +...+ can, ciéc s

of the space they span is therefore in C(f), in particular the integral
= = = 1 = J
sequence V= R1 +o..F Rn {vj% {n, a 1o } , with Vj Ty +

vt ? j2 0. Being in C({), its components Vv, satisfy the re-

n’ jtn
lations (R); these, together with the less obvious recursions

(a ym + a +...+ta

2 1 <
n-m n—m+1vl v m<n

n—lvm—l " Vm =

are '"Newton's formulas''.

The geometric sequences R’i also form a basis for C(f) over
C if and only if the zeros of f(x) are distinct. For, the matrix
R = [ri‘]] , i=1,...,n;j=0,..., n-1, has the Vandermonde deter-
minant Ar, - r.). When the latter is not zero, the inverse ma-

L k> ik i o 1

= [rij] exists [4] (over C) with I =R "R, from which it
follows that

trix R~

(B) U =r.,R, +...+1r. R, i=0, «e., n-1

By means of these equations, which may be regarded as the '"Binet

formulas'' for the general case, every sequence
= ‘ = + 2
S {Sjg {SOUO Sn-lun—lf of - C(f)
is expressible uniquely in the form

S=c,R, t...tc R, c.€C
171 n n i
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when the r, are distinct. This underlying structure of the sequences
of C(f), particularly of the integral sequences, is one of the most
curious features of the subject.

For example, if all zeros of f(x) are h-th roots of unity, it
is clear that every S= Ic.R, is pure periodic, with period ]:5]*52—
viding h. When aO 7! 0 and the r, are distinct, the existence of a
sequence S, withall the c; # 0, of period k, implies that all r, are
k-th roots of unity. For, 2, # 0 insures, via (R), t}%at S 1is pure
periodic, and we should then have a linear system Iri“"(r.k—l)ci =0,
j=0, ..., n -1, with determinant det R # 0. Thus (ri - l)ci =0
for each i, and either c; = 0 or r, is a k-th root of unity. Con-
sequently, if f(x) has distinctzeros which are roots of unity, and h
is the least positive integer for which all rih =1, then every
S = ZciRi of C(f) withall ¢ # 0 ispureperiodic of period k equal
to h. For, by the first remark, klh, and by the second, h £k,
hence, every period k = h.

Note: The following generalization of the '"geometric basis''
theorem was suggested by the referee: If r isa zeroof multiplicity
m for f(x), then r is a zero of the first m-1 derivatives of f(x).

From this one may show that the m sequences

are in C(f), where (}Jl) =1 for h=0, and (}31) = (j)(j-1). .. (j-h+1) /h!
for h 2 1. Moreover, if f(x) has the distinct zeros TiseeesTys

1 £ k £ n, of multiplicities m ..,m, respectively, thenthe set of

n sequences consisting of k slubsets sﬁchas thatabove, one for each
zero r., are linearly independent, and so form a basis for C(f) in
the genleral case, provided only that zero, if it occurs among the T
has multiplicity 1. The linear independence follows from the non-

singularity of the ''confluent Vandermonde matrix." Cf. ref. [1]

2. LIMIT THEOREMS

If lim Sj+l/sj = r exists for a terminally non-zero sequence

S of C(f), then r must be one of the zeros of f(x). For, the
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n-l(sj+n-1/sj) J+n/S i
/sj), and so on, we have f(r) =0 in

recursion (R)implies ag +a1(sj+1/sj) ...t a
Since Sj+2/sj = (sj+2/sj+l)(sj+1
the limit. As a partialanswer to the questions arising here we include

Theorem 1. (A). If one zero r of f(x) exceeds all others in
absolute value, then S = {SJ§ Zc R has lim s. /r =cy. Hence
if S # 0, S is terminally non-zero, nd lim S_]-I-l/s =T,

(B). If lr l <1 forall i2 2, thesequence S has lim (s, —(:1r1 )-
Hence, if S is an integral sequence, s. isthe closest 1nteger to ¢, l
for large j, and, if ag # 0, no other integral sequence ).'ciRi has the
same c,.
iy j j
Proof, (A). sj/r1 S cz(rz/rl) +...+cn(rn/r1)-> e
]2 =
If c; # 0, then 8 #0, j2 J, and so Sj+l/sj

