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PROBLEMS PROPOSE© IN THIS ISSUE 

H-S81 Proposed by JoseLuiz Diaz, Polytechnic University ofCatalunya, Spain 
Let n be a positive integer. Prove that 

(a) F^+F%i+FZ2<Fn
F»+F„F;t>+F„Ftf, 

(b) F?-«FfrF&<F?-F&F&. 

H-582 Proposed by Ernst Herrmann, Siegburg, Germany 
a) Let A denote the set {2,3,5,8, ...9Fm+2} ofm successive Fibonacci numbers, where 

m > 4. Prove that each real number x of the interval / = [(Fm+2 ~ 1)~\ 1] has a series representa-
tion of the form 

*=5wv--v (1) 

where Fk_ e A for all / e N. 
b) It is impossible to change the assumption m > 4 into m > 3, that is, if A = {2,3,5} and 

/ = [1/4,1], then there are real numbers with no representation of the form (1), where Fk GA. 
Find such a number. 

SOLUTIONS 
Inspiring 

H-568 Proposed by K Gauthier, Royal Military College of Canada, Kingston, Ontario 
(Vol 38, no. 5, November 2000) 

The following was inspired by Paul. S. Bruckman's Problem B-871 in The Fibonacci Quar-
terly (proposed in Vol. 37, no. 1, February 1999; solved in Vol. 38, no. 1, February 2000). 

"For integers n,m>\, prove or disprove that 

/»-7r^zf2:Ti»-^i2m-1 
» • $ & > • 
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is the ratio of two polynomials with integer coefficients fm(n) = Pm(ri)/Qm(ri), where Pm(n) is of 
degree [^fj in n and Qm(n) is of degree [f-J; determine Pm(n) and Qm(n) for 1 <//* < 5." 

Solution by Paul S. Bruckman, Sacramento, CA 
We let the combinatorial number read "a choose h" be denoted by the symbol aCb. After a 

bit of manipulation, we may express fm(n) as follows: 

(.2nC„ffm(n) = 2£( 2 ,A) 2 (»-*) 2 m - 1 = 2gm(n), say. 
k=0 

That is, 

gM = VL(2nCk)2(n-kf-\ (1) 
Jc=0 

For convenience, we make the following definitions: 

4(") = ZG,A)2(»-*y; (2) 
A:=0 

^(«) = Z ( 2 n + 1 Q ) 2 ( « - ^ ; (3) 
k=0 

U(n)=,nC2n;V{n) = (2nC„f. (4) 

Note that gm(n) = A2m_l(n) and /m(/?) = 2A2m_l(n)/V(n). Also note that 

U(n -1) = /I(2/I - l)tf (/i) / {2(4/? - l)(4/i - 3)}, V(n -1) - ^2F(fi)/ {4(2w -1)2}. 

The following combinatorial identities are either directly found or easily derived from identi-
ties given in [1]; in some cases, their derivation is a bit lengthy, and is therefore abridged here: 

AQ(n) = \/2{U(n)+V(n)} (Identity (3.68) in [1]); (5) 

B0(n) = (4/i + l)E/(/i)/ (2/1 + 1) (Identity (3.69) in [1]); (6) 

A2(n) = n2U(n)12(4/?-1) (Identity (3.76) in [1] with In replacing /?); (7) 

Al(n) = nV(n)/4. (8) 

Proof of (8): The summand portion (n-k) in Ax(n) is equal to (n2 - k2 + (/?- k)2) I In. 
Thus, after simplification, 

2nAl(n) = /?24)(/?) - 4n2BQ(n -1) + ^(/t) 
= /?2(t/(/?) + V(n)) 12 - 2n3U(n) I {An -1) + /?2t/(/?) / (4/i -1)4/?2, 

which reduces to (8). D 

Z(2 .+ iQ)2(2^ + l -2*)2 = (2/? + l)£/(/?) (Identity (3.76) in [1], (9) 
with 2/1 + 1 replacing /i). 

Now the summand portion (/? - A:) in ^(/i) may be written as 

{4/?2-l + (2/? + l -2&)2-4£2}/ (4(2/1 + 1)}. 
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It then follows that 

4{2n + l)^(/i) = (4n2 - l)BQ(n) + C(n) - 4{2n + l)2(^(/i) - V(n)\ 

where C(n) is the expression given in the left member of (9). Then, after simplification, we obtain 
the following: 

Bl(n) = (2n + l)V(n)/2-(4n + l)U(n)/{2(2n + l)}. (10) 
Next, we note that 

(n - kf = (n- k)2{(2n - kf - k2} I An. 
Then, using the above definitions, we see that 

4nA3(n) = 4n2{B2(n -1) + 2Bl(n -1) + B0(n -1)} - 4n2B2{n -1); 

hence, 
A3(n) = 2nBl(n -1)+nB0(n -1). 

