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What is the largest possible determinant of order n, if zero and
one are the only entries allowed? This question, last posed by Harary
[1] , seems difficult.

Williamson [ 2 ]| obtained the values 1, 1, 2, 3, 5, 9 for n=1, 2,
3, 4, 5, 6; and proved the general problem equivalent to a similar
Hadamard question with allowed entries 1 and -1,

Cohn [3] derived an asymptotic lower bound,

(w412 - €)(ntl) on

>

where € 1is any positive number. The upper bound
(n+1)(n+1)/2/2n

follows from Hadamard's inequality[él], applied to the 1, -1 version
of the problem.

Clements and Lindstrom [5] have announced the lower bound
m+1)¥/2

where K = (n+1)(1-(log 4/3)/log(n+1))/2, and the logarithms are base
two.

In this note, I show that the Fibonacci sequence l, 1, 2, 3, 5,
8, ... is a lower bound for the sequences of maximum zero-one de-
terminants. Also, I compare this bound with the Clements- Lindstrom
bound.

Theorem: The maximum zero-one determinant of order n is
at least as large as the nth Fibonacci number.

This is proved by exhibiting zero-one matrices whose deter-
minants are the Fibonacci numbers.

Let. a(n) bethe rowvector with n entrieswhichare alternately

. . . t .
one and zero, starting with one, Consider the n h order matrix
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a(n)
1 a(n-1)
0 1
F(n) = . 0
a(2)
0 0 1 a(l)
For example,
101
F(1) = (1), F(2)={ Lo and F3)=| 110
b 011

Notice that det F(1) = 1, det F(2) = 1, and det F(3) = 2
Expanding det F(n) by the first column gives det F(n) =

a(n-1) 0 a(n-2)
1 1 a(n-2)
0 . 0 1 a(n-3)
det . . - det| . 0 1
a(2) . . a2)
0 Loa(l) 0 o0 0 1 a(l)
a(n-2)
1 a(n-3)
0 1
= det F(n-1)- (-1)det . 0
a(2)
0 0 1 a(l)

= det F(n-1) + det F(n-2). Therefore, the sequence det F(n) is the

Fibonacci sequence.

To compare this bound with the Clements-Lindstrom bound, ex-

amine the following table. .
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n 1 2 3 4 5 6 7 8 9
det F(n) 1 1 2 3 5 8 13 21 34
K
(nt1)>/2" .8 .9 1.1 1.7 2.8 5.2 10.1 21.1 46.3
10 11 12 13 14 15
55 89 144 233 377 610

107.2 259.5 654.9 1,717.7 4,669 13,122

If n is greater than 8, the Clements- Lindstrom bound is better.
For special n, still better bounds can be found. One of Cohn's

inequalities ’—3] becomes, for zero-one determinants,

M(mn-1) 2 2P D01 ryen 11" (Men-1)]™
where M(i) is the maximum determinant of order i, If mn-1 =14
and mn-1 =15, then

M(14) > 6,912, and
M(15) > 131,072
The numbers in the table above were bought from Diane K. Mid-
dents for 2 palindromes.
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