11 .
rl(s'+l/rlJ )/(sj/rl‘])—-, rlcl/c1 =1

- J ] j , o
(B). Sj c T = cyr, +o..t c r, 0. Twointegral sequences with

the same c, are therefore terminally identical, and hence identical,
if a, # 0. Indeed, it is clear from (R) that two sequences are equal if

they agree on any n consecutive corresponding indices.
3. INTEGRAL SEQUENCES

The integral sequences F = {fj? of C(f) form a module Z(f),
withintegral basis UO, ooy Ur1 > every such sequence being uniquely
expressible, with integral coefficients, in the form

= +o.. 7t ’ . .
F fOUO fn-lUn-l f_] &Z

The sequences of Z(f) with fO = 0 form a sub-module of Z(f), and
have remarkable divisibility properties, as we shall see.

The sequences of Z(f), considered modulo m, form a finite mod-
ule Zm(f) of exactly m" sequences with components in the modular
ring Zrn = Z/Zm, the first n arbitrary, the rest governed by the re-
cursion (R) mod m.

Suppose now that m2 2 is an integer prime to a,, and let

0
F= {fjf be a sequence of Zm(f). It is clear from (R) that F is pure



1966 FIBONACCI SPACES 101

periodic if it is periodic at all, hence that F is periodic if and only

if its n-tuples

(fo, cees fn-l) and (fk,

Tt fk-l—n—l)

are identical for some positive k, the leastsuch k being its period.
Since F = 0, of period k=1, is the only sequence of Zm(f) con-
taining the zero n-tuple, anon-zerosequence F can containat most

-1 .
m" different n-tuples, and so must be pure periodic of period

k Sm" - 1.
Moreover, F has period k = m™ - 1 if and only if its first

m™ -1 n-tuples
(fo, P | 1), (fl, oo fn), e (fmn_z, cens fmn+n_3)

are all distinct. In such a case, each of the m” - 1 non-zero se-
quences of Zm(f) is a terminal sub-sequence of F, and so also has
this period. The situation cannot arise for a composite modulus
m=ab, a2 2, b2 2., For, suchan F contains the n-tuples (1,0,
e, 0) and (b,0,...,0), hence aF is inthe space and contains the
n-tuples (a,0,...,0) ;=/ (0,0,...,0), which is impossible.
The maximum period m" -1 is attainable in case of a primf_e .
modulus, which may be seen from the theory of Galois fields [17] h
n- n

Let p bea primein Z, and suppose f(x) = -a -2 X-...-a +x

x
is an irreducible polynomial in Zp[x] . S?J.Ch an f(x) neylcists for
every p and n. The sequences of Zp(f) may then be regarded not
only as the integral sequences, mod p, of the space C(f), but also in
a quite different light. For there exists a field C* D Zp’ the ''root-
field" of f(x) (abstractly, the Galois field GFpn)) of exactly pn

elements, uniquely expressible in the form

n-1
s_f0+f1r+...+fn_lr ,ij.Zp
in terms of which we may write
n-1
f(x):(x-r)(x-rp)...(x-rp )

with n distinct zeros in C%*.
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Following the plan of é 1, we find that the set C¥*(f) of all se-
quences S = {Sj} , wWith sj €C* governedby the recursion (R) in C*,
is a vector space of order n over C%*, consisting of exactly (pn)n
sequences, and containingthe original module Zp(f) of pn sequences
F= {f.? , .67 .

i) gop

The zeros of f(x) beingdistinctin C#%*, the geometric sequences
R'i whichthey generate forma basis for C¥*(f), in terms of which every

sequence of the space may be uniquely expressed:
S=c, R, t...+c R, c. eCx*
171 n n J

1
the zeros of f(x) displayed above.

with components sj =c rl'] +...t cnrnJ, j2 0, wherethe r, arenow

This sub-structure of the sequences S reveals their periodic
character. For, the multiplicative group G of C% is cyclic, with a
generator s of period pn— 1. If h is the period of r in G, then
h]pn - 1, and the element rpi has period h/(h, pi) = h, whichis there-
fore the period of every zero of f(x). An obvious modification of the
argument at the end of § 1 shows that every mon-zero sequence S of
C*(f) has period h.

