AN ALMOST LINEAR RECURRENCE
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A general linear recurrence with constant coefficients has the

form

Uy =a,, U, =a,,.0.,U =a_ ;
1 2’ *r-1 r ’
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The Fibonacci sequence is the simplest non-trivial case. Consider,
however, the following sequence:

(1) =1

|

®n” Pn-1 +¢[n/2] » >0

In this case, successive terms are formed from the previous one by
adding the term '"halfway back'' in the sequence. This recurrence,
which may be considered as a new kind of generalization of the Fib-
onacci sequence, has anumber of interesting properties which we will
examine here,

The sequence begins 1,2, 4, 6,10, 14, 20, 26,36,... . Itis easy
to see that all terms except the first are even, and furthermore ¢
is divisible by 4 if and only if n = Zz'k-1 (mod ZZk) for some k 2 11?
We leave it to the reader to discover further arithmetic properties
of the sequence.

The sequence ¢n has aninteresting combinatorial interpreta-
tion: ¢, is precisely the number of partitions of the number 2n into
powers of 2, For example, 6 =4 +2=4+1+1=2+2+2=2+2+
l1+1=2+1+4+41+1+1=14+1+1+1+1+1, and ¢3:6. Tover-

ify this interpretation, let P(m) be the number of partitions of m
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i = too ceo
intopowersof 2. If 2n 2 + a, + ao where a; 223, > Aap

and each a; is a power of 2, there are two cases: (i) a, = 1; then

ay tooot ar 1 is a partition of 2n-1; (ii) ak> 1; then al/Z + aZ/Z +
eest ak/Z is a partition of n. Conversely, all partitions of 2n are
obtained from partitions of 2n-1 and n inthisway, so P(2n) = P(2n-1)
+ P(n). We also find P(2n+l) = P(2n) by a similar argument; here
only case (i) can arise since 2n + 1 1is an odd number. These recur-
rence relations for P, together with P(l) =1 and P(2) = 2, establish
the fact that ¢ = P(2n).

The same sequence also arises in other ways; the author first

noticed it in connection with the solution of the recurrence relation
(la) M(0) =0

M(n) = n + min (2M(k)+M(n-1-k))
04k<n

for whichit canbe shownthat M(n) - M(n-1) =m if ¢ < 2n < ¢
m m+l,
and

1 n-1 -1
M(Zd’n—l)— 2 ¢n_L—4¢2n—1]

Recurrences such as (la) occur in the study of dynamic programming
problems, and they will be the subject of another paper.
Let us begin our analysis of (bn by noticing some of its most

elementary properties. By applying the rule (1) repeatedly, we find

6 =
(2) gy = 2Byt t )

Another immediate consequence of (1) is

2
(3) 5" ¢ ¢

2
2n+l " 2n-1 ¢n

The sequence ¢n grows fairly rapidly; for example,

¢500 1981471878
20

¢10000=2.14><10 .

Infact, we now show that ¢n grows more rapidly than any power of n:
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Theorem 1. For any power k, there is an integer Nk such that

<1!n>nk for all n > N..

k
k+1

Proof: Let N be such that (2°7141) 2 (2 + L)<

)
k+1
n

, and let

a = min (¢n/

N £n £ 2N

Then by induction ¢n A <:1nk+1 for all n AN, since this is true for

N £ n € 2N, and if n > 2N

)

K1 k+1
b, = b +¢[n/2] S a(n-1) +{n/2]77)
Kl | n-1k+l 1 41 + 1
> a(tn-1)" + (D = a0+ D) 2 an ) )™
2
> a(t + Ly (ot 2 gkt

If we choose Nk >1/a and NkZ N, the proof is complete.

We now consider the generating function for ¢ o Let

2 3
(4) F(x)_¢0+¢1x+¢2x +¢3x + ..

Notice that

2 2. -3 4.4 5
(1+X)(F(x)—¢0+¢0x+¢ 1¥ +¢1x +¢2x +¢2x + ...

1
©

2" 3 4
+ (¢1—¢O)X+(¢Z—¢1)X + (¢3—¢2)X + (¢4-¢3)x +. .

thus

We have therefore

2 4 8
(5) Fix) = (1+x)(1+x7)(1+x )(1+}28).., _ .

(1-x) (L% (Lo ) (Lox ) e (Lo 5 (Lmx ) (Lo ) (L) - -
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From this form of the generating function, we see that F(x)
converges for lxl < 1. (Asa functionof the complex variable z, F(z)

has the unit circle as a natural boundary.) It follows that

lim sup \n/¢n =1 |,

i.e. the sequence d)n grows more slowly than o™ for any -constant
a > 1, This is in marked contrast to linear recurrences such as the
Fibonacci numbers.