After further simplification, we obtain 

A3(n) = n3V(n) I [4{2n -1)}. (11) 

From the definitions given in (1) and (2), along with the relation fm(n) = 2gm(n)/V(n), and 
using the results of (8) and (11) we therefore have 

/!</!) =/t/2, /2(«) = »3/{2(2«-l)}. (12) 

We may prove Gauthier's conjecture by induction (on m). However, due to considerations of 
length, we can only outline the procedure and omit the details. The required tool for the proof is 
the following recurrence satisfied by the fm(n)'s: 

fm+2(n) = 2«2/m+i(»)-«4/m(«) + »4/m(«- !)• (13) 

Proof of (13): 

V(n){fm+1(n) ~ 2n2fm+i(n)+»7») / 2 

= i (2 n Q) 2 (« -^ ) 2 m _ 1 { (» -* ) 4 -2» 2 (« -^ 2 +« 4 } . 

Note that the quantity in braces is equal to {(w- k)2 -n2}2 = k2(2n~k)2; therefore, the last sum-
mation may be expressed as follows: 

(2«)2(2»-l)2£(2n_2Ct_1)2(»-*)2'"-1 

k=i 

= 4n\2n-l/£(2«-2Ck)2(n-l-k)2"'-1 

= 4n2{2n - lffm(n - \)V(n -1) / 2 = n4fm(n - l)V(n) 12, 

which reduces to (13). D 

Instead of applying induction directly on (13), we transform this recurrence and apply it to a 
modified set of functions. Namely, we make the following transformation: 
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* » = / » W , (14) 
where 

Tm{n) = 2r+l(n - 1 / 2)(r) = 2{2n -1)(2« - 3)... (2#i - 2r +1) (15) 
and 

r = [m/21 (16) 

Therefore, the Tm(nYs are polynomials in ?? of degree r. By making the substitution indicated 
in (14) into the recurrence (13), we obtain our modified recurrence relation. It becomes more 
convenient to dichotomize this relation into the two cases m = 2r and m = 2r +1: 

k2r+2(n) - 2n\2n -1 - 2r)k2r+l(n)+n4(2n-l- 2r)k2r(n) = n\2n - l)k2r{n -1), (17) 

k2r+3(n) - 2n\r+2(n)+n%2n -1 - 2r)k2r^(n) = n4(2n - l)k2r+l(n -1) . (18) 

From (12) and the relation in (14), we obtain the initial values 

*i(n) = n, k2(n) = n\ k3(n) = n\ k4(n) = 3n6 - 5n5 + n4. (19) 

It follows (by an easy induction) from (17), (18), and (19) that the km(ny$ are polynomials in n 
with integer coefficients. 

The following results are posited: 

k2r(n) = a2rn3r + R3r_x(n), k2r_x{n) = a 2 r V ' " 2 + % - 3 ^ ) ; (20) 

a2r = (2r-l)\/T-\ a2r_l = (2r-2)\/2r-1. (21) 

In these formulas, the functions RM(ri) are polynomials in n of degree M In order to prove (20) 
and (21), we must first verify that they yield the correct values for r = 1 and r - 2. Using (19), 
we find that ax = a2 = a3 = 1, and a4 = 3, thereby validating (20)-(21) for r = 1 and r = 2. If we 
apply the recurrence (17) to find k2r+2(n)y expand each expression using the putative expressions 
in (20)-(21), and compare coefficients, we find that the coefficients of n3r+5 and n3r+4 vanish, 
while the coefficient of n3r+3 is found by the first formula in (21) with r + 1 replacing r. This 
establishes the first half of the inductive step. 

Then applying (18) to obtain k2r+3(ri) and repeating the process, we find that the coefficients 
of n3r+6 and n3r+5 vanish, while the coefficient of w3r+4 is found by the second formula in (21) 
with r +1 replacing r. This establishes the second half of the inductive step. This is essentially 
equivalent to Gauthier's conjecture, with the added bonus of an expression for the leading term of 
km{n). 