The element r itselfneednothave period pn - 1; however, some
element s # 0 of C%* does generate the full group G, andits minimal
polynomial mod p is irreducible of degree n in Z [X] Hence there
exists, forevery p and n, anirreducible f(x) ofdegree n in Z [x]
for which the zero r in C¥% generates G, and every sequence #0
of the corresponding space C%*(f) has period p][1 - 1. We summarize
these results in more conventional terms in

Theorem 2. If m2 2 isaninteger primeto a_ , then, modulo

0’
m, every integral sequence F ={fj} of C(f) is pure periodic of per-

kl ka, f3k) * s 0 . If
m 1is composite, every period is less than m™ - 1, If p is a prime,

iod k émn - 1. Hence, if m]fo, then also mlf

and f(x) is irreducible [6] mod p, all integral sequences F of C(f)
are pure periodic with the same period h, where h lpn -1, For every

p and n, there exists an f(x) such that h = pn - 1.
Example 1. For f{(x) = —2-x+x3 mod 3,

V= {602021221022200101211201llC.)O, .o i— ,
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the period [7] being h = 26.
Ifaninteger m 2 1 divides some f., j2 1, of an integral se-

quence F, the least positive such j is called the rank of m in F.

Corollary 1. If F is an integral sequence of C(f), with
fO = 0, everypositive integer m primeto a hasarank r <k £ m"
-1 in F.

4. THE SPACE OF A QUADRATIC

For {(x) = -3y - ax + xz = (x—rl)(x-rz),

C(f) of all sequences S = {sjg R sje C, satisfying

the associated space

= ] >
(R) 2085 v 318541 T Sy4p0 J2 0
has the basis U, = {1,0,a0,,..§ LU, = {O,I,al,...’

: ¢ 2
the sub-space of vectors CIRI + CZRZ’ where Rib il’ri’ TS ,} ,

i=1,2 are its geometric sequences. The particular sequence

} ., and contains

. A 2
V = R1 +R2 %ij }‘Z,al,Zao +a1 , f

consisting of the integers Vj = rlJ + rz‘], j2 0, is of special import-
ance.
The geometric sequences Ri forma basis for C(f) if and only

if r) # r,, in which case the matrix R of él is

The corresponding ''Binet formulas'' are accordingly

o0 = PRy T TR/ (xy - w5)

(B) U
U, = (R - RZ)/(r1 -T,)

or .explicitly,

_ j j - _ J_o -
TR P LN S VAR R SO R P VA REPY)

The relation u,. is here manifest,

0j -~ %o"1,j-1 '
We 1.<nowfrom 52 that, if lrll > lrz ', lim ulj/rl‘]zl/(rl-rz),

. J_ . — 1 -
lim vj/r1 =1, and lim ul,j+l/u1j lim Vj+1/Vj Ty
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Again, if }rZ’ <1, then., for example, lim (Vj - rlj) =0 and
vj is the nearest integer to rlJ, j 2 J; moreover -if ag 7‘ 0, V is the
only integral sequence R1 + CZRZ'

The integral sequences F = {fj} of C(f) form a module, with

integral basis UO’ Ul’ and, modulo an integer m prime to a,, are

. 0
all pure periodic with periods less than m . For a prime modulus p,
if f(x) isirreducible mod p, these periodsare equal, anddivide p2 -1,
and there exists an f(x) such that every period is exactly p2 - 1.

0= 0) has

the single basic sequence Ul’ which is hereafter denoted simply by

The sub-module of sequences F = flUl (i.e., with {

U= g(uji- = ?(O,l,al,...g . For f(x)= —l—x+x2, it is of course the
Fibonacci sequence.

. . 2 .
Every integer m prime to a, has a rank r Sk <m in U,

0
where k is the period of U mod m; indeed mluk, Uypersees similar
statements may be made for every F = flU, and F = fOUO.

It is interesting that every sequence of C(f) is expressible in

terms of U alone. For example, from V = ZUO + alU follows

= + 4 .
Vj aouj 1 uj 1, J = 1
Example 2. For

f(x) = I'- 2x +x° = (x - 1)%, U= 0,1,2,3,4, ... V= 2,2,2,2,2,..
Example 3. For

fx) = 2 - 3x+x= (x-2)(x- 1), u, = 2) -1, vi= 20 +1

. . . _ n _ 1.
satisfy the simple recursions uj+1 Zuj 1, V'j+1 Zvj 1. Note that

up =2P 1, v k= Z.Zk+ 1. The sequence U mod uj has period j.
2
Example 4. For

f(x) = -2 - x +x° = (x - 2)(x + 1), up:(2p+l)/3, vp:Zp-l ,

for odd p, and v, =225 41, kz 1.