In the remainder of this paper we will determine the true rate of
growth of the sequence ¢n; it will be proved by elementary methods
that

1
In ¢1’1 - m (ln n) ,
1. €.
1 2 2
. m(ln n) +o((ln n) )
(6) ¢ _=e

The techniques are similar to others which have been used for deter-
mining the order of magnitude of the partition function (see [2] ).

We start by observing that

o0
2k
In F(x) = -In(l-x) + E (-In(l-x"))
k=0
00 . 0 o] Zk
S‘ﬂ r
X X
= R -~
Z T ) Z T
r=1 k=0 r=1
and hence by differentiation
) o X k
F'(x) _ Xr—l + 2 2k 2°r
FG) Z : CEE
r=1 k=0 r=1

Z+4x+2x2+8x3+2x4+4x5+...+0X +...
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where 6 is twice the highest power of 2 dividing k. Therefore

k
Fl(x) 2,0, 3 4.5 k-1
o) - (1-x){(2+6x+8x"+16x™ +18x +22x +.,.+ll/kx +..0)
where if
a; a
k=2 +...+2 ", a >a,5...>a_» 0,

. . k-1 . .
the coefficient of x in the power series on the righthand side is

= 0 =
¥ 01+ 2+....+o a, 2 +...+ta 2

(The reader will find the verification of this latter formula an inter-
esting exercise in the use of the binary system.) We can estimate

the magnitude of y k 2% follows:

a. -1 a. -2
1 1 + ... ta)
N _ .
d,k_a1k+2k (2 + 22 1
a1+1
= (a;T2)k - 2 ta; +2 2(1+1og2k)k -2k
hence
(7) klogyk - k&g, £ klog,k+2k

This estimate and the monotonicity of ¢ o are the only facts about

F(x) which are used in the derivation below.

Let ﬁ(ln(l—x))z
G(x) = e
Then
G'(x) _ - log(l-x) _ ;1 _, 1 5 2., 13 3. 77 4
Gr) Tz sy Mgt rmzX tymzX Tremzx )

Since the derivative of -log(l-x)/(1-x) is (l—log(l-x))/(l—x)z, we

find that the coefficient of xk~1 in the power series on the right is

where
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(9) hk=1+%—+... %
Since hk = In k + 0(1), ‘we have therefore established the equations
o o
SN DERCE-C R JA
k=1 ‘ k=1
and
(11) Y= x, +0(k)

This suggests a possible relation between the coefficients of F(x) and

those of G(x). Note that if

F'(x)
(x)

= (I-x)i(x)

o

then

F(x) = exp / (L-t)f(t)dt
0

Therefore the following lemma shows how relations (10) and (11) might

be applied to our problem:

Lemma 1. Let
x
A(x) = exp f (1-t)a(t)dt ,
0
X
B(x) = exp f (I-t)b(t)dt ,
0
where
A(x) = Akxk, a(x) = akxk_l, B(x) :E kak, b(x) = bkxk._1 .

Assume the coefficients of A(x) andof b(x) arenon-negativeand non-

for all k, A

decreasing. Thenif a, <b

R < B, ;if a, > b for all
>
k,A.] B

k k — k= "k

K
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Essentially the same argument works if a, 2 b, for all k.

AN ALMOST LINEAR RECURRENCE

Proof: AO = BO = 1. Assume 2y < bk forall k, and Ak'<'
0 £ k ¢« n. Then since A'(x) = (1-x)a(x)A(x), we have
nA L FagAs ta Byma) Fe o a1(An-l - Ans2)
< bnAo + bn_l(Al—Ao) R bl(An_l—An_Z)
= Ao(Bn—bn_l) + Al(bn_l-bn_z) R An—lb
< Bo(bn—bn_l) + Bl(bn_l—bn_z) o0t Bn-lb

k™ "k

By

The problem is now one of estimating the coefficients of

1 2
e In (1-x)
G(x) = e n 4
Theorem 2. If
2
(12) oC In"(1-x) - c Xt )
: z : n
we have
2
(13) ¢, = aln” n+0((ln n)(ln In n)) .
Proof: First we show that
0o
(14) In™(1-x) = iuh S S
n m,n
n=m
where

summed over all integers a

the a, are distinct.

of (14) is

H = E _,______1_____
m, n al---a

1"

m-1 e
™ (1-x) 2: g ol
(x-1) - m, n ’

n=m

123

for

vesa such that 1 £ a. < n, and
m-1 i

This follows inductively, since the derivative
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and we have

m-1
(15) Hm,n'Hm,n—l * n- Hrn—l,n—l

Turning to equation (12), we have

“n* :i am o o Al Z Z :( H o X",

m=0

(16)

Me

"
(@]

n

(We define Hm n o 0 if m > n, so the parenthesized summation is

actualiy a finite sum for any fixed value of n.)