Note that the degree of k2r(n) is 3r, while the degree of £2r-i(w) *s 3 r - 2 ; this fact may be 
expressed concisely as follows: the degree of km(n) is [3m/2]. 

Having established (20)-(21), we may then revert to the original definitions. That is, we may 
express fm(n) as the ratio Pm(n)/Qm(n) of two polynomials with integer coefficients, where 

Pm(n) = km(n) and Qm(n) = T(n-l/2)^ = 2(2n-l)(2n-3) ...(2w-2r + l), 

with r = [m/2]. Thus, the degree of Pm{n) is [3m 12] = m+r, while the degree of Qm(n) is r. 
This completes the demonstration of Gauthier's conjecture. 

It only remains to fulfill the last part of the problem, namely, to display the functions fm(n) 
for m = 1,2,3,4,5. Since we already know that fm(n) = Pm(n) I Q„(ri), where 
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a,(w) = 2(2w-lX2n-3)...(2w-2r + l), 
it suffices to display the first few values of Pm(n). As we have already shown, 

BSfl) = n, P2{n) = n\ P3(n) = n\ P4(n) = n4(3n2 -5w + l). 
Continuing by means of (17) and (18), we find the following: 

P5(n) = n4(6n3 -I2n2 + 6n-1), 

P6(n) = n4(30n5-l50n4 + 252n3~m5n2 + 65n-9), 
P7(n) = n4(90n6 -5\0n5 + 1074w4 -1128/?3 + 650«2 - 198w + 25), 

i> (W) = n4(630nB - 6300/?7 + 24990/?6 - 52200«5 

+ 64506w4™49356«3+23111/?2-6087« + 691), 
etc. 

By means of a little program names Derive, the author obtained the expanded expressions for 
Pr(n) from r = 1 to r = 15. These are available upon request. It would be desirable to identify the 
"Gauthier polynomials" Pr(n) with more familiar polynomials already appearing in the literature, 
whose properties may already be known. 
Reference 
1. H. W. Gould. Combinatorial Identities. Morgantown, W. Va., 1972. 

A High Exponent 

H-569 Proposed by Paul S* Bruckman, Berkeley\ CA 
(Vol 38, mo. 5, November 2000) 

Let r(n) and a(n) denote, respectively, the number of divisors of the positive integer n and 
the sum of such divisors. Let e2(n) denote the highest exponent of 2 dividing n. Let/? be any odd 
prime, and suppose e2(p +1) = h. Prove the following for all odd positive integers a: 

e2(*W)) = e2(T(if))+h-l. (*) 

Solution byH.-J. Seiffert, Berlin, Germany 
Ifm and n are any positive integers, then 

e2(m) = 0 if m is odd, e2(mn) - e2(m) + e2(n), 

e2(m + n) = tmn(e2(mX e2(n)) if e2(m) * e2(n). 

Let h and q be positive integers such that q is odd and 2hq -1 > 1. We consider the positive 
integers 

2km-l /<jh^ *\2km i 

where k is any positive integer and m any odd positive integer. First, we prove that 
e2(Ah m) = h for all odd m e N. (2) 

Since Alx = 2hq9 this is true for m = 1. Suppose that (2) holds for the odd positive integer m. 
Using the easily verified equation 
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A,m+2 = (2hq-l)4AUm + 2h+1q(2»-lq2 -2hq + \), 

from (1) and the induction hypothesis, we obtain e2(Alm+2) = h, so that (2) is established by 
induction. Next, we prove that, if m e N is odd, then 

e2(Ak,m) = k+h-l for all keN. (3) 

By (2), this is true for k = 1. Suppose that (3) holds for k eN. We have 

A+i, „ = \m((2hq ~ lfm +1) = 2Aktm(f2h-lq - \)AK m +1), 

so that, by (1) and the induction hypothesis, e2(Ak+lm) = e2(Akm) + l = k+k. This completes the 
induction proof of (3). 

Let/?, a, and h be as in the proposal. Then there exist positive integers k, q, and m such that 
q and m are both odd, p = 2hq - 1 > 1, and a = 2km - 1 . Noting that 

a(p^ = l + P + ^^p^Pj^=AKm 

and 
T(pa) = a + l = 2krn, 

we see that the requested equation (*) is an immediate consequence of (3). 
Also solved by L. A. G. Dreself D. Iannucci,H. Kwottg? R Martin, J. Spilkes, and the proposer. 

EDITORIAL REQUEST 
Please send in proposals!!! 
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