5. THE SEQUENCE U
. o

e
Even for the general quadratic [8]',' the sequence

. 2 \
U= {O,l,al,ao+al , %
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has some remarkable properties, which flow from the
Lemma 1. For all

1 > =
Jz0,t20, aoujut +U.J.+1ut_'_1 uj+‘1:+1

The statement is easily proved, for fixed t2 0, by induction
from j, j*l1 to j+2, being obvious for j = 0,1. The induction step

reads

a.u.ta,u,.

= aglaguytayu e tlagu,) fagug e, =

30%42% T 813041
. + . = u, .
oMttt T Ytz T Y3
From this follows
Theorem 3. Thecorrespondence j—> u., preserves divisibility
, or u,|u,,u

UL s 00
k 3121 35
= 1, the final statement is trivial for j =0,1.

i.e., Jjlk implies ujlu
Since uy = 0, uy
Fixing j 2 2, weprove uj Iujq by inductionon gq 2 1. Thisis trivial

for gq=1. Fix q 2 1, and assume u.!ujq. Setting t=jg-1(2 1)

in the Lemma shows that u, 'u. .
j{q+l)

Lemma 2. Ifaprime p dividesanytwoconsecutive Uy then

p divides age

If p’ujﬂ’ Y42

and ultimately p u, = 0, uy

Theorem 4. Let m beapositiveinteger primeto a

0’ thenfrom (R) follows pluj, u.j+1

= 1, which is false.

but not a

0 Then,
modulo m, U is pure periodic of period k <rn2, and mluo, Uy

u Thus m has a rank r £k in U. Moreover, m’u

2k e 0’

u, u, , ... and no other u., i.e., mluz if and only if r’x_’. In

r’ 2r
particular, r'k.

We have only to prove mlu’e implies r 'é, which is obvious
for £=0. For £

> 1, we have r £.¢, by the minimality of r.
Write £ =rq+j, 0Lj <r, q21l. For t=rq-1(20), Lemmal

reads
+u, =
aOujurq—l u]+l urq u,

Since mluj, u, u (Th. 3), we have mla Now m
d r rq

u.u .
07j rg-1
is prime to aO, and hence also to urq 1’ since a prime common to
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this and m 1is also in urq’ contradicting Lemma 2. It follows that
m‘uj, where 0 5 j < r. Hence j=0 and £ = rq. Weturntothe spe-

cial case of

Lemma 3. If (a.o, al) = 1, the sequence U has the properties:

itv

(a) (ao,uj) =1, for all j 1,

= 7>
{b) (uj’ujﬂ) 1, forall j 2 O,
= 3 > 0.
(c) (uj, uk) (uk, ujJrk) for all j, k 2 0
Proof. (a) Inductionon j2 1. For j=1, trivial. Assuming
= 1 2 =
(a.o, uj+l) 1 for fixed j2 0, weseefrom (R)that (ao, uj+2) 1 also.
For, a prime common to these divides a,u. and hence u.,,, since
17j+1 j+1
(ao, al) = 1, violating the induction hypothesis.
(b) is clear from Lemma 2 and (a).
(c) is trivial when j or k is zero.
For j,k2 1, wehave from Lemma 1, a u.u + Clear-

T) (0 S T B N B
ly (uj, U;k) Iuk, uj+k and hence (uj, uk) Uy uj+k)" Conversely,

(uk, uj+k) laoujuk_1 .

The former is prime to a, by (a)and to u by (b). Thus it di-

0 k-1
vides uj, Uy and so it divides (uj’ uk).
Note: It is clear from (a) that the only integers m dividing
components u.j of U are prime to ag:
Theorem 5(A). If {gj\\,ﬁ is an-arbitrary sequence of integers

with gg = 0, thenthe correspondence j—» g. preserves g.c.d.'s, that
for all j,k 2z 0.