Our theorem relies on the estimates

m-1 m-1
n

(17) (h -h ) < H z.h_‘l, if m<n

The righthand inequality is obvious, since this is the sum

e —
alo . oam-l

without the restriction that the a's are distinct. On the other hand,

given any term of

we form a term

bl.eobm_l

belonging to Hm,n’ where bkz a - T if a

{al, sees } Thus, we decrease the largest element byl, the

second largest by 2, and so on; in case of ties, an arbitrary order is

is the r-th largest of

taken. No two terms

map into the same
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1
P anda.,..a S5 s

1 m-1 1 m-1 1 m-1

so the lefthand side of (17) is established,
Putting the righthand side of (17) into (16), we obtain

o M- 1 Zm 2 2
(18) ¢ =2 E LS o oL E , n L _2e "o
n n (m-T)]! Zm,n T (m-IyT - T w ¢

On the other hand,

2
(19 °p >3 @07 Hom,n

for any particular value of m. " We choose m to be approximately
ahn_1 + 1, assuming n 1is large. Then we evaluate the logarithm of
the term on the right, using Stirling's approximationandthe left hand

side of (17), and discarding terms of order less than (ln n)(ln In n):

-1
. 2a o™ 2m-1
In €n ln(—?l— (m-1)! (hn—l i th-l) )

2 2 2 2 o
= ahn__lln a + Zahn—lln(hn—l_th—l) - ahn_l(ln(ahn_l) -1)+0(lnn)
2 2 th 1
= a hn—l + 2a hn_lln(l - T————)+ 0(ln n)
n-1
= h2 - 2ah h + 0(ln n)
= %% n-1"2m-1

This together with (18) establishes theorem 2.

Theorem 3. Let <, be as in theorem 2. Then
c
lim 2L -
n*# 00 n
Proof: Since H > H , we have
. m,n+l = "m,n

Cn+1 > I
C = n+l

n

by (16).
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We also observe that Hm n <h and hence by (15)

2

n-le-l,n

m-1 .
Hrn,n+l SHrn,n+ n hn-le—Z,n ’
thus
oo [ m-1
j : a Zm Za a 2m-1,,2(m-1)
Cntl < “m?! (m_)HZm,n * (n+l)hn-1 Z Trn—l)l(Zm-Z)( n )HZ(m-l),n
m=1 m=2
3ah
< n c 4+ n-1 c )
= n+tl "n n+1 n °
Corollary 3. If P(x) is any polynomial, and if
n L 2 1 + P
S et et U P
n
then
InC =1lnc_+ 0(1)
n n
Proof: If eP(X) =2, + a;x + azx‘2 + ..., we have
Cn _aocn+a1cn_1 + ... +anc0 P(1)
= = — e
c [
n n
Th 4 In & ~ ! 1 2
eorem 4. n é ~ - (ln n)
Proof: Let € > 0 be given. By (11), we can find N so that when

n> N, (1-—e)><k < wk < (1 +€)><k. Apply lemma 1 with A(x) = F(x),

o]

n-1
b(x) = ¥ + ¥x + ...+ Yx + E (1+e)><kxk'1
k=N+1

We find ¢n <_Cn where, by Corollary 3,
l+e 2
In Cn (m)ln n .
Then apply lemma 1 with

@

A(x) = F(x), b(x) = Z (1- €)%, !
k=N+1
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Thi i :
is gives us ¢n_> Cn where
l-e,. 2
LI
1n’ Cn (—ln)ln n .
Therefore

In ¢

1
In 4

|

(In n)

is arbitrarily small when n is large enough.

Of course, the estimate we have derivedin this theorem is very
crude as far as the actual value of d’n is concerned. Empirical
tests based on the exact values of ¢n for n €10000 reveal excel-
lent agreement with the following formula: B

Inn
In 4

(20) In ¢_= (lnn-2(lnlnn) +1) +lnn - .843

The erroris less than .05 for n » 10; it reachesa low ofabout -.05
when n is near 50, thenincreasesto approximately .032 when n is
near 5000, and it slowly decreases after that. Thus we can use (20)
to calculate

1og2 n

(21) 1.721(\/?1')

d)n ~ .472n a
with anerror ofat most 5% when 10 < n <10000. Although formula
(20) gives very goodaccuracy, it should be remembered that only the
first term of the expansion has been verified, and the comparatively
small values of In In n forthe rangeof n considered makes it pos-
sible that (20) is not the true asymptotic result. On the assumption
that the true formula is a relatively ''simple' one, however, equation
(20) gives strikingagreement. A similar situation exists in the study
of the partition function; the methods used here can be applied with

ease to that problem, to give

log p(n)'v#\/%n ;

the actual asymptotic formula for p(n) itself is
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ﬂJzn 1
37736
(n) = (—— - ! ) ¢ ro(A V)
p T I
4V3  4g 2(n - 57) (n - 5,)

where A<‘n’J% ;

wJ%n

p{n) ~ e .

1
4V3n
It is doubtful that it would have been guessed empirically in either of

these forms. For an account of this and a bibliography, see [1] .
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