—

1}

(B) In particular, the sequence U has thisproperty whenever

(aO, al) =1.

Proof: (A) Thenecessityis obvious. Inprovingthe sufficiency

we may suppose £ 2 k. The conclusionis clear for k=0, since g = 0.
If £ 2k> 0 and k].fZ = gk, we have
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B T Bkt (B g = (gag) = = (gogy)

In the remaining case, £ > k> 0, k T2, we write £ = kg +j, 0 < j
<k <.£, -and obtain (gj, gk) = (gk, gj+k) = ... = (gk, g,_,—,). It is then
clear how the Euclidean algorithm, proceeding from this relation
through a sequence of similar steps and terminating in an equation
such as L=KQ+J, 0 <J <K <L, with (£, k) = J‘K, leads to the
conclusion (gg, gk) = ... = (gL, gK) = (gK, gJ) = g5

(B) The application of (A) to U 'is now clear from Lemma
3(c).

Note: The non-trivial part of Th. 4 follows elegantly from Th.
5(B) when (aO, al) = 1. For, if r isthe rankof m, and m’u’c, then

ml(u ,u ;(r,,/é)lr, and r = (r,ﬂ)!.ﬁ .

e %) U, gy T

Corollary 2. If T 7 r, are relatively prime integers the
correspondence j—> uj = (1‘13—1‘2'])/(1'1 - rz) is g.c.d. -preserving.

For, {(x) = (x - rl)(x - rz) = -ao-a1x+x has a; =71 + r, and
a, = -r,r, relatively prime.

° Nlotz: It is. clear that the set of all g.c.d. -preserving func-
tions g(j) ontheintegersisaclosedassociative system (semi-group)
with identity under the composition £(g(j)). Theorem 5(A), suggested
by the referee, characterizes these functions. The sequences U re-
sulting from quadratics with (ao, al) =1 arenon-trivial functions of
the kind. As a ''trivial'' example consider g(2j - 1) =1, g(2j) = 2j.
Although '"well-known'' we include the seldom fully stated

Corollary 3. Forintegers T # r, with (rl, rz) =1 anddif-

2
ference d = Tyo- Ty, let uj = (rlJ - rz‘])/(r1 - rZ), iz 1.

(a) (4, uj) = (d, )

(b) A prime p'up ifand onlyif pld. Such a prime p has rank p
in U.

(c) If pld, then pTup and (d,u ) = 1.

(d) If p|d, then p]up, (d,u) = p, and if p is odd, pz’[up.
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() Every prime factor q # p of u, is of form 1 + hp.

(f) If r, >,

q = q(p) dividing up, of form 1 + hp, and q(p) is one-one.

> 0, thenforeveryodd prime p thereexists a prime

Proof. (a) is trivial for j =1, and follows for j2 2 from

- i_ _oqqiml A 4-3 J
uj-(d+r2) rz)/d-(d +C1d r,te. 4Gl

j-2 . j-1
JZrZJ )d+_]I‘ZJ (a%*)

since (d, rz) =1,

(b) From (a¥*), up = dp—1 mod p. The statement about the rank

of p follows from (a).

(c) follows from (b) and (a).

(d) follows from (b), (a), and the congruence u_ =z pr Pl od
2 & p=PT2
p_ implied by (a*) for a prime p 2 3.

(e) If qlup, q # p, then rlp = rzp mod q, r £ r, mod ¢, since

(d, up) is 1 or p;and qTrl, Tye We present two proofs: (1) Letting
rzr:"z = 1 mod q, wehave (rlr‘z)p =1, r ré #Z 1 mod q implies p = per-
iod (r,r} mod q)|®(a)=q-1=hp. (2) rlq'l 1 = rzq_l
u ,a ) =1u , by Cor. 2. Hence 1) = hp, otherwise
altag_pu)=ul ) ) by plia-1)=nhp

(@-1,p)=1, qju; = 1.

mod q,

Wi

(f) Since u, = rlp-1 t... t rzp_l > przp_l > p, it follows that
there exists a prime q = q(p) of form 1 +hp 2 7 dividing up for p
odd, and by Cor. 2, this function is one-one. Of course the construc-
tion is valid for every pair T T, covered by the corollary, the sim-
plest being 2,1 with up = 2P_1. It is not known whether an infinity of

primes 1 + 2p exist.

Corollary 4. If

= > = = < = ooy
(ao,al) 1 and agra 2 1, l:henu0 0 <u1 1 Su,=a; <u, <uy |
and
(a) j compositeimplies u. composite, (b) uj|uk implies j|k,
except in the single case a, =1. If a, =1, (a) is false only when

1 1
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j=4 and uy is prime, while (b) is false only when j =2 and k is
odd.,

Proof. It is clear from (R) that u, is increasing as stated.

(a) Let j=hi, h22,i2 2. By Th. 3, up s Uy uj, where
u,u, < uj, since 2 £ h, i <j. If w or u, exceeds 1, u.j is com-
posite. Suppose both are 1. Then clearly h=1i=2, and 1 = u = u
=u, =2y, j=hi= 4, uJ. = uy, and (a) follows with its proviso.

(b) If uj U then uj :' (uj,uk) = u(j,k) (Th. 5), where
(i, k) € j. If equality holds, j jk; if inequality, we must have (j, k) =

=u, = al, k odd, and (b) follows.

]L,_]=2,1=u1 2

6. THE LUCASIAN SEQUENCES U, V

The integral sequences

; 2 N
U= {uj} = {O,l,al, } and V = {vj} = {2,211,2:10-1-:&1 seeet

with
=y j . - J j
uj = (r1 - T, )/(r1 rz), vj =1 + LPA

of the space C(f) associated with the quadratic

2
f(x) = -2 - g% +x = (x - rl)(x -,
where
1 1
21 2z 21 2 2
rl——Z(a1+Q)’ rz"z(al'Q)y Q—al +4a0,
1
r, +r,=a,, r,r,=-a,, r, -r =C)z a,. Q%0
1 2 1’ 7172 0’ 1 2 - 0 ’

have curious interrelations, which have been exploited by Lucas [4;
p. 223], and Lehmer [5], (in even more general form) in the design
of various ''tests for primality'. We present here some old and new

aspects of this.

The following relations are easily verified using the above form-

ulas for u., Vj:
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1 = ' =
(1) ujvk +ukv‘j 2uj+k (1a) ujvj uZj
- - 2(-a )] >
(@) wyvy -y = -2agfey o (k2 )
(3) Vjvk + Qujuk = 2vj+k (3a) vj + Quj = ZVZj
; = 2(-a ) >
(4) Vjvk Qujuk 2( ao) Vk—j (k 2 J)
2 2 j
(4a) Vj - Qu,. = 4(-a0)
- 2 j
(5) VZJ. = vj - 2(—a0)
(6) u1=l, V].:al
(7) up = Q(p-l)/Z mod p, for every odd prime p.

For example, we compute

1 1 1
P~2  _ 2.P A2\ _ P i, p_ p-i.i/2
27Q up-(al Q)T -(a -Q7) = 15 (A-(-1))Ca "t Qf,
so
Zp—lu = 1P cPa p—lQ(l_l)/Z, from which
P 0 il

i odd

-1
up = Q(p )/2 mod p.

A primeis saidto be regular (relative to £(x)) in case p TZaOQ.

We know from Th. 4 such a prime has rank r = r(p) |k(p) <=p2 -1 in

U, where k(p) isthe period of U mod p, and p luo, Uy e and
no other u.. More remarkably, we see now, from (2), (1), (6), and
(7), that
_otp-1)/2 (p-1)/2_ _
ay Q a; = ZaLOuP_1 and a; + Q a; = Zup_l_1 mod p.

Lemma 4. If p isaregularprime, then plup_1 if (Q/p) =1,

where p'up if (Q/p) = -1 (Legendre symbol!), so that always

+1
r(p) Sp+1 in U.
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Lemma 5. If p is a regular prime, then PIVzk if and only
. k+l .
if r(p) =2 in U.

Proof. If p v,k then p|u2k+1 by (1a), but pTqu by (4a),

hence r(p) =2 . Conversely, if p’u2k+1 but not Us ks then p]vzk
by (la).

These are the basic lemmas. For computational reasons, we

¢ . _ 2 _ 2
note tl;{at the sequen_ce ,_vzk% , with v, = ZaO ta;t, vopgr = (vzkg
- Zaoz , k2 1 (cf. [_5-_[) is related to the auxiliary sequence {Skg

defined by

= - >
Sk+1 Sk 2,k 21
. ; . _ . 2k-1 S
via the simple equation Yok = 3 Sk’ k2 1. Thus, whenever
ag Ialz, {Skg- is an integral sequence, and a regular prime p di-

_ 2
S, =2+ (a /ao),

vides v,k if and only if p Sk'

We may state one of Lehmer's results as

Theorem 6. Let M= Zq—l, where q is an odd prime, and

suppose aq,a; are integers with the properties

(a) If p is a prime divisor of M, then pTZaOQ where Q = al2 +
4a0.
(b) M prime implies (Q/M) = -1 and (aO/M) =1,
Then M 1is prime if and only if M,V(M+1)/Z, (equivalently
S, if aolalz).

Proof. If prime p]M'V(MH)/Z’ p is regular by (a); hence,
in U, r(p) = M+l &£ p+l by Lemmas 5,4, Thus p]M < p,and M = p,
prime. Conversely, if M is prime, itis regular by (a), and from
(b), (3), (6), and (7) follows alz -Q= 2VM+1, or Vp+] = —Zao mod
M. Then from (5) and (b), —Zao = (v 2)2 - ZaO(M+E)/2, and M
divides the stated vj.

(M+1)/

Example 5. For ag =2 = 2, Q =12, (a)and (b) are satisfied.
For, only the primes 2 and 3 divide ZaOQ, and M =1 mod 2 and
M =1 mod 3. Moreover, if M is a prime (Q/M) = (3/M) = -1, and
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(aO/M) = (Z/M) =1, since M= -1 mod8., Since 2, alz, the sequence
{ 5,5 isintegral with S =4, and M isprime ifand only if M S
In the same fashion one may prove

Theorem 7. Let F=22%+ 1, t2 1, and suppose a

0?2y are
integers with the properties
(a) If p is a prime divisor of F, then p1'ZaOQ,
(b) F prime implies (Q/F) =1, (aO/F) = -1,
Then F 1is prime if and only if Flv(F—l)/Z’ (equivalently

. . 2
SZt-l’ if a.0|a1 ).

Proof. Suppose prime pIFIV(F—l)/Z' Then p 1is regular and
in U has r(p)=F -1 <p+1, so plF S p+2. Clearly F = p, other-

wise 2p SF £p+2, p£2. If F is prime, it is regular by (a), and
2 _ -
from (b), (6), (7), (4), a;” - Q= -2ayve mod F or Vo1 =2 mod

F. From (5) and (b), 2 = (V(F-l)/Z)Z + 2 mod F and the theorem fol-
lows.

Example 6. For ag=2a; = 3, Q =21, onlythe primes 2, 3, and
7 divide ZaOQ, whereas F =1 mod2, F=2 mod3; as for 7, note
that either Zt =1 + 3h, and then F =3 mod 7, or Zt =2 + 3h, and

then F =z 5 mod 7. Hence (a) holds. If F is prime, we have (3/F)
= (F/3) = (2/3) = -1, and also (7/F) = (F/7) = -1, since (3/7)= -1 =
(5/7). Hence (Q/F)=(3/F)(7/F) =1, and (aO/F) = (3/F) = -1, as re-

quired. The auxiliary S, are integers, with S, = 5.

1

Note: The tests indicated in Th. 7 have no computational ad-

k

vantage over the orthodox N and S condition 3(}?_1)/Z = -1 mod F.

Indeed, the latteris a specialcase of Th., 7, with a, =3, a, = 2. For

0 1
the latest computational results see the relevant articles in Math.
Comp. 18 (Jan. 1964) and Scientific American (Nov. 1964, p. 12). The

least undecided Fermat number is F17.

7. THE SPACE Zp(f)

Let p be a prime of Z, and f(x) = -a

2 -
- e
g 2 xtx Zp[x_{. The
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regularity condition pTZaOQ, which we here assume, insures that p
is odd, and the zeros T, of f(x) in its root field are non-zero and

distinct.

Since f(x) = (X—Z'al)2 - (2‘)2Q, where 2' is the inverse of 2
mod p, we see that this root field is Zp if (Q/p) = 1, or the Galois
field C¥ = GF(p°) of 43 if (Q/p) = -1.

(I.)  If (Q/p) =1, there isa beZ such that b> = Q mod p,
and f(x) is reducible in zp[x]. Indeed, in zp, f(x) = (x - 2'(a; +D))
(x - 2'(a1 - b)) has the distinct zeros indicated. The space Zp(f)
itself has basis Rl’ R2 over VA ea.ch of its sequences being ex-
pressible inthe form s, = ClrlJ + chZ‘], s riézp' Since rip_1 =1
mod p, every S is pure periodic of period dividing p-1. By an ar-
gument now familiar, if h isthe least exponentfor which both rih =1,
every sequence with both ¢y £0 (e.g., UO’ U, and V) has period
h.

This case is of special interest when p = 221: +1 is a prime,
The conditions (Q/p) = 1, (ao/p) = -1 then hold if and only if f(x)

has zeros in Z with (say) r, a quadratic residue, and r, a non-

2
has period p-1, and r

1

residue. In such a case, r may have any

1 2
period m’%(p—l), in Zp. From the above expressionof s, in terms

of the T, it is clear that one sequence (S = 0) has period 1, exactly

p-1 (those with ¢, =0, <, # 0) haveperiod m, and the (p-1)p re-

1

maining sequences (with ¢y 40, ¢, arbitrary) have period p-1.

2
(II.) If (Q/p) = -1, f(x) is irreducible in Z.p[x], with zeros
T, P in C*, where, in the cyclic group G of order p~ -1, r and
rP have a period h!p2 - 1. The geometric sequences Ri are now
in C*(f) and form a basis for the latter space over C¥*., All se-
quences S # 0 of C*(f), in particular those of Z (f), have period

h. Since (r)p-lhl p)p+l = rp+1(1 - rpz'l) =0, plu

- (r pHL”

For every p 2 3, there exists an irreducible quadratic (rela-
tive towhich. p isnecessarily regular)for which r hasperiod pz-l.
Every sequence of the corresponding space has period pz-l. Since

plu , and every pair (0,1), ..., (0, p-1), indeed everypair ¥ (0, 0),
p+l y
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must appear exactly once asan adjacent pair in the sequence {uo, v
up2_1} mod p, it is clear that p+l is itself the rank of p in U, and
the above sequence consists of the terminal element and p-1 blocks of
ptl elements each. Moreover, each block arises from the first by
renaming its elements, since eachis the beginningof a sequence of the

space which is a multiple of U itself.

Such a sequence thus provides a solution of very special type for
the m = p, n=2 problem (Cf. footnote [7]) Lehmer's quadratic (Ex.
5) f(x)= -2—2x+x2 mod p= 23 -1=7 hasaroot r ofperiod 7Z -1 =48,

and mod 7 we find

U= {01262216 05323352 04131143 06515561 02454425 03646634 0,..*

FOOTNOTES

1. Most of theideas presented may be found elsewhere, sometimes

in less general form. See for example references [3, 6, 10].

2. A parallelversionis obtainedif C iseverywhere replaced by the
"root field' of f(x) over the rational field, or by the abstract
root field of f(x) mod p. See [7].

3. Although linearly independent, one may note, among others, the
. _ C >
relation uoj a'oun-l,j—l’ iz t.
4., Explicitly, for i=0,1,...,n-15j=1, ..., n,

i
r..=(-1)o(n-1-1i;j)/ 7 (zr, -r.)
i ( J.)/k#j K
where the o denotes the elementary symmetric function of de-

gree n-1-i in the n-1 roots Ty other than rj. (Here o =1
when n-1-i=0). Cf. ref. [8].

5. Periodalways means minimal period, while pure periodic means

that periodicity obtains from the beginning of the sequence.

6. The root field for a reducible f mod p exists, butthe periodicity

properties are more complicated.

7. The method indicated (with suitableinsertion of a zero) provides
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an algebraic construction of a sequence of integers mod m, of
length mn+n-l, containing no repeated n-tuple, in the case of
prime m. The existence of such sequences for arbitrary m,n
is a well-known corollary of a theorem on graphs [2, 9]. (Re-

mark of referee.)

For the Fibonacci case, see [10], on which the present section

is modelled